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Abstract
This paper describes a systematic method for deriving efficient
algorithms and precise time complexities from extended Datalog
rules as it is applied to the analysis of trust management policies
specified in SPKI/SDSI, a well-known trust management frame-
work designed to facilitate the development of secure and scalable
distributed computing systems. The approach of expressing pol-
icy analysis problems as extended Datalog rules is much simpler
than previous techniques for analysis of SPKI/SDSI policies. Our
method also derives better, more precise time complexities than be-
fore in addition to generating complete algorithms and data struc-
tures. The method is general, with many applications beyond policy
analysis. It extends our previous method for Datalog to handle list
constructors, external functions, and queries.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Processors—code generation, optimization; D.3.4 [Pro-
gramming Languages]: Language Classifications—constraint and
logic languages; D.4.6 [Operating Systems]: Security and
Protection—access controls; E.1 [Data]: Data Structures—arrays,
lists, queues, records; F.2 [Analysis of Algorithms and Prob-
lems Complexity]: Nonnumerical Algorithms and Problems—
computations on discrete structures; I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation

General Terms security, algorithms, languages, performance

Keywords access control, policy analysis, security, algorithm,
time complexity

1. Introduction
Trust management is a unified approach to specifying and enforc-
ing security policies in distributed systems [11, 5] and has become
increasingly important as systems become increasingly intercon-
nected. At the same time, logic-based languages and frameworks
have been used increasingly for expressing security and trust man-
agement policies, e.g., [16, 19]. For analysis and enforcement of
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security and trust management policies, a method for generating
efficient algorithms and implementations from policies specified
using logic rules is highly desired.

This paper describes a systematic method for deriving efficient
algorithms and precise time complexities from extended Datalog
rules as it is applied to the analysis of trust management policies
specified in SPKI/SDSI, a well-known trust management frame-
work designed to facilitate the development of secure and scalable
distributed computing systems. SPKI/SDSI [10] is based on pub-
lic keys and incorporates Simple Public Key Infrastructure (SPKI)
and Simple Distributed Security Infrastructure (SDSI). It provides
fine-grained access control using local name spaces and a security
policy model.

The SPKI/SDSI framework facilitates granting and delegating
authorizations, as well as naming. It uses name certificates to de-
fine names in principals’ local name spaces as keys or other names,
and uses authorization certificates to grant authorizations and to
delegate the ability to grant authorizations. A principal is autho-
rized to access a resource by an authorization certificate or by a
chain of certificates involving naming and delegation. Designing
efficient algorithms for inferring authorizations and answering re-
lated queries is essential for enforcing SPKI/SDSI policies.

We express policy analysis problems using extended Datalog,
which is Datalog [7, 2] extended with list constructors and external
functions. We represent certificates as facts, and describe rules and
queries for computing the reduction closure, inferring authoriza-
tions, and solving other policy analysis problems for SPKI/SDSI.
These other analysis problems include ones about the current state
of the policy, as well as ones about changes in the state that would
be caused by possible changes in the policy, such as expiration or
addition of a set of certificates.

We describe our method for systematically generating special-
ized algorithms and data structures, together with precise time com-
plexity formulas, from extended Datalog rules as it is applied to
computing reduction closure and inferring all authorizations. The
generated algorithms employ an incremental approach that consid-
ers one certificate or intermediate analysis fact at a time, and use
a combination of linked and indexed data structures to represent
different certificates and intermediate values. The running time is
optimal for the respective rules, in the sense that each combination
of instantiations of hypotheses is considered once in O(1) time.

We then describe other policy analysis problems as additional
rules and queries, and use a method to systematically push given in-
puts for the analyses from queries into hypotheses of rules, yielding
specialized and simplified rules for the given queries. This is simi-
lar to pushing demands by queries in magic set transformations [4],
but instead of yielding more complicated rules with magic predi-
cates, we obtain simplified, specialized rules that are much easier
for generating efficient implementations and precise complexities.
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Contrasting various previous works, our rules and algorithms
for policy analysis support all aspects defined in the specification
for SPKI/SDSI, including any number of resources and accesses,
names consisting of any number of identifiers, and validity inter-
vals. We also have a prototype implementation, and experimental
results confirm our precise complexity analysis.

A significant amount of work has been done on algorithms for
SPKI/SDSI policy enforcement and analysis [27, 1, 10, 18, 8, 21,
12, 3, 13, 20, 17, 9]. Our approach of expressing policy analysis
problems as extended Datalog rules is much simpler than previous
techniques for analysis of SPKI/SDSI policies. Our method also
derives better, more precise time complexities than before in ad-
dition to generating complete algorithms and data structures. The
method is general, with many applications beyond policy analysis.
It extends our previous method for Datalog [23] to handle list con-
structors, external functions, and queries.

2. SPKI/SDSI
In SPKI/SDSI systems, principals are the users and are identified
by public keys, which we will simply refer to as keys. Identifiers
are words over a standard alphabet and are used to refer to prin-
cipals and resources. A name is a key followed by a sequence of
identifiers.

SPKI/SDSI certificates are name certificates and authorization
certificates. A name certificate defines a local name in its issuer’s
local name space. A name certificate is the 4-tuple (K, I, S, V ),
where K is the public key of the issuer of the certificate; I is an
identifier from the local name space of the issuer; S is the name
or key that the local name KI stands for; V is the validity time
interval for the certificate and is of the form [t1, t2], where t1 and
t2 are absolute time constants. The 4-tuple defines the name KI
to stand for S during validity interval V . A name certificate can
only be issued by the principal to whom the name being defined is
local. We refer to certificates in which S is a name as name-name
certificates, and to ones in which S is a key as name-key certificates.
A name can correspond to a set of keys.

Principals use authorization certificates to grant permissions for
accessing resources to other principals. An authorization certificate
is a 5-tuple (K, S, D, P, V ), where K is the public key of the
certificate issuer — the principal granting authorization; S is the
subject of the certificate — the key or name that is being granted
authorization; D is a boolean delegation bit indicating if the subject
is granted the right to delegate the permissions granted by the
certificate to others; P is the set of permissions, i.e. operation-
resource pairs, being granted; V is a validity interval as for name
certificates.

A principal Pr has permission for an operation on a resource
if there is a valid authorization certificate (R,Pr, D, P, V ), where
P contains the operation-resource pair, and R is the owner of the
resource involved in permission P , or if such a certificate can
be inferred, i.e. there is a chain of certificates that authorizes the
access. Certificates are composed in chains by use of the following
composition rules.

• Two name certificates, such as (k1, id1, k2 id2 ids, v1) and
(k2, id2, s, v2), can be composed to infer (k1, id1, s ids, v3),
where v3 is the intersection of validity intervals v1 and v2.

• Two authorization certificates, (k1, k2, d1, p1, v1), where d1 =
TRUE, and (k2, s, d2, p2, v2) can be composed to infer the
certificate (k1, s, d2, p3, v3), where p3 is the intersection of
authorization sets p1 and p2, v3 is the intersection of validity
intervals v1 and v2.

• An authorization certificate (k1, k2 id ids, d, p, v1) and a
name certificate (k2, id, s, v2), can be composed to infer

(k1, s ids, d, p, v3), where v3 is the intersection of validity
intervals v1 and v2.

The closure of a set of certificates contains all given certificates
and all certificates that can be inferred using the above rules. How-
ever, the closure of a set of certificates may be infinite. The reduc-
tion closure of a set of authorization and name certificates contains
all given certificates and all certificates that can be inferred using
chains in which every certificate after the first one has a key as its
subject. For each name occurring in a set of certificates, the reduc-
tion closure contains all name-key certificates that define the name
as a key, as in the full closure of the set of certificates. Also, for a
given key, the reduction closure contains all authorization certifi-
cates in which the key is a subject, that occur in the full closure.
Thus, the reduction closure can be used to find all keys that a name
stands for, as well as to find all permissions that a key has.

3. Computing Reduction Closure Efficiently
This section expresses reduction closure and authorization infer-
ence using extended Datalog rules, and describes the generation of
specialized algorithms and data structures from the rules, we also
analyze precisely the time complexities, expressing the complexi-
ties in terms of characterizations of the given set of certificates.

3.1 Expressing reduction closure in rules

A Datalog program is a finite set of relational rules of the form

p1(x11, ..., x1a1), ..., ph(xh1, ..., xhah
) → q(x1, ..., xa)

where h is a natural number, each pi (respectively q) is a relation of
ai (respectively a) arguments, each xij and xk is either a constant
or a variable, and variables in xk’s must be a subset of the variables
in xij’s. If h = 0, then there are no pi’s or xij ’s, and xk’s must be
constants, in which case q(x1, ..., xa) is called a fact. For the rest
of the paper, “rule” refers only to the case where h ≥ 1, in which
case each pi(xi1, ..., xiai) is called a hypothesis of the rule, and
q(x1, ..., xa) is called the conclusion of the rule. The meaning of a
set of rules and a set of facts is the smallest set of facts that contains
all the given facts and all the facts that can be inferred, directly or
indirectly, using the rules.

We use the following relations to denote certificates:

• nameCert(k,id,s,v): a given name certificate.

• authCert(k,s,d,p,v): a given authorization certificate.

• name(k,id,s,v): an inferred name certificate.

• auth(k,s,d,p,v): an inferred authorization certificate.

We use three external functions. The symbol | separates the head
from the tail in a sequence of identifiers and NIL denotes the empty
list. The functions PInt(p1,p2) and VInt(v1,v2) return the
intersections of two sets of permissions, and two validity intervals,
respectively.

The rules for composing chains of certificates can readily be
written as the extended Datalog rules shown in Figure 1.

3.2 Generating efficient algorithms and data structures

We transform the extended Datalog rules into an efficient imple-
mentation using the method in [23] for Datalog rules. A small ex-
tension is needed to handle the external functions |, VInt, and
PInt.

The method has three steps. Step 1: transform the least fixed
point (LFP) semantics of the extended Datalog rules into a while-
loop. Step 2: transform expensive set operations in the loop into
incremental operations. Step 3: design appropriate data struc-
tures for each set, so that operations on it can be implemented ef-
ficiently. These three steps correspond to dominated convergence
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1. nameCert(k,id,s,v)→name(k,id,s,v).
2. authCert(k,s,d,p,v)→auth(k,s,d,p,v).
3. name(k1,id1,k2|(id2|ids),v1),name(k2,id2,k3|NIL,v2)→name(k1,id1,k3|ids,VInt(v1,v2)).
4. auth(k1,k2|NIL,TRUE,p1,v1),auth(k2,k3|NIL,d2,p2,v2)→auth(k1,k3|NIL,d2,PInt(p1,p2),VInt(v1,v2)).
5. auth(k1,k2|(id|ids),d,p,v1),name(k2,id,k3|NIL,v2)→auth(k1,k3|ids,d,p,VInt(v1,v2)).

Figure 1: Rules for computing the reduction closure.

[6], finite differencing [25], and real-time simulation [24], respec-
tively, as studied by Paige et al.

Fixed-point specification and while-loop We represent a rela-
tion of the form Q(a1, a2, ..., an) using tuples of the form
[Q a1 a2 ... an]. S with X and S less X denote S ∪ {X}
and S − {X}, respectively. We use the notation {X : Y1 in
S1, . . . , Yn in Sn|Z} for set comprehension. Each Yi enumerates
elements of Si; for each combination of values Y1, . . . , Yn, if the
value of boolean expression Z is true, then the value of expression
X forms an element of the resulting set. If |Z is omitted, Z is im-
plicitly the constant true.

{[X1 Y1] . . . [Xn Yn]} denotes a map that maps X1 to Y1,
. . ., Xn to Yn. dom(E) denotes the domain set of map E, i.e.
{X : [X Y ] in E}. M{X} denotes the image set of X under
map M , i.e. {Y : [X Y ] in M}. M{X} := S denotes setting
the image set M{X}, of X under map M , to S. LFP(S0, F )
denotes the smallest set S that satisfies the conditions S0 ⊆ S and
F (S) = S.

The algorithm is expressed using standard control constructs
while, for, if, and case. Program block structure is indicated
by indentation. We abbreviate X := X op Y as X op:= Y .

The input to the algorithm is the given set of certificates repre-
sented by a set certs of facts. We define rcerts to be the set of
facts in certs represented as tuples as described above.

rcerts = {[authCert k s d p v]:
authCert(k,s,d,p,v) in certs}

∪ {[nameCert k id s v] :
nameCert(k,id,s,v) in certs}.

Given any set R of facts, and an extended Datalog rule with rule
number n and with relation e in the conclusion, let ne(R) be the
set of all facts that can be inferred by that rule given the facts in R.
For our rules we have:

1name={[name k id s v] :
[nameCert k id s v] in R},

2auth={[auth k s d p v] :
[authCert k s d p v] in R},

3name={[name k1 id1 k3|ids VInt(v1,v2)] :
[name k1 id1 k2|(id2|ids) v1] in R and
[name k2 id2 k3|NIL v2] in R},

4auth={[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] :
[auth k1 k2|NIL TRUE p1 v1] in R and
[auth k2 k3|NIL d2 p2 v2] in R},

5auth={[auth k1 k3|ids d p VInt(v1,v2)] :
[auth k1 k2|(id|ids) d p v1] in R and
[name k2 id k3|NIL v2] in R}.

The meaning of the given set of certificates and the extended
Datalog rules for reduction closure is:

LFP({},F), where F(R)=R∪rcerts ∪
1name(R)∪2auth(R)∪3name(R)∪4auth(R)∪5auth(R)

(1)

This least-fixed point specification of computing the reduction
closure is transformed into the following while loop:

R := {};
while exists x in F(R) - R:

R with := x;
(2)

The idea behind this transformation is to perform small update
operations in each iteration of the while-loop. After the execution
of this loop R contains all facts that are given or can be inferred by
the rules. R is referred to as the resultset.

Incremental computation Next we transform expensive set oper-
ations in the loop into incremental operations. The idea is to replace
each expensive expression exp in the loop with a variable, say E,
and maintain the invariant E = exp, by inserting appropriate ini-
tializations and updates to E where variables in exp are initialized
and updated, respectively.

The expensive expressions in type inference are all sets of facts
inferred by each rule and a workset W. We use fresh variables to
hold each of their respective values and maintain an invariant for
each of these sets, in addition to one for the workset.

I1name = 1name(R), I2auth = 2auth(R),
I3name = 3name(R), I4auth = 4auth(R),
I5auth = 5auth(R), W = F(R) - R.

As an example of incremental maintenance of the value of an
expensive expression, consider maintaining the invariant I3name.
I3name is the value of the set formed by joining two name cer-
tificates. I3name can be initialized to {} with the initialization R
:= {}. To update I3name incrementally with update R with:= x,
if x is of the form [name k1 id1 k2|(id2|ids) v1], we con-
sider matching tuples of the form [name k2 id2 k3|NIL v2]
and add all corresponding new tuples [name k1 id1 k3|ids
VInt(v1,v2)] to I3name. To form the tuples to be added, we
need to efficiently find the appropriate values of variables that
occur in [name k2 id2 k3|NIL v2] tuples, but not in [name
k1 id1 k2|(id2|ids) v1], i.e., the values of k3 and v2, so
we maintain an auxiliary map, I3name1, shown below, that maps
[k2 id2] to [k3 v2]. Symmetrically, if x is a tuple of the form
[name k2 id2 k3|NIL v2], we need to consider every match-
ing tuple of the form [name k1 id1 k2|(id2|ids) v1] and
add the corresponding tuple of the form [name k1 id1 k3|ids
VInt(v1,v2)] to I3name, so we maintain the auxiliary map
I3name2 below.

I3name1 = {[[k2 id2] [k3 v2]] :
[name k2 id2 k3|NIL v2] in R},

I3name2 = {[[k2 id2] [k1 id1 ids v1]] :
[name k1 id1 k2|(id2|ids) v1] in R}.

The first set of components in an auxiliary map is referred to as
the anchor and the second set of elements as the nonanchor.

Thus, the algorithm can directly find only matching tuples and
consider only combinations of facts that make both hypotheses true
simultaneously, and it considers each combination only once. Aux-
iliary maps are maintained similarly for all maintained invariants,
I4auth and I5auth here, that are formed by joining two relations.
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All variables holding the values of expensive computations
listed above, and auxiliary maps, are initialized together with the
assignment R := {} and updated incrementally together with the
assignment R with:= x in each iteration. We show the update
for the addition of a fact of relation name only for I3name and
auxiliary map I3name2. Other updates are processed in the same
way.

case of x of [name k1 id1 k2|(id2|ids) v1]:
I3name ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}};
W ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}
| [name k1 id1 k3|ids VInt(v1,v2)] notin R};

I3name2 ∪:= {[[k2 id2] [k1 id1 ids v1]]};
(3)

Adding these initializations and updates, and other similar ones
for the other cases, and replacing F(R) - R with W in (2), we obtain
the following complete code:

initialization; R:={};
while exists x in W:

update using (3) and
similar updates for the other cases;
W less:= x; R with:= x;

(4)

Next, we eliminate dead code. To compute the resultset R, only
W and the auxiliary maps are needed; the invariants maintained,
i.e., I3name, I4auth, and I5auth, are dead because F(R)-R in
the while loop was replaced with W. We eliminate them from the
initialization and updates. For example, eliminating them from the
updates in (3), we eliminate lines 2-3.

case of x of [name k1 id1 k2|(id2|ids) v1]:
W ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}
| [name k1 id1 k3|ids VInt(v1,v2)] notin R};

I3name2 ∪:= {[[k2 id2] [k1 id1 ids v1]]};
(5)

We clean up the code to contain only uniform operations on set
elements. This simplifies data structure design. We decompose R
and W into several sets, each corresponding to one relation in the ex-
tended Datalog rules. R is decomposed to RnameCert, RauthCert,
Rname and Rauth; W is decomposed to WnameCert, WauthCert,
Wname, and Wauth. This decomposition lets us eliminate relation
names from the first component of tuples, with appropriate changes
to the rest of the code. Then, we apply the following three sets of
transformations.

(i) Transform operations on sets into loops that use operations
on set elements. Each addition of a set is transformed to a for-loop
that adds the elements one at a time. For example, lines 2-4 of (5)
are transformed into:

for [k3 v2] in I3name1{[k2 id2]}:
if [k1 id1 k3|ids VInt(v1,v2)] notin Rname:
Wname with:= [k1 id1 k3|ids VInt(v1,v2)];

(6)
(ii) Replace tuples and tuple operations with maps and map

operations. Specifically, replace all for-loops as follows. (6) is
transformed into:

for [k2 id2] in dom(I3name1):
for [k3 v2] in I3name{[k2 id2]}:
if [k1 id1 k3|ids VInt(v1,v2)] notin Rname:
Wname with:= [k1 id1 k3|ids VInt(v1,v2)];

We replace the while loop similarly. Also, we replace each
[X Y ] notin M with Y notin M{X}. Each addition to a map
M with:= [X Y ] is replaced with M{X} with:=Y .

(iii) Test for membership before adding or deleting an ele-
ment to or from a set. Specifically, we replace each statement S
with:=X with if X notin S : S with:=X.

Note that when removing an element from a workset, the mem-
bership test is unnecessary, since the element is retrieved from the
workset. Also, when adding an element to a resultset, the member-
ship test is unnecessary, since elements are moved from the corre-
sponding workset to the resultset one at a time, and each element is
put in the workset and thus in the resultset only once.

After the above transformations, each firing of an extended
Datalog rule involves a constant number of set operations. Since
each set operation takes worst-case constant time in the generated
code, as described below, each firing takes worst-case constant
time. The complete pseudocode for computing reduction closure
efficiently is shown in figure 2.

Data structures We describe how to guarantee that each set op-
eration takes worst-case constant time. The operations are of the
following kinds: set initialization S := {}, computing image set
M{X}, element retrieval for X in S and while exists X in
S, membership test X in S and X notin S, element addition S
with X, and element deletion S less X. Membership test and
computing image set are called associative access.

A uniform method is used to represent all sets and maps, using
arrays for sets that have associative access, linked lists for sets that
are traversed by loops, and both arrays and linked lists for sets that
have both operations.

Resultsets are represented by nested array structures. A resultset
containing tuples with a components is represented using an a-
level nested array structure. The first level is an array indexed by
values in the domain of the first component of the resultset; the k-
th element of the array is null if there is no tuple in the resultset
whose first component has value k, and otherwise is true if a = 1,
and otherwise is recursively an (a− 1)-level nested array structure
for the remaining components of tuples in the resultset whose first
component has value k.

Worksets corresponding to relations that occur in the conclu-
sions of rules are represented by arrays and linked lists. Each work-
set is represented the same way as the corresponding resultset with
two additions. First, for each array we add a linked list containing
indices of non-null elements of the array. Second, to each linked
list we add a tail pointer, i.e., a pointer to the last element, so the
list can be used as a queue. One or more records are used to put
each array, linked list, and tail pointer together. Each workset cor-
responding to a relation that does not occur in the conclusion of
any rule, is represented simply as a nested queue structure (without
the underlying arrays), one level for each component of the tuples,
linking the elements (instead of array indices) directly.

Auxiliary maps are implemented as follows. Each auxiliary map
for a relation that appears in an extended Datalog rule’s conclusion
uses a nested array structure for all components of the tuples and
additionally linked lists for each non-anchor component. Each aux-
iliary map for a relation that does not appear in the conclusion of
any rule uses a nested array structure for the anchor components,
and nested linked-lists for the non-anchor components.

3.3 Time complexity analysis

We analyze the time complexity of computing reduction closure by
carefully bounding the number of facts actually used by the rules.
For each rule we determine precisely the number of facts processed
by it, avoiding where possible approximations that use the product
of the sizes of individual argument domains.
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W := rcerts;
I3name1 := {}; I3name2 := {};
I4auth1 := {}; I4auth2 := {}; I5auth3 := {};
R := {};

while exists x in W:

case x of [nameCert k id s v]:
if [name k id s v] notin R:
W with := [name k id s v];

case x of [authCert k s d p v]:
if [auth k s d p v] notin R:
W with := [auth k s d p v];

case x of [name k1 id1 k2|(id2|ids) v1]:
W U:= {[name k1 id1 k3|ids VInt(v1,v2)] : [k3 v2] in I3name1{[k2 id2]}

| [name k1 id1 k3|ids VInt(v1,v2)] notin R};
I3name2 with:= [[k2 id2] [k1 id1 ids v1]];

case x of [name k2 id2 k3|NIL v2]:
W U:= {[name k1 id1 k3|ids VInt(v1,v2)] : [k1 id1 ids v1] in I3name2{[k2 id2]}

| [name k1 id1 k3|ids VInt(v1,v2)] notin R};
W U:= {[auth k1 k3|ids d p VInt(v1,v2)] : [k1 ids d p v1] in I5auth3{[k2 id2]}

| [auth k1 k3|ids d p VInt(v1,v2)] notin R};
I3name1 with:= [[k2 id2] [k3 v2]];

case x of [auth k1 k2|NIL TRUE p1 v1]:
W U:= {[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] : [k3 d2 p2 v2] in I4auth2{[k2]}

| [auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] notin R};
I4auth1 with:= [[k2] [k1 TRUE p1 v1]];

case x of [auth k2 k3|NIL d2 p2 v2]:
W U:= {[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] : [k1 d1 p1 v1] in I4auth1{[k2]}

| [auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] notin R};
I4auth2 with:= [[k2] [k3 d2 p2 v2]];

case x of [auth k1 k2|(id|ids) d p v1]:
W U:= {[auth k1 k3|ids d p VInt(v1,v2)] : [k3 v2] in I3name1{[k2 id]}

| [auth k1 k3|ids d p VInt(v1,v2)] notin R};
I5auth3 with:= [[k2 id] [k1 ids d p v1]];

W less:= x;
R with:= x;

Figure 2: Pseudocode for computing reduction closure.

We first define the size parameters used in the complexity anal-
ysis. The number of facts of a relation r that are given or can be
inferred is called r’s size. For a relation named r, #r denotes the
size of r. We use the following size parameters about inferred cer-
tificates:

• nameKey — number of name certificates that have keys as
subjects.

• nameKeyPerName — maximum number of name certificates,
that have keys as subject, for one name.

• namePerSubject — maximum number of name certificates
for one subject.

• authD — number of authorization certificates with a delegation
bit TRUE.

• authPerIssuer — maximum number of authorization certifi-
cates for one issuer.

• authPerIssuerD — maximum number of authorization cer-
tificates with delegation bit TRUE for one issuer.

• authPerSubject — maximum number of authorization cer-
tificates for one subject.

In addition, we use key for the total number of different keys in the
given certificates.

The time complexity for a set of Datalog rules is the total
number of combinations of hypotheses considered in evaluating
the rules. For each rule r, the number of firings for the rule is: (i)
for rules with one hypothesis: the number of facts which make the
hypothesis true; (ii) for rules with two hypotheses: the number of
combinations of facts that make the two hypotheses simultaneously
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true. The total time complexity is time for reading the input, plus
the time for firing all rules.

The total time complexity for computing the reduction clo-
sure is time for reading the input, which is O(#authCert +
#nameCert), plus the time for applying each of the rules. VInt(v1,
v2) is computed in constant time; PInt(p1,p2) can be computed
in time O(p), where p is maximum size of a permission argument
in the given authorization certificates. List operations involving |
can be performed in time O(1).

Time complexity of the rules used for name-reduction closure
and inferring authorizations is as follows:

1. O(#nameCert)
2. O(#authCert)
3. O(min(#name × nameKeyPerName,

nameKey × namePerSubject))
4. O(min(authD × authPerIssuer,

#auth × authPerIssuerD))
5. O(min(#auth × nameKeyPerName,

nameKey × authPerSubject))

The time complexity for the whole reduction closure is the sum
of the time complexities for rules 1, 2, 3, 4, and 5. The sum for rules
1 and 2 is the number of given certificates. The sum for rules 3-5 is
larger and decides the total time complexity.

To compare with previous results, suppose we eliminate the
permission and validity interval arguments, or consider only cer-
tificates with the given permission and validity interval, as in [8,
17]. Then nameKeyPerName is the maximum number of keys a
single local name reduces to, and is key in the worst case; and
authPerIssuerD is the maximum number of keys authorized by
one issuer with delegation bit TRUE, and is again key in the
worst case. Thus, our precise complexity formulas for rules 3-5 is
O((#name + #auth) × key) in the worst case. #name+#auth
is the total number of certificates inferred and, as noted in [17], is
bounded by in×key, where in is the size of the input, i.e., the sum
of the sizes of the given certificates; note that the size of a certifi-
cate might not be a constant because its subject may be a key fol-
lowed by a list of identifiers. Therefore, the time complexity O(in
× key2) from previous work [17] is an upper bound of our more
precise complexity analysis.

4. Specialized Policy Analysis Problems
This section discusses how to solve specialized certificate analysis
problems and analyze their algorithm complexities. The algorithms
for computing reduction closure can be used to solve specialized
analysis problems. However, these algorithms compute all autho-
rizations and all name-key correspondences, given a set of certifi-
cates. This may be unnecessary, since many policy analysis prob-
lems require computing only a few authorizations or resolving only
a few names. Therefore, we use specialized extended Datalog rules
for the specialized analysis problems; these specialized rules can
be used to generate an efficient algorithm for each analysis prob-
lem, and infer only the authorizations and resolve only the names
needed for that problem. Also, the original reduction closure algo-
rithm does not give a direct way of solving some important policy
analysis problems, specifically when questions about name certifi-
cates are asked, when sets of resources or keys are given. There
are algorithms for solving these problems in [17], but these require
complex pushdown system structures that are not inherent to the
problems’ structure.

We first introduce extended Datalog rules to solve the problems
and then show a way to construct specialized rules from given rules,
by pushing the constants bound by the query into the rules. There
are automatic ways of generating on-demand rules such as Magic

Set Transformation (MST) [4, 26]. MST introduces demand rela-
tions corresponding to the query; and makes changes that limit the
facts being inferred to ones demanded by the query. We chose to
push the constants in a naı̈ve manner despite the fact that MST may
do better than our technique for some problems; mainly because
MST is much more sophisticated, the order of hypotheses in the
original rules may significantly change the efficiency of the trans-
formed rules and moreover there is no reason (except the resulting
complexity) to prefer an order to the other before starting the trans-
formation. By pushing constants into the rules, we obtain simpler
rules and precise complexities.

4.1 Policy analysis problems and complexity analysis in a
logic framework

We consider all the analysis problems studied in [17]. All problems
are solved with respect to a given set of certificates. In the rules,
we use the names “permissions” and “resources” interchangably,
in our context “permission” means an access to a resource without
loss of generalization. In the construction of rules, we leave the
unknown to the question as the last argument, and try to remain
consistent on the order of keys, permissions, etc. otherwise. The
relations are named as close to the real meaning of the relation, e.g.
canAccess(K,P) stands for the relation “a key K is authorized
for permission P ”. For each problem, we first give a set of rules,
followed by a Prolog-like query, that will return the requested
result.

Figure 3 shows all of the rules for the problems below. In the
rules, owner(o,p) denotes that o is an owner of permission p, and
auth is as defined before. In the last four analysis problems, where
some certificates are removed, canAccess2 is defined in a simi-
lar way as canAccess in the first analysis, but uses authorizations
inferred using only the remaining certificates, i.e., using an auth2
relation computed as the reduction closure of the remaining certifi-
cates.

We introduce the notation for the auxiliary values used for the
complexity analysis.

• authPerKey is the maximum number of authorizations that has
a specific key as a subject.

• ownersPerRes is the maximum number of owners for a single
resource.

• l is the maximum number of identifiers occurring in a name
that is the subject of a certificate.

• identifiers is the number of distinct identifiers occurring in
the certificates.

• len(N) for a name N is the length of the name N .

Authorized Access 1: Is a principal K authorized to permission P ?
This is determined in time O(ownersPerRes × authPerKey).
Authorized Access 2: Given a permission P and name N , is N
authorized to P ?
Authorized Access 3: Given a permission P , what names are
authorized to access P ?
These two questions are answered the same way as question 1; the
preprocessing for adding the certificates for reduction closure takes
linear time in the length of the name N for question 2; and for
question 3 this procedure needs to assign a valid string of identi-
fiers of at most length l, which would take key× identifiersl ,
but the key is not bounded either so instead of authPerKey as
a factor, we have #auth. Notice that this exponential behaviour
for the third question comes from the nature of the problem,
since the set of names authorized to access P might be an infi-
nite set. So the precise complexities for question 2 and 3 respec-
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tively are: O(ownersPerRes × #authPerKey + len(N)) and
O(ownersPerRes × #auth + key × identifiersl).
Shared Access 1: Given two permissions P1 and P2, which prin-
cipals are authorized for both? A straightforward analysis just as
above shows that the complexity for the solution to this problem is
O(key + #auth × ownersPerRes).
Shared Access 2: Given two principals K1 and K2 and a per-
mission P , is both K1 and K2 authorized for P ? This question
is answered in a constant time factor of the answer to the Au-
thorized Access 1 question, so it takes time O(ownersPerRes ×
authPerKey).
Shared Access 3: Given two principals K1 and K2 and a finite set
of permissions Ps = {P1, ..., Pn}, what is the subset of Ps that
K1 and K2 are authorized for? This question is answered using the
rule in Shared Access 2, by checking for all elements in Ps, but the
permission is not bound for canAccess, so it takes O(n + #owner
× authPerKey) time.
Compromisation Assessment 1 (also called Expiration Vulner-
ability 1): What permissions from a finite set of permissions Ps =
{P1, ..., Pn} would a given principal K lose authorization for, if a
subset C′ of the original certificate set C were to be removed? This
question is answered using canAccess without p being bound,
checked for each element in Ps, so it takes O(n + #owner ×
authPerKey) time (since #auth2, the number of authorizations
inferred not using C′ is less than #auth, we can ignore that part).
Compromisation Assessment 2 (also called Expiration Vulner-
ability 2): What principals would have lost authorization for a per-
mission P if a subset C′ of the original certificate set C were to be
removed? This question is answered using the rule in Authorization
Access 1 without binding k, by checking for all keys in the system,
so it is answered in O(key+ ownersPerRes× #auth) time (since
#auth2, the number of authorizations inferred not using C′ is less
than #auth, we can ignore that part).
Universally Guarded Access 1: Must all authorizations for per-
mission P involve a certificate signed by principal K? We answer
the negation of this question for simplicity, in other words our rule
gives a “no” for a “yes” instance and vice versa. This question is
answered using the rule in Authorization Access 1 without bind-
ing k, by checking for all keys in the system, so it is answered in
O(key + ownersPerRes × #auth) time (since #auth2, the num-
ber of authorizations inferred not using certificates signed by K is
less than #auth, we can ignore that part).
Universally Guarded Access 2: Must all authorizations that grant
a given principal K′ a finite set of permissions Ps = {P1, ..., Pn}
involve a certificate signed by K? Again we answer the negation
of this question for simplicity. This question is answered using the
rule in Authorization Access 1 without binding p, by checking for
all elements in Ps, so it takes O(n + #owner × authPerKey)
time (since #auth2, the number of authorizations inferred not using
certificates signed by K is less than #auth, we can ignore that
part).

4.2 Constructing specialized rules

We demonstrate how to push constants to create specialized rules
on one of the analysis problems. Consider the rule set and the query
for the problem Compromisation Assessment 2:

canAccess(k,p,t), ¬canAccess2(k,p,t)
→compromisedPrinciples(p,t,k)

Query : compromisedPrinciples(P,T,k).

Now since the permission P and time T is given when the
question is asked, we push them inside the relations on the right
hand side, yielding:

canAccess(k,P,T), ¬canAccess2(k,P,T)
→compromisedPrinciples(P,T,k)

Now it is easy to observe that the conclusion expresses the
constants unnecessarily, since the hypotheses are already aware of
the values of them. So we can rewrite :

canAccess(k,P,T), ¬canAccess2(k,P,T)
→compromisedPrinciples PT(k)

This new rule is the compromisedPrinciples rule specialized
to constants P and T ; it returns precisely what we are looking for,
the resulting keys. Notice that this push-and-specialize method can
be applied iteratively in general, and it is particularly simple in this
case since there is no recursion. In other words, in this example
canAccess(k,P,T) can be rewritten as canAccess PT(k) by
pushing the constants into hypotheses properly.

5. Experimental Results
To experimentally confirm our time complexity calculations, we
generated an implementation of our algorithm for computing re-
duction closure in Python. The generated implementation consists
of 180 lines of Python code. We analyzed sets of certificates of
varying sizes, to determine how the running times of the algorithms
scale with the number of given certificates. For each certificate set,
we report the CPU time for the analysis, using Python 2.3.5 on a
1.73 GHz Pentium M processor, with 366 MHz 448 MB RAM,
running Windows XP. Reported times are averaged over 10 trials.
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Figure 4: Time to infer all name certificates only.
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Figure 5: Time to infer authorization certificates after name certifi-
cates have been inferred.

For the experiments we first infer all name facts using rules 1
and 3, and then infer the authorizations by rules 2,4 and 5. This
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Authorized Access 1:
owner(o,p), auth(o,k|NIL,d,ps,v), p in ps, t in v → canAccess(k,p,t).
Query: canAccess(K,P,T).

Authorized Access 2:
Suppose the asked given name is N = K I1 I2 .. In, add new name certificates:
(K, I1, K1|NIL, V), (K1, I2, K2|NIL, V), ...(Kn−1, In, Kn|NIL, V), where each Ki is a fresh key, V is a validity interval satisfied at
the current time T.
Query: canAccess(Kn,P,T).

Authorized Access 3:
For all keys and identifiers, construct all possible names up to l identifiers, and add new name certificates corresponding
to these names as shown above.
Query: canAccess(k,P,T).

Shared Access 1:
canAccess(k,p1,t), canAccess(k,p2,t) → sharingPrinciple(p1,p2,t,k).
Query : sharingPrinciple(P1,P2,T,k).

Shared Access 2:
canAccess(k1,p,t), canAccess(k2,p,t) → sharingResource(k1,k2,p,t).
Query : sharingResource(K1,K2,P,T).

Shared Access 3:
p in ps, sharingResource(k1,k2,p,t) → sharingResources(k1,k2,ps,t,p).
Query : sharingResources(K1,K2,{P1,P2,...,Pn},T,p).

Compromisation Assessment 1:
p in ps, canAccess(k,p,t), ¬canAccess2(k,p,t) → compromisedResource(k,ps,t,p).
Query : compromisedResource(K,{P1,P2,..,Pn},T,p).

Compromisation Assessment 2:
canAccess(k,p,t), ¬canAccess2(k,p,t) → compromisedPrinciple(p,t,k).
Query : compromisedPrinciple(P,T,k).

Universally Guarded Access 1:
canAccess(k1,p,t), canAccess2(k1,p,t) → needNotInvolve(p,t).
Query : needNotInvolve(P,T).

Universally Guarded Access 2:
p in ps, canAccess(k,p,t), canAccess2(k,p,t) → needNotInvolveMultiple(k,ps,t).
Query : needNotInvolveMultiple(K,{P1,P2,..,Pn},T).

Figure 3: Rules and queries for solving policy analysis problems.

does not affect the resulting facts and was just done for the purpose
of having separate experiments for the two parts of the algorithm,
so that the effect of changing certain parameters can be seen. Also,
the data was generated in such a way that the number of given and
inferred certificates are of the same order.

Figure 4 shows the running times for inferring all name cer-
tificates. Two series of sets of certificates were used. In both
series the number of certificates increases, however in the first
one nameKeyPerName remains constant. In the second test series
nameKeyPerName increases as the number of given certificates in-
crease, and both of these parameters increase at the same rate. The
results show that CPU time for inferring all name certificates is lin-
ear in the number of given name certificates, if nameKeyPerName
is a constant. Figure 5 shows the running times for inferring all au-
thorization certificates, once name certificates have been inferred.
Three series of sets of certificates were used. In all three series
the number of given certificates increases, however in the first one
authPerIssuer and nameKeyPerName remain constant. In the

second test series only authPerIssuer remains constant, while
nameKeyPerName increases as the number of given certificates in-
creases, and both of these parameters increase at the same rate. In
the third series both authPerIssuer and nameKeyPerName in-
crease along with the number of given certificates and at the same
rate as the number of given certificates. The results show that CPU
time for inferring all authorization certificates is linear in the num-
ber of given certificates, if authPerIssuer and nameKeyPerName
are kept constant; CPU time grows faster if only authPerIssuer
remains constant. These experimental results confirm our time
complexity analysis results. In all experiments the search space
increases along with the number of given certificates, so that the
test results are not influenced by a disproportionately small search
space. The data was generated so that the ratio of the number of
keys to the number of given certificates remains the same.
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6. Related Work and Conclusion
Surveys of trust management are presented in [11, 5, 19]. Li et
al [22] define security analysis problems for trust management
systems and analyze their complexity.

SDSI was proposed by Rivest and Lampson [27], as a public-
key infrastructure that uses linked local names. SPKI was devel-
oped concurrently; it emphasized delegation of authorizations.
These two infrastructures were merged to create SPKI/SDSI, de-
scribed in RFC 2693 [10].

The reduction closure that our algorithm computes includes all
the certificates inferred by previous algorithms [8, 17]. Clarke et
al. [8] analyze the time complexity of their algorithm to be O(n3×
l), where n is the number of given certificates, and l is the length
of the longest subject in any given certificate. Jha and Reps [17]
give a more precise bound of O(in × key2), where in is the size
of the input and is bound by n × l; it is more precise because
key is bound by O(n). Our complexity analysis is even more
precise because one of their key factors is nameKeyPerName in our
complexity formula, which corresponds to the maximum number of
keys a single local name reduces to; while this could be key in the
worst case, it is much smaller on average in practice and is close to
a constant in large systems. Thus, our complexity analysis is more
precise and informative than using only worst-case sizes.

A different algorithm for certificate chain discovery is presented
by Li et al [21]. The algorithm as described does not accommodate
names containing more than one identifier, but it could be altered
to do so. It combines forward and backward search in a graph rep-
resentation of credentials, and has a time complexity equal to that
of the algorithm in [8]. Halpern and Meyden [13, 12] define a se-
mantics for SPKI and SDSI, that facilitates reasoning about SPKI’s
and SDSI’s design. A first-order logic semantics for SPKI/SDSI is
presented in [20] and is used to analyze the design of SPKI/SDSI.

Policy analysis for SPKI/SDSI has also been studied. Jha and
Reps [17] establish a connection between SPKI/SDSI and push-
down systems, and use existing algorithms for model checking
pushdown systems to solve analysis problems for SPKI/SDSI. A
similar approach is used in [9], but in addition, propertied of an
SPKI/SDSI policy are expressed using a first order temporal logic.

What distinguishes our work is that first we use a novel imple-
mentation strategy for reduction closure and inferring authoriza-
tion that combines an intuitive definition of certificate composition
in rules and a systematic method for deriving efficient algorithms
and data structures from the rules [23]. The time complexity is cal-
culated directly from the rules, based on a thorough understand-
ing of the algorithms and data structures generated, reflecting the
complexities of implementation back into the rules. We also solve
known policy analysis problems in a logic framework, and show
a straightforward way of constructing specialized rules from our
proposed solutions, which allows for easy bottom-up computation
of results. Furthermore, we present precise time complexities for
our proposed solutions. We achieve more precise worst-case time
complexity guarantees that those in previous work. Moreover, our
algorithms for authorization and other analysis support any num-
ber of resources and types of access, as well as validity intervals
and delegation; all aspects defined in the SPKI/SDSI specification.

This method of generating efficient implementations from rules
has also been applied to problems beyond the area of policy analy-
sis. In the model checking area, the method is used to derive an ef-
ficient algorithm with improved complexity analysis for linear tem-
poral logic model checking of pushdown systems [14]. This model
checking framework can express and check many practical proper-
ties of programs, including many dataflow properties and general
correctness and security properties. For secure information flow
analysis, the method was used to develop the first linear-time algo-
rithm for inferring information flow types of programs for a formal

type system [15]. The algorithm is also extended with informative
error reporting to facilitate error detection and corrections.
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