
Alias Analysis for Optimization of Dynamic Languages ∗

Michael Gorbovitski Yanhong A. Liu Scott D. Stoller Tom Rothamel K. Tuncay Tekle

Computer Science Dept., State Univ. of New York at Stony Brook, Stony Brook, NY 11794

{mickg,liu,stoller,rothamel,tuncay}@cs.sunysb.edu

Abstract
Dynamic languages such as Python allow programs to be
written more easily using high-level constructs such as com-
prehensions for queries and using generic code. Efficient ex-
ecution of programs then requires powerful optimizations—
incrementalization of expensive queries and specialization
of generic code. Effective incrementalization and specializa-
tion of dynamic languages require precise and scalable alias
analysis.

This paper describes the development and experimental
evaluation of a may-alias analysis for a full dynamic object-
oriented language, for program optimization by incremen-
talization and specialization. The analysis is flow-sensitive;
we show that this is necessary for effective optimization of
dynamic languages. It uses precise type analysis and a pow-
erful form of context sensitivity, called trace sensitivity, to
further improve analysis precision. It uses a compressed rep-
resentation to significantly reduce the memory used by flow-
sensitive analyses. We evaluate the effectiveness of this anal-
ysis and 17 variants of it for incrementalization and special-
ization of Python programs, and we evaluate the precision,
memory usage, and running time of these analyses on pro-
grams of diverse sizes. The results show that our analysis
has acceptable precision and efficiency and represents the
best trade-off between them compared to the variants.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors—Optimization;
F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis

General Terms Algorithms, Languages, Performance, Ex-
perimentation

∗ This work was supported in part by ONR under grants N000140910651
and N000140710928 and NSF under grants CCF-0613913, CNS-0509230,
CNS-0627447, and CNS-0831298.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS 2010, October 18, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0405-4/10/10. . . $5.00

1. Introduction
Dynamic languages such as Python and JavaScript allow
programs to be written more easily using high-level con-
structs such as comprehensions for queries and using generic
code. Efficient execution of programs then requires power-
ful optimizations—incrementalization of expensive queries
under updates to query parameters (Liu et al. 2005) and spe-
cialization of generic code in procedures and methods under
specific calls to the procedures and methods (Rigo 2004).
These optimizations require identifying values of variables
and fields that are references to the same object, either a data
object or a function object. Due to extensive use of object
references, effective optimizations require precise and scal-
able alias analysis.

Alias analysis aims to compute pairs of variables and
fields that are aliases of each other, i.e., that refer to the
same object. Determining exact alias pairs is uncomputable
(Ramalingam 1994). We use alias analysis to refer to may-
alias analysis, which computes pairs that may be aliases,
an over-approximation of exact alias pairs. An alias analy-
sis is interprocedural if it propagates information between
procedures, and intraprocedural otherwise; flow-sensitive if
it computes alias pairs for each program node, and flow-
insensitive otherwise; context-sensitive if it computes alias
pairs for each calling context, and context-insensitive other-
wise; type-sensitive if alias pairs only include variables that
have compatible data types, and type-insensitive otherwise.

Making alias analysis precise and scalable is already dif-
ficult for statically typed languages, and even more difficult
for dynamic languages. This is due to extensive use of fea-
tures such as first-class functions, dynamic creation and re-
binding of fields, methods, and even classes, and reassign-
ment of variables to objects of different types. These features
make even the construction of control flow graphs difficult.
At the same time, powerful optimizations like incremental-
ization and specialization for dynamic languages need pre-
cise alias information at every program node and its context.
Can one make alias analysis sufficiently precise and scalable
for such optimizations to be effective?

This paper describes the development and experimental
evaluation of a may-alias analysis for a full dynamic object-
oriented language, for program optimization by incremen-

27

talization and specialization. The analysis has the following
features:
• It is flow-sensitive. This is necessary for optimization

of dynamic languages, because a variable or field may
have different aliases and even different types at different
program nodes, and optimizations are applied to specific
program nodes. The analysis is designed by extending an
optimal-time intraprocedural flow-sensitive analysis for
C (Goyal 2005) to handle dynamic and object-oriented
features.

• It uses precise type analysis to increase the precision of
the analysis results. Precise type analysis infers not only
basic types as in typed languages, but also types express-
ing known primitive values and ranges, and collections of
known contents and lengths. These precise types are crit-
ical for handling dynamic features for constructing and
refining control flow graphs in the first place. Our type
analysis uses an iterative algorithm based on abstract in-
terpretation.

• It uses a powerful form of context sensitivity, called
trace sensitivity, to further improve analysis precision.
It inlines all calls repeatedly except only once for recur-
sive calls, but then merges analysis results back into the
original program flow graph. This improves over flow-
sensitive analysis results without needing large storage
for keeping all clones, as in standard context-sensitive
analysis, that help little for the optimizations.

• It uses a compressed representation for the aliases ana-
lyzed, to significantly reduce the memory used by flow-
sensitive analysis. The idea is to represent aliases at a
program node as differences from aliases at its control
flow predecessor node if there is only one such predeces-
sor. This is natural and simple for flow-sensitive analysis,
and drastically reduces space usage.

We implemented this analysis, plus five main variations
of it, for Python. The variations are:
• two flow-insensitive analyses: one that is context-insen-

sitive, and one that is context-sensitive;
• two flow-sensitive analyses: one that is context-insensiti-

ve, and one that is context-sensitive; and
• a flow-sensitive, trace-sensitive analysis that also creates

extra clones.

Each of these six alias analyses is also coupled with no
type analysis, basic type analysis, and precise type analysis,
resulting in a total of 18 variants of alias analysis.

We evaluate the effectiveness of these variants for in-
crementalization and specialization of Python programs,
through applications that use InvTS, an invariant-driven
program transformation system for incrementalization (Liu
et al. 2005, 2009), and applications that use Psyco, a just-
in-time compiler that does specialization (Rigo 2004). We
also evaluate the precision, memory usage, and running time
of these analyses on programs of diverse sizes. In addition,

we evaluate the effect of refining control flow graphs using
precise type analysis, and we examine uses of program con-
structs that are most challenging for precise type and alias
analyses. The results show that our analysis, which is flow-
sensitive and trace-sensitive and uses precise type analysis,
has acceptable precision, memory usage, and running time,
and represents the best trade-off between precision and effi-
ciency for effective optimizations. For example, the analysis
takes 20 minutes on BitTorrent with over 20K LOC and less
than an hour on Python standard library with over 50K LOC.

A significant amount of work has been done on alias anal-
ysis, as discussed in Section 4. Our work is the first imple-
mentation and experimental evaluation of an optimal-time
flow-sensitive analysis algorithm, extended to handle a full
dynamic object-oriented language with precise type analysis
and further improved with trace sensitivity. In contrast, al-
most all prior works are for statically typed languages such
as C and Java. There are many uses of alias analysis for
other analyses and verification, and for optimizations includ-
ing specialization. Our work is the first use of alias analysis
for effective incrementalization, and the first thorough eval-
uation of alias analysis variants for incrementalization and
specialization.

Need for flow-sensitivity and type-sensitivity. We show
that flow-sensitivity and type-sensitivity are essential for op-
timization of dynamic languages. Consider optimization by
incrementalization, which replaces expensive queries with
inexpensive retrievals of results that are efficiently incremen-
tally maintained at updates to values on which the query de-
pends. Consider the following simple example that contains
updates to collections and is typical in dynamic languages as
well as static languages such as Java:
#removes all instances of O from collection C

def removeObject(C,O):

if isinstance(C,set):

#a set contains O at most once,

#thus remove it once

if O in C:

C.remove(O)

if isinstance(C,list):

#a list may contain O multiple times.

#count the number of O’s in C

#and remove O that many times from C

for n in range(C.count(O)):

C.remove(O)

Incrementalization of a query over a collection, say S,
typically requires insertion of maintenance code, to update
the result of the query, before the removal of an element
from S. At any statement that removes an element from any
collection C that may alias S, InvTS inserts the correspond-
ing maintenance code guarded by a runtime check that C is
aliased to S. InvTS uses alias analysis to statically remove
the check if C may be aliased to only S.

Suppose the alias set of C is {L,S}, where L is a list and
S is a set, at the start of the body of removeObject. Then,

28

our analysis yields two different alias sets of C—{S} and
{L}—at the two remove statements. This is because flow-
sensitivity allows different alias sets at different nodes in
the same function, and type-sensitivity uses conditions from
isinstance. At the first remove statement, because C is
aliased to only S, the runtime aliasing check is removed. At
the second remove statement, because C may not be aliased
to S, the maintenance code and runtime check are never
inserted.

Note that for a flow-insensitive analysis of the above code,
in both the original and SSA forms, the alias set of C is
{L,S}. This leaves both the maintenance code and runtime
check at both remove statements. Note also that a flow-
sensitive but type-insensitive analysis would yield the same
undesirable result.

2. Analysis
Our analysis takes an input program and produces informa-
tion about alias pairs, as well as data types and control flows.
It first handles dynamic features by analyzing types and con-
trol flows using an abstract interpretation, and then performs
a flow-sensitive trace-sensitive alias analysis, or a variation
of it.

The first step has two main tasks: (1) parse a program file
and construct an abstract syntax tree (AST), which is easy,
and (2) analyze types and construct a control flow graph
(CFG) on the ASTs from all files read so far; since the code
in a file may import modules from other files, analyzing a
file recursively performs (1) followed by (2) at the import

nodes. The output of this step is an interprocedural CFG of
the entire program, annotated with type information.

The second step has two main tasks: (1) construct a sparse
evaluation graph (SEG) from the CFG by removing CFG
nodes that do not affect aliases or control flows and connect-
ing edges to pass the removed nodes, and (2) do an alias anal-
ysis that extends an optimal-time flow-sensitive intraproce-
dural alias analysis to handle procedures, methods, and fields
and to be trace-sensitive. We also describe a compressed rep-
resentation, implementation issues, and analysis variants.

In this paper, program node refers to AST node. As com-
mon in languages like C and Python, function refers to both
functions and procedures; functions are just procedures that
can return values. For complexity analysis, N denotes the
size of the input program, V denotes the number of vari-
ables in the program, and S denotes the maximum number
of variables in scope at any program node.

2.1 Type and control flow analysis

The key challenge posed by dynamic language features is
construction of a sufficiently precise CFG. Dynamic lan-
guage features are: first-class functions and methods, in-
cluding lambdas, inner functions, and methods in inner
classes; dynamic creation and rebinding of fields, methods,
and classes; reassignment of variables to objects of differ-
ent types, where objects may be anything, including meth-

ods and classes; type-based dispatch, including polymorphic
functions and explicit type comparison, e.g., for elements
of heterogeneous collections; exceptions; and eval, which
evaluates a string as code. These features all make it difficult
to statically determine control flows.

To address this challenge, we use a precise type analysis
to infer the types of variables and expressions at all program
nodes, and use types to statically determine control flows as
precisely as possible. In particular, dynamic features make
it especially difficult to determine interprocedural control
flows. Thus, we use the types of arguments and returns to
help determine interprocedural control flows. We say that
two types are compatible if their sets of possible values
intersect. We add interprocedural CFG call and return edges
between a call and a procedure or method only if the type
signature of the call is compatible with that of the procedure
or method.

Our type analysis and CFG construction is done by an
abstract interpretation over a domain of precise types. It in-
fers the types of all variables in scope at each program node,
and the type of the expression at each expression node. It
also constructs CFG nodes and edges as it visits program
nodes following the control flows determined, easily for
most intraprocedural flows, and using types for interproce-
dural flows and exceptions. Similarly, we use types to deter-
mine control flows involving exceptions.
Basic types and precise types. Our domain of precise types
extends our domain of basic types. A precise type is a sub-
type of a basic type. Precise types are used in type inference
and CFG construction. Basic types are used afterwards for
generating specialized procedures and methods. Basic types
in our type system are:
• none, for the special undefined value, needed in dynamic

languages;

• primitive types int, float, and bool;
• collection types string, list, tuple, set, and dict (map);

• module (similar to package in Java), with, if known,
module name, a list of names and their types exported
by the module, and the AST node id of the module defi-
nition;

• class, with, if known, class name, a list of parent classes,
a list of static field (including method) names and their
types, and the AST node id of the class definition;

• instance, with, if known, type of the class of the in-
stance, and a list of instance field names and their types;

• function, with, if known, function name or special name
lambda (for unnamed functions), a list of parameters and
their types, a list of free variables and their types (for
closures), the return type, and the AST node id of the
function definition;

• method, with, if known, everything as in function type
plus the type of the instance on which the method is
invoked;

29

• union, with a list of any types other than union types;
union types are needed for dynamic languages, since an
expression can evaluate to values of different types at
different times it is evaluated; and

• bot and top, the type of no values and the type of all
values, respectively; bot is a subtype of all types, and all
types are subtypes of top.

Precise types extend basic types to include additional sub-
types. There are three kinds of extensions:
• for primitive types, add subtypes for known values or

ranges: for int, add intval(n) for integer constant n,
intnon neg for nonnegative integers, and intran(n1, n2)
for integers from n1 to n2, where the first of these types
is also a subtype of the latter two when n is not neg-
ative or is in the range of n1 to n2, respectively; for
float, add similar types; for bool, add boolval(true) and
boolval(false).

• for collection types, add subtypes for known element
types or lengths: for list, add listall[t1, ..., tn] for lists
of known length n and element types t1 through tn
that are not all top, listlen(n) for lists of known length
n but all top element types, and listelem(t) for lists
of unknown length but known same non-top element
type t, where the first of these types is also a sub-
type of the latter two when ns have the same value or
t1 through tn are of the same type, respectively; for
tuple and set, add similar types; for dict, add similar
types plus dictsize key [n, t] for maps of known size n,
known same non-top key type t, but all top value types,
and dictsize val[n, t] symmetrically with key and value
switched, where dictall[(kt1, vt1), ..., (ktn, vtn)] is a
subtype of both, and both are subtypes of dictsize(n),
when ns have the same value. string is treated as a tuple
whose element types are character types.

• for eachmodule, class, instance, function, andmethod
type, add subtypes whose component types may use also
the subtypes above, where a type t1 is a subtype of a
type t2 iff all components of t1 are subtypes of the cor-
responding components of t2.

Any set {t1, . . . , tn} of types has a minimum supertype: top
if any ti is top; otherwise union of the maximal types in all
ti if ti’s are union types, and otherwise first turn any ti that
is not a union type into a union type of itself.

We bound the set of precise types considered during
type analysis to be finite, by generalizing a type to a su-
pertype of a smaller size when the size of the type ex-
ceeds a constant. Generalization yields a minimal super-
type of a smaller size; when there are multiple such types,
we choose the one that merges the lowest ranges for range
types, and the one with most information about element
types for collection types. For example, union(intval(2),
intval(4), intval(8)) is generalized to union(intran(2, 4),
intval(8)) instead of union(intval(2), intran(4, 8)), and
listall[int, int, int, int, int] is generalized to listelem(int)

instead of listlen(5). The precise limit we use is for the size
of each type description to be no more than 60 type names
(int, float, etc.), except that the size of a range type is the
number of times it has been generalized. Assuming that the
height of the inheritance hierarchy is bounded by a constant,
the number of generalizations of types for each variable is
bounded by a constant. Thus, the set of types considered for
each variable is bounded by a constant.

Analysis and refinement. Our algorithm does the Analy-
sis step below to infer types and construct a CFG. Once the
Analysis step reaches a fixed-point, the Refinement step be-
low specializes the program based on the types inferred; the
resulting program is then analyzed again to yield more pre-
cise types and a more refined CFG, and is analyzed incre-
mentally. We repeat the two steps until either the resulting
program cannot be further specialized, or a bound on the
number of iterations is reached. The bound is set to be 30,
but for all examples we have experimented with, the fixed-
point was reached after 1 to 19 refinement steps, except that
for Python standard library, the bound 30 had to be imposed
to stop the analysis. Section 3.3 experimentally evaluates the
effectiveness vs. cost of refinement.

Analysis. Start at the program entry point, and visit and
interpret each program node according to its semantics in
the domain of precise types. The types for all variables and
expressions at all program nodes are assigned to bot initially,
and go up until a fixed-point is reached. A total of 312 kinds
of program nodes are handled. Most of them are for built-
in functions and are obvious. We explain how the dynamic
features are handled.

First-class functions and methods. At calls to first-class
functions, the function type is used to determine which
functions may be called. Returning, passing, or assign-
ing a function is handled by the type analysis algorithm
propagating the function type to the type of the corre-
sponding return expression, argument expression, or the
left side of the assignment, respectively. The same holds
for methods.

Lambdas, inner functions, and methods in inner classes
all have function types. The function type contains a
list of the free variables and their types. The type is
propagated by the type analysis algorithm as for other
functions, and the types of the free variables are looked
up when an application of the function is analyzed.

Dynamic creation and rebinding. All dynamic creation and
rebinding of fields, methods, and classes are reduced to
field creation and field assignment of the form x.f=y.
Just as for normal field creation and assignment, the type
analysis algorithm creates a new instance type tnew for x
from the current type tcur for x, where f is added to the
list of fields in tnew if f is not in the list, and the type of
f is assigned the type of y; the algorithm then assigns x
the minimum supertype of tnew and tcur.

30

Variables may be reassigned objects of different types,
where objects may be anything, including methods and
classes. This is handled by the type analysis algorithm
propagating by reference, not by copying, the type of
the right side of the assignment to that of the left side.
Propagating the type by reference ensures that types of
aliased variables change together at dynamic rebindings.

Type-based dispatch, including polymorphic functions and
type comparison of elements of heterogeneous collec-
tions. At a call to a polymorphic function or method, the
analysis algorithm constructs a CFG edge to each func-
tion or method with a compatible type signature for the
parameters and return.

Type comparison of elements of heterogeneous collec-
tions is handled by the analysis algorithm as a normal
comparison, yielding boolval(true) or boolval(false) if
the types of the collection’s elements are known, and are
equal or not equal, respectively, and bool otherwise.

Exceptions. Exceptions are objects. Because try blocks
can be nested, our analysis maintains a stack of exception
handlers. When analysis enters a try block, it pushes on
this stack the first CFG node of each except (similar
to catch in Java) block together with the class types
of exceptions that the except block handles; these stack
entries are popped when analysis leaves the try block.

When analyzing a try block, including functions and
methods called during it, from each CFG node n that
may throw an exception, the analysis adds an edge from
n to each CFG node in the stack where one of the cor-
responding exception class types is compatible with the
type of the thrown exception, and adds an edge from n
to the program exit node; to improve precision, if an ex-
ception thrown by n is definitely caught by one of the
except clauses on the stack, edges from n to except

clauses lower on the stack and to the program exit node
are omitted. CFG edges involving finally blocks are
added in a standard way.

Evals. The analysis distinguishes two cases. If the type of
the argument of eval is a union of constant strings, then
create a set of inner functions, one for each string in the
union; create a CFG edge from the eval node to the entry
node of each of these inner functions, and create a CFG
edge from each exit node of these inner functions to the
CFG node immediately following the eval node. The
return type of the eval is the minimum supertype of the
return types of the inner functions.

Otherwise, we use top as the return type. Even in this
case, the behavior of eval of an unknown string may still
be limited by the language definition; e.g., Python allows
programmers to specify the sets of local and global vari-
ables that an eval may update. In the worst case, if an
eval may update anything, we set the types of all vari-
ables in scope to top at this eval node; this is generally

bad for precise control flow analysis, but our experiments
in Section 3.4 show that this rarely occurs.

Note that imprecision caused by reflection features for
accessing fields, through setattr and getattr, is lim-
ited to related objects and fields, and thus is much less
problematic than eval.
Refinement. Refine and simplify the program using spe-

cialization and inlining as follows:
1. Clone procedures and methods so that there is one clone

for each different combination of basic types of argu-
ments a procedure or method is called with, and replace
original calls with calls to the clones with the correspond-
ing argument types.

2. Eliminate code in the clones that becomes dead for the
argument types of the clone; this results in procedures
and methods that are specialized for each combination of
argument types.

3. Inline all procedure and method calls where inlining does
not increase the number of program nodes; this elimi-
nates the overhead of analyzing calls and returns without
increasing program size.
Type and control flow analysis takes time O(N × S),

because the set of types considered for each variable is
bounded by a constant, and the number of refinements is
bounded by a constant.

2.2 Alias analysis

Flow-sensitive alias analysis. We use the intraprocedural
flow-sensitive alias analysis originally studied by Choi et
al. (Choi et al. 1993), by extending the optimal-time algo-
rithm for it by Goyal (Goyal 2005) to handle procedures,
methods, and fields. The extensions are standard: treating
parameter passing and result returns as assignments, and
making methods into procedures that take an additional pa-
rameter for the object on which the method is invoked. We
treat field dereferences as variables except that aliasing of
the variable through which the field is accessed is taken into
account: an assignment of the form x.f = y is treated as a
normal update plus a weak update to r.f with y for each
alias r of x; and an assignment of the form x = y.f is
treated as a normal update plus a weak update to x with r.f

for each alias r of y. The algorithm maintains a workset for
each SEG node and iterates until all worksets become empty.

These extensions do not change the optimality of the time
complexity. The time complexity of Goyal’s algorithm is
optimal because it is in the order of the size of input plus
output; it is O(N × V 2) because the output is in the worst
case alias pairs between all variables at each program point.
The extensions do not change the order of the program size,
or the number of variables; the latter is because generally
there is a constant number of lexically mentioned fields
relevant to each variable.

Using types to improve alias analysis precision. We mod-
ify the algorithm to only allow alias pairs that have com-

31

patible types. This applies to languages that do not allow
arbitrary type casting, such as Python, Ruby, and JavaScript.

Our experiments show that using precise types signifi-
cantly increases alias analysis precision compared with us-
ing basic types, with little or no penalty in running time.

Trace sensitivity. Precise alias analysis needs to distin-
guish between different calling contexts of a SEG node. We
describe a new form of context sensitivity, called trace sensi-
tivity, and compare it with traditional context-sensitive anal-
ysis.

There are two major obstacles to context-sensitive anal-
ysis. The first is recursion: the number of contexts in a re-
cursive program may be unbounded. A standard approach to
this problem is (1) representing a context as a sequence of
calls or call sites, and (2) distinguishing contexts by a fixed-
length subsequence of such sequences. For example, inlining
n levels of function calls of the program is equivalent to (1)
representing the context as a sequence of call sites, and (2)
distinguishing contexts by the first n entries of the sequence
— information for all contexts with the same first n call sites
is merged. We refer to analysis that does 1 level of inlining
as context-sensitive. Similarly, n-CFA (Shivers 1988; Vitek
et al. 1992) distinguishes contexts by the last n calls — infor-
mation for all contexts with the same last n calls is merged.
For typical small values for n, such approaches give impre-
cise results for dynamic languages that routinely use double
dispatch and implicit nesting of calls, such as in the case of
field access in Python; larger values of n make such analy-
ses consume an unacceptable amount of space. The second
problem is that, even in non-recursive programs, the num-
ber of contexts in a program is worst-case exponential in the
depth of the nested procedure calls, hence storing alias in-
formation for each context is infeasible for analyzing large
programs.

We address the first problem by inlining all non-recursive
calls, and by inlining calls to recursive procedures only once
along a call path. We address the second problem by return-
ing alias pairs for only nodes in the given SEG. We merge
alias pairs for nodes of the inlined procedures into alias pairs
for the corresponding nodes in the given SEG. We remove
nodes of inlined procedures when alias pairs for them are
no longer needed for the rest of the computation, reducing
memory consumption.

We say that this analysis is trace-sensitive, because the
output of the analysis depends on execution traces, but does
not store information per context. Precisely, the analysis
does the following:
• When encountering a call node n of a procedure f , if a

clone of f is not in the current calling context of n, create
a clone of f , with cloned local variables; otherwise, do
analysis on the existing clone of f in the calling context.

• When adding the alias pair (xclone, yclone) to the alias
pairs for a cloned node nclone, also add the alias pair (x,
y) to the alias pairs for n.

• At the end of each iteration in which an alias pair in the
workset of a node n is processed, for each clone f ′ that
is reachable from n, if the worksets of all SEG nodes that
can reach the entry node of f ′ are empty, then f ′ and
the alias pairs of all nodes of f ′ are removed to reduce
memory usage.

• Perform all other operations as in the flow-sensitive algo-
rithm described previously.

• At the end, return alias pairs for only nodes in the given
SEG.

Our trace-sensitive analysis is always at least as pre-
cise as, and in our experiments always more precise than,
context-insensitive analyses. The increased precision is be-
cause our algorithm distinguishes aliasing information in
different contexts during analysis, even though it subse-
quently merges information for different contexts. Our ap-
plications in optimization do not exploit different aliasing
information for different contexts.

For programs without recursion, trace-sensitive analysis
is always at least as precise as, and often more precise than,
an analysis that distinguishes contexts by a subsequence of
the context with length n. The increased precision is because
trace-sensitive analysis distinguishes aliasing information in
every calling context during analysis of non-recursive pro-
grams, while an analysis that distinguishes contexts based
on a subsequence of the context with length n merges alias-
ing information for contexts whose length is greater than n.

For programs with recursion, trace-sensitive analysis may
be less precise than an analysis that distinguishes contexts
based on context subsequences of length n, n > 1, for
contexts involving recursive calls. However, in experiments
we have done, an analysis that inlines n calls with n > 1
runs out of memory for several examples. Our experiments
in Section 3.4 also show that recursion is rarely used.

We define a natural extension of trace sensitivity to allow
more than one clone of a procedure in the same calling con-
text, in essence allowing extra levels of inlining for recursive
procedures. We say that an analysis is trace-sensitive with e
extra clones if it allows e+1 clones of a procedure in a call-
ing context. We observed that for e > 1, the analysis runs
out of memory for larger examples. We show experiments
with e = 1 in Sections 3.1 and 3.2.

Overall, our experiments show that removing cloned pro-
cedures that can be determined to no longer alter the alias
pairs is quite effective in reducing the memory usage, al-
lowing analysis of large Python programs. Thus, trace sensi-
tivity increases precision while remaining feasible for large
programs.

Let p be the maximum size of a procedure, c be the
maximum number of call nodes to a procedure, d be the
maximum depth of calls to non-recursive procedures, and
e be the number of extra clones allowed for each pro-
cedure. The analysis takes O((N + (p × c)d×(e+1)) ×
(V + (p× c)d×(e+1))2) time. If one assumes that p, c, d,

32

and e are bounded by constants, then the time complexity of
the trace-sensitive analysis is still O(N × V 2).

Compressed representation. To reduce space usage, we
introduce a simple but important optimization. The alias
pairs for each node that has only one control flow predeces-
sor node are not stored explicitly, but are stored as changes
to the alias pairs of the predecessor node, which themselves
may be stored as changes to the alias pairs of the predecessor
node of the predecessor node, all the way up to a node that
has multiple predecessor nodes. A membership test against
the alias pairs of a node may involve as many lookups as the
length of the chain of predecessors. We bound the length
of such a chain to be no more than 30. Our experiments
show that this optimization reduces memory consumption
for flow-sensitive analysis variants by up to a factor of 10.

Implementation issues. To implement the analyses, two
additional problems must be solved.

First, non-trivial applications may use a large number of
functions and classes for which the source code is not avail-
able. These functions and classes may be built into the lan-
guage, be written in a different language such as assembly, or
be available only in compiled form. For example, Python has
over 400 special functions and classes implemented in C, ei-
ther as part of the interpreter or separate C modules. The pro-
grams we analyzed contain 165 of these plus a special mod-
ule. For the ten most commonly used built-in classes (int,
float, bool, string, list, set, dict, class, module,
type) and the special module (builtins), we labori-
ously hand-coded their behavior in terms of their parameter
and return types, side effects, CFG effects, and effects on
alias pairs, in the abstract interpreter; this took 3100 lines
of Python. For all remaining 155 cases, which are the vast
majority, we just duplicated the functionality of the C code
in Python code without regard for time and space efficiency;
this makes the implementation much easier and took only
about 8000 lines of Python.

Second, the analysis on larger programs may take hours.
We developed a persistence layer for the analysis framework
that allows efficient storage and lookup of alias pairs on disk
for further analysis. The persistence layer supports not only
fast membership test against alias pairs computed by the
analysis at any node, but also efficient lookup of the set of
variables that a given variable aliases at a given SEG node
and all of the subsequent SEG nodes in the same basic block.

To increase confidence in the correctness of the analysis
and its implementation, we used objgraph (http://mg
.pov.lt/objgraph) to find all references to all objects at
runtime for a subset of the programs we analyzed, used this
information to construct runtime alias sets for variables in
the program, and then verified that the runtime alias sets are
subsets of the alias sets computed by the analysis.

Analysis variants. For evaluation and comparison, we
have implemented the flow-sensitive trace-sensitive analy-

sis, plus five main variations of it, for Python. The variations
are:
• two flow-insensitive analyses: one that is context-insen-

sitive, by extending Andersen’s analysis (Andersen 1994)
to handle dynamic and object-oriented features in a sim-
ilar way as described above, and one that is context-
sensitive, by taking the flow-sensitive and context-sensitive
variant below and merging the analysis results for all pro-
gram nodes together.

• two flow-sensitive analyses: one that is context-insensitive,
and one that is context-sensitive, both by extending
Goyal’s analysis as described.

• a flow-sensitive, trace-sensitive analysis that also creates
extra clones.

Each of these six alias analyses is also coupled with (1) no
type analysis, i.e., type-insensitive, (2) type analysis using
basic types, called basic-type-sensitive, and (3) type analysis
using precise types, called precise-type-sensitive, resulting
in a total of 18 variants.

3. Experiments
We performed experiments that show the effectiveness of our
analysis. Our first set of experiments shows that our analy-
sis can be effectively used to incrementalize and specialize
Python programs. For the trace-sensitive analysis with ex-
tra clones, we allow one extra clone. We then evaluate the
precision, memory usage, and running time of analysis vari-
ants. We also evaluate the effect of refinement on alias anal-
ysis. Finally, we consider recursion, eval, and exec — con-
structs that can hurt our analysis precision — and show that
these are rare in Python programs.

Unless otherwise specified, all experiments were per-
formed running Python 2.6.4 on Windows 7 64bit, running
on a Core 2 Quad (Q9750 at 3.8GHz) CPU with 16 GB of
memory.

3.1 Effectiveness for optimization

Effectiveness for incrementalization. InvTS (Liu et al.
2005, 2009) is a transformation system for Python that
performs source-level incrementalization transformations
by applying transformation rules that involve alias condi-
tions. InvTS uses alias information to statically determine
the value of aliasing conditions if possible. If the value of
a condition is known at compile time, InvTS can determine
whether to transform a code segment. Otherwise, the condi-
tion is inserted into the generated code as a run-time check,
with the transformed code in the true branch and the original
code in the false branch.

InvTS experiments are conducted by transforming Python
programs using transformation rules and different variants of
alias analysis. The programs transformed are lxml, an XML
library, and nftp, an FTP client. The transformation rules in-
crementally maintain properties that must hold during exe-
cution. For each analysis variant, we report the analysis time,

33

runtime overhead (defined as timet−timeo
timeo

, where timet and
timeo are the running times of the transformed and original
programs respectively), and the number of alias conditions
for which runtime checks are eliminated.

Lxml. Lxml (http://codespeak.net/lxml/) is a Py-
thon library to create and transform XML DOM trees. We
applied InvTS to the test suite of the lxml library to check
the following properties:
• Valid parent field: In an XML document, all non-root el-

ements have a valid parent field, i.e., element e’s parent
field equals p iff element p has e as a child.

• No shared child and not self child: In an XML document,
an element may be a child of at most one element, and an
element cannot be a child of itself.

• Cause of indexing out of range: For an expression of the
form A[B], the value of B must be a valid index of A. If
this property is violated, report the files and lines where
the index out of bounds exception became unavoid-
able, i.e., the location at which each variable that was in
the expression that eventually caused the exception was
last modified during execution so as to cause the excep-
tion.

The test suite processed 10 million XML records.
Table 1 shows that the overhead of maintaining these

properties, when the transformation uses a flow- and context-
sensitive but type-insensitive analysis, is 83%, 93%, and
310%, respectively. Precise type sensitivity decreases these
to 73%, 89%, and 192%. Adding trace sensitivity further de-
creases the overhead to 14%, 85%, and 85%, but increases
the analysis time by up to 41% (from 61 to 86 seconds).

Nftp. Using InvTS, we found the cause of a previously
encountered bug in nftp (http://inamidst.com/proj/
nftp), an FTP client that downloads directories from multi-
ple machines. This bug occurs when a directory listing com-
mand is issued before a change directory command com-
pletes. We wrote a transformation rule that maintains a set of
outstanding FTP commands, and uses it to determine where
this error occurs. We ran nftp with 10 threads, with 30 di-
rectories totaling 20GB over a 1GBit connection, ensuring
that the program is CPU bound. Table 1 shows that the run-
time overhead when using flow- and context-sensitive but
type-insensitive analysis is 91%. Adding precise type sensi-
tivity reduces it to 81%, and adding trace sensitivity further
reduces it to 73%.

General observations. Table 1 summarizes our InvTS ex-
periments. Figure 1 shows the overhead for the six precise-
type-sensitive variants of alias analysis. Flow-insensitive
analysis performs poorly, whether context-sensitive or not.
For flow-sensitive analysis variants, the context-sensitive
analysis performs only slightly better than the context-
insensitive analysis. A reason for this is, in Python, field
assignments are usually two nested calls (setattr and
setitem ; setattr is a method of the object being

updated, which usually then calls the setitem method
of the dict class object that represents fields of an object as
key-value pairs).

In general, n levels of inlining with the typical small val-
ues for n give imprecise results for dynamic languages that
routinely use double dispatch and implicit nesting of calls,
such as in the above case of field access in Python; larger val-
ues of n make the analyses consume an unacceptable amount
of space.

We conclude that the best trade-off between precision and
analysis time is the flow-, trace- and precise-type-sensitive
analysis. While adding extra clones slightly increases preci-
sion, it takes several times as long to run.

Figure 1. Runtime overhead of transformed programs, us-
ing precise-type-sensitive alias analysis, varying flow and
context sensitivity.

Effectiveness for specialization. Psyco (Rigo 2004) is a
specializing just-in-time compiler for Python. At startup,
it compiles all the bytecode it can to machine code. The
remaining bytecode needs more information to be compiled,
including alias and type information. After collecting more
information at runtime, Psyco compiles the remaining code
to machine code. In our experiments, we augmented Psyco
so it can use statically computed alias and type information.
Specifically, we modify Psyco’s unlift operator as follows:
when Psyco blocks specialization of a function until a run-
time answer to the question “is x the same as y” or “is x
of type T” becomes available, and the answer is available
from statically computed alias or type information, we return
that answer to Psyco, and Psyco continues specializing the
function. This allows Psyco to compile functions at startup
that otherwise it would have to compile at runtime after
collecting more information.

We ran Psyco on its largest included benchmark, which
consists of 397 lines of code, and performs assignments,

34

lxml - Valid Parent lxml - No Shared Child lxml - Indexing nftp
97 alias checks 81 alias checks 1451 alias checks 31 alias checks

flow context type runtime checks analysis runtime checks analysis runtime checks analysis runtime checks analysis

sensitive sensitivity sensitivity overhead removed time overhead removed time overhead removed time overhead removed time

no no
no 92% 12 36 95% 12 39 440% 35 49 119% 7 19

basic 93% 12 36 95% 13 38 429% 35 50 119% 7 19
precise 91% 14 36 95% 13 39 381% 41 49 112% 9 19

no yes
no 88% 16 60 94% 15 62 364% 55 97 110% 9 83

basic 88% 17 64 93% 17 62 350% 61 97 96% 11 82
precise 74% 26 61 90% 23 61 323% 89 99 91% 13 84

yes no
no 87% 17 42 93% 19 42 340% 79 62 93% 12 30

basic 86% 17 43 91% 20 43 331% 81 61 89% 13 30
precise 73% 28 43 90% 28 46 219% 122 61 89% 13 30

yes yes
no 83% 18 59 93% 20 57 310% 103 98 91% 13 80

basic 82% 18 61 90% 23 63 303% 112 95 86% 14 82
precise 73% 30 61 89% 29 61 192% 199 98 81% 14 81

yes trace
no 82% 20 81 91% 19 85 160% 246 103 90% 12 63

basic 75% 28 82 88% 28 85 133% 344 109 77% 14 62
precise 14% 68 82 85% 40 86 85% 836 104 73% 16 63

yes trace extra
no 67% 37 308 85% 37 312 124% 455 783 78% 14 119

basic 19% 61 308 85% 38 310 99% 603 780 74% 15 119
precise 14% 72 310 83% 41 311 83% 892 791 70% 17 118

Table 1. Runtime overhead, number of alias checks removed, and analysis time (in seconds) in InvTS experiments. Runtime
overhead is timet−timeo

timeo
, where timet and timeo are running times of the transformed and original programs, respectively.

class construction, function and method calls, and list and
dictionary operations. For this benchmark, Psyco, with no
additional alias information passed to it, compiles only 43
out of 73 procedures at startup, speeding the program up
44%. We provided the results of each alias analysis variant
to Psyco, and measured the number of non-compiled proce-
dures and the speedup compared to Psyco run without this
information. We do not include analysis time when comput-
ing speedup, because analysis information can be computed
once per program.

Table 2 shows that the number of procedures compiled at
startup, and the resulting speedup, increases with the preci-
sion of the alias analysis and type sensitivity. Flow-, trace-
and precise-type-sensitive analysis with extra clones yields
the best results, a speedup of nearly 16% compared to the
original Psyco, which is 53% when compared to Python
without Psyco, computed as 1−(1−0.44)×(1−0.16).Elim-
inating the use of extra clones reduces the speedup by 0.4%
(15.9% - 15.5%) and the analysis time by 84% (339.3−52.6

339.3).
Even though the analysis time is significant, doing the anal-
ysis is worthwhile because after performing the analysis just
once, every future run of the program can use the analysis re-
sults without performing the analysis again, thus amortizing
the cost of one analysis over a potentially very large number
of runs.

3.2 Precision, memory usage, and running time

We evaluated the precision, maximum memory usage, and
running time of the analysis variants by running them on
seven Python programs of diverse sizes. The programs
include the standard Python (http://www.python.org)

flow context type program uncompiled analysis
sensitive sensitivity sensitivity speedup procedures time

no no
no 3.8% 27 1.8

basic 4.8% 26 1.9
precise 6.7% 23 2.2

no yes
no 7.2% 24 26.6

basic 7.7% 23 26.9
precise 10.9% 21 27.0

yes no
no 7.2% 25 4.0

basic 7.2% 23 4.1
precise 11.3% 20 4.2

yes yes
no 6.7% 24 23.1

basic 7.7% 23 24.1
precise 13.4% 18 23.8

yes trace
no 8.2% 24 51.1

basic 10.0% 22 51.4
precise 15.5% 16 52.6

yes trace extra
no 9.9% 22 331.1

basic 11.3% 20 335.7
precise 15.9% 15 339.3

Table 2. Program speedup, number of procedures left un-
compiled at compile-time, and analysis time (in seconds) in
Psyco experiments. Program speedup is timeo−timea

timeo
, where

timea is the running time using Psyco with alias informa-
tion, and timeo is the time using the original Psyco, which
leaves 30 procedures uncompiled.

modules chunk, bdb, pickle, and tarfile;Fortran2003,
a module of SciPy (http://www.scipy.org/); bit-

Torrent (http://www.bittorrent.com/); and std.

lib., the set of Python standard libraries used by the pro-

35

0

>300

context-sensitive
precise-type-sensitive

Pr
og

ra
m

 C
FG

 n
od

e
in

 o
rd

er
 o

f v
is

it

Al
ia

s S
et

 S
iz

e

Variables in order of increasing average alias set size

trace-sensitive
precise-type-sensitive

trace-sensitive with extra clones
basic-type-sensitive

 trace-sensitive with extra clones
precise-type-sensitive

context-insensitive
precise-type-sensitive

150

300

Figure 2. Alias set size for each variable (shown horizontally) for each CFG node (shown vertically) for flow-sensitive analysis
variants for tarfile. Variables are ordered by increasing average alias set size in the context-insensitive precise-type-sensitive
analysis.

grams we analyzed. We recorded the output, running time,
and maximum memory consumption.

Precision of alias analysis variants. Figure 2 shows a
visual comparison of the results of the alias analysis of
tarfile, for four flow- and precise-type-sensitive analysis
variants, plus, for comparison, the trace- and basic-type-
sensitive analysis with extra clones. Columns represent the
variables in the program; rows represent the CFG nodes.
The shading represents the size of the alias set of a variable
at a CFG node, where the alias set of a variable is the
set of variables it may alias; lighter colors represent higher
precision, and darker colors represent lower precision. This
graph makes it clear that as we add context- and trace-
sensitivity, the precision of the analysis increases. Adding
extra clones also improves precision, but not by as great
an extent. Type insensitivity reduces the precision of the
analysis. Trace-sensitive analysis with extra clones takes far
more time than trace-sensitive analysis without extra clones,
while providing only slightly higher precision. We conclude
that the most practical alias analysis is the flow-, trace-, and
precise-type-sensitive analysis.

Memory usage. Figure 3 shows the memory usage of the
four flow- and precise-type-sensitive analysis variants, with
and without compressed representation, and of the two un-
compressed trace-sensitive variants without trace optimiza-
tion (removal of no longer needed procedure clones). Due to
the large spread of values, both axes are drawn in log-scale.

Despite being a smaller program, the memory usage for
several variants of the analysis of tarfile is larger than

Figure 3. Maximum memory usage for flow- and precise-
type-sensitive alias analysis variants, varying context sen-
sitivity using uncompressed or compressed representations.
“unoptimized” means that trace optimization and compres-
sion are both disabled; trace optimization is enabled for all
other trace-sensitive variants. Data points are missing for
cases where the analysis ran out of memory or time (limited
to 4 hours). Both axes are log scale.

for Fortran2003 because the average size of alias graphs
in tarfile is significantly larger when analyzed by a flow-
sensitive analysis. The memory usage for flow-insensitive
analysis variants are not shown because they are much
smaller.

36

Figure 4. Running times for flow- and precise-type-
sensitive alias analysis variants using compressed represen-
tation, varying context sensitivity. Both axes are log scale.

From Table 3, it is clear that for trace-sensitive anal-
ysis of large programs, both trace optimization and com-
pressed representation are required, otherwise memory us-
age is prohibitively large on even medium-sized programs
such as tarfile. Analyzing tarfilewithout the optimiza-
tions consumes over 4 GB of memory. Trace optimization
alone reduces this to a still large 1.75 GB, while increas-
ing running time by 46%, from 31.36 seconds to 45.90 sec-
onds. Combining trace optimization and compressed rep-
resentation further reduces the memory usage to 0.69 GB,
while increasing the running time by only 14%, from 45.90
seconds to 52.38 seconds. Combining these two optimiza-
tions makes it feasible for trace-sensitive analysis to analyze
bitTorrent and std. lib.

Running time. Figure 4 and Table 3 show the running
time of the four flow- and precise-type-sensitive analysis
variants, using compressed representation, and where appli-
cable, trace optimization. For example, on BitTorrent with
over 20K LOC, our flow-sensitive, precise-type-sensitive,
and trace-sensitive analysis that uses compressed represen-
tation takes 20 minutes and 12 seconds.

Here again, the trace-sensitive analysis is the most pre-
cise feasible variant, as the trace-sensitive variant with extra
clones takes almost 1 hour to complete on Fortran2003,
and times out (exceeds 4 hours) on bitTorrent and std.

lib. Without extra clones, the trace-sensitive analysis takes
less than an hour to analyze std.lib. with over 50K LOC.
Running times of type-insensitive and basic-type-sensitive
alias analysis variants are not presented because in our ex-
perience, increasing type sensitivity does not significantly
increase alias analysis time, especially when compared to
the benefits of precise type sensitivity. Table 1 shows this:
the largest slowdown caused by precise type sensitivity
is eleven seconds (lxml - Indexing, trace- and precise-
type-sensitive vs. trace- and basic-type-sensitive variant),

without with
refinement refinement

MAASS, all variables 15.3 15.1
MAASS, locals and parameters 4.7 2.8
number of AST nodes 5021 5619

Table 4. Precision of alias analysis of lxml - Indexing,
with and without refinement. 12 refinement steps are per-
formed before a fixed-point is reached. MAASS is the mean
average alias set size of variables in specialized functions,
computed as described in text.

and there are cases where precise type sensitivity actually
speeds alias analysis up.

Table 3 shows the data used to generate Figures 3 and 4.

3.3 Effect of refinement on alias analysis

In this section, we determine the effect of refinement on
alias analysis, and show that refinement is worthwhile. To
do this, we perform the following experiments on a subset
of programs from Section 3.1:
• We measure the effect of refinement on the precision of

alias analysis results.
• We measure how the program size varies as a function

of the bound on the number of iterations of analysis and
refinement.

• We measure how the overhead of the programs trans-
formed by InvTS varies as a function of the bound on
the number of iterations of analysis and refinement.

• We measure how the time taken to transform these pro-
grams varies as a function of the bound on the number of
iterations of analysis and refinement.

Effect of refinement on precision of alias analysis. To
demonstrate how the precision of alias analysis results
changes due to refinement, we performed alias analysis on
lxml - Indexing program, without refinement, and then
with refinement until a fixed point was reached. This resulted
in 7 functions being specialized into 19 functions. We com-
pute an average alias set size for each variable used in these
functions, by averaging the alias set size for that variable at
all of the AST nodes in the functions. We then compute the
mean average alias set size (MAASS) by taking the mean
of the average alias set size for a set of variables. We com-
pute the MAASS first over all variables, then over a subset
consisting of only local variables and formal parameters.

Table 4 presents the results of this experiment. Using
refinement introduced 598 new AST nodes. Adding these
nodes allowed the refined functions to be analyzed more
precisely, with the MAASS decreasing from 15.3 to 15.1.
When only local variables and parameters are considered,
the MAASS was reduced more substantially, from 4.7 to 2.8.
This shows that refinement is effective at decreasing the alias
set size of local variables and parameters.

Effect of refinement on program size. Refinement special-
izes functions before alias analysis is performed, so it may

37

context-insensitive context-sensitive
AST unoptimized uncompressed compressed unoptimized uncompressed compressed

Program LOC Nodes time memory time memory time memory time memory time memory time memory
chunk 172 493

not applicable

1.01 31.06 1.28 31.04

not applicable

2.58 39.07 3.10 39.07
bdb 609 2026 1.20 33.25 1.48 32.03 4.52 41.71 5.07 40.85

pickle 1392 4239 1.65 76.20 1.98 36.51 10.04 121.43 10.11 49.48
tarfile 1796 7877 3.23 1964.09 4.16 267.70 20.69 2384.95 23.11 341.45

Fortran 6503 15955 11.94 928.16 12.77 157.25 77.71 1142.45 80.97 188.16
bitTorrent 22423 102930 63.01 8134.75 90.01 1198.93 298.86 11555.96 330.44 1574.81

std. lib. 51654 420654 out of memory 317.44 2434.01 out of memory 1519.68 3726.77

trace-sensitive trace-sensitive with extra clones
AST unoptimized uncompressed compressed unoptimized uncompressed compressed

Program LOC Nodes time memory time memory time memory time memory time memory time memory
chunk 172 493 4.09 41.74 4.97 39.16 5.65 39.13 7.10 42.26 8.89 39.26 10.37 39.15

bdb 609 2026 7.60 43.76 7.61 41.40 8.76 40.18 12.90 49.46 13.91 46.15 16.08 40.85
pickle 1392 4239 11.12 291.61 13.94 88.60 15.97 59.74 21.11 812.11 34.69 294.06 43.13 162.91
tarfile 1796 7877 31.36 4203.29 45.90 1751.84 52.38 688.53 out of memory 236.76 8631.85 283.45 2570.28

Fortran 6503 15955 123.65 3018.57 262.93 1202.04 298.23 627.41 out of memory 2687.26 8645.29 3389.17 3602.21
bitTorrent 22423 102930 out of memory 1068.36 10618.39 1211.87 2909.11 out of memory out of time out of time

std. lib. 51654 420654 out of memory out of memory 3401.69 13124.52 out of memory out of time out of time

Table 3. Running time (in seconds) and maximum memory usage (in MBytes) for flow- and precise-type-sensitive alias
analysis variants. “unoptimized” means that trace optimization and compression are both disabled; trace optimization is
enabled for all other trace-sensitive variants; “not applicable” means that trace optimization is not applicable to trace-insensitive
variants; “out of memory” means that the memory usage of the analysis exceeded 16 GB; “out of time” means that its running
time exceeded 4 hours.

increase the size of the program that the alias analysis has to
analyze. We quantify this increase by measuring the number
of AST nodes after refinement as a function of the bound on
the number of iterations of analysis and refinement. Figure 5
shows that for all programs from Section 3.1, the program
size never increases more than 11%. For programs from Sec-
tion 3.2, refinement increased the number of AST nodes of
the analyzed program by an average of 13.6%; the maximum
increase was 28.6%, for Python standard library.

Figure 5. Number of AST nodes, as a function of the bound
on the number of iterations of analysis and refinement.

Effect of refinement on optimization. The increase in pro-
gram size due to refinement potentially increases the alias
analysis time. To determine whether the cost of refinement
is worthwhile, we measured (1) how the overhead of the pro-
grams transformed by InvTS in Section 3.1 varies as a func-
tion of the bound on the number of iterations of analysis and
refinement, and (2) how the total transformation time (in-
cluding analysis time) for these programs varies as a func-

tion of that bound. The experiments were performed using
the same setup as the experiments in Section 3.1.

Figure 6 presents the results. For each program, overhead
decreases as the bound increases, up to the point where a
fixed-point is reached, i.e., further iterations of analysis and
refinement do not specialize any more functions. For lxml -

Indexing and nftp, this happens when the bound is higher
than 12 and 7, respectively. The overhead reduction is in
some cases quite significant, such as the almost 20% reduc-
tion for lxml - Indexing; the extra transformation time
due to refinement never exceeds 10 seconds, i.e., 12% of
the total transformation time. Thus, for InvTS, refinement is
clearly worthwhile, especially since the relatively minor re-
finement cost is incurred just once, but the benefits of lower
overhead are reaped every time the transformed program is
executed.

3.4 Prevalence of recursion, eval, and exec

Recursion. Trace sensitivity is a good fit for programs
where deeply nested function calls are common, and recur-
sion is not prevalent. To determine how common recursion
is in Python programs, we looked at all Python programs
(.py files) on an Ubuntu 8.10 system, a total of 7,740 pro-
grams, including Python 2.4 and 2.5 standard libraries, the
zope framework, and many other utilities and libraries.

We statically analyzed these programs to detect the pres-
ence of recursion that involves only calls to functions
and calls to methods through self, analogous to this in
Java. Specifically, we parsed the program and constructed
a call graph whose nodes are fully qualified function or
method names, and with call edges induced by function
calls and method calls through self, i.e., calls of the form
self.m(. . .) (this is a call to the method C.m, where C is the

38

Figure 6. Runtime overhead of transformed programs
and total program transformation time, using precise-type-
sensitive alias analysis, as a function of the bound on the
number of iterations of analysis and refinement.

enclosing class). The call graph was searched for strongly
connected components (SCCs), which indicate recursion.

This analysis detected recursion in 461 out of 7,740 pro-
grams analyzed. Specifically, 738 out of a total of 264,080
functions are in strongly connected components.

Since this analysis may miss some recursions, and it may
report recursions that rarely (or never) occur during execu-
tion, we also performed runtime detection of recursion on a
subset of the programs. Specifically, we ran the program in a
way that recorded the call history, and detected cycles in the
call history; these cycles indicate recursion. Out of the 7,740
programs, we selected ones with a history of more than 50
calls when run without arguments. This eliminated programs
that trivially terminate, and left 974 programs.

Analysis of the call histories detected recursion in 66 of
these 974 programs. Our static analysis detected recursion
in 64 of these 66 programs; this is an encouraging level of
agreement. If the programs surveyed are representative, our
results show that the use of recursion in Python programs is
limited.

Eval and exec. Uses of eval functions and exec state-
ments (which are similar to eval functions, but do not return
values) cause the type of all accessible variables to become
top. This can be detrimental to the precision of the type anal-
ysis unless the calls to eval or exec contain a scope argu-
ment that restricts the set of accessible variables.

We found that 237 out of the 7,740 programs use eval or
exec, and only 39 of them do not restrict the set of accessible
variables.

To determine how frequently eval or exec are called,
we performed an experiment similar to the one for runtime
recursion detection, except that we searched the call histories

for calls to eval or exec. Out of the 974 programs analyzed,
only 101 use these constructs outside of the Python libraries
we reimplemented. Our reimplementations do not use eval
or exec. Thus, for the purposes of our type analysis, calls
to eval or exec occurred in approx. 10% of the programs
surveyed.

Using our type analysis to determine all possible targets
at function call sites and method call sites, we statically
detected all direct and indirect uses of eval and exec in the
programs from Sections 3.1 and 3.2. We manually inspected
uses of these constructs to determine whether the set of
accessible variables is restricted. We found that only bdb

uses eval without restricting the set of accessible variables;
Fortran2003, InvTS, and std. lib. use eval but restrict
the set of accessible variables; chunk, pickle, tarfile,
all lxml programs, nftp, and bitTorrent do not use these
constructs at all. This confirms that use of eval or exec

with no restriction on the set of accessible variables is rare
in Python programs.

4. Related work
Alias analysis and the related problem of points-to analy-
sis have been studied extensively (Hind 2001), mostly for
statically typed languages, such as C and Java. Many posi-
tions on the spectrum of trade-offs between precision and
scalability have been explored: flow-insensitive, context-
insensitive analyses, such as (Andersen 1994; Steensgaard
1996); context-sensitive, flow-insensitive analyses, such as
(Foster et al. 2000; Fähndrich et al. 2000; Milanova et al.
2005); context-insensitive, flow-sensitive analyses, such as
(Choi et al. 1993; Goyal 2005); and context-sensitive, flow-
sensitive analyses, such as (Vitek et al. 1992; Emami et al.
1994).

There have been some studies on these trade-offs in the
context of statically typed languages. For example, flow sen-
sitivity in analysis of C programs provides little improve-
ment in precision for some applications (Hind and Pioli
2001; Mock et al. 2002) but is important in others (Hard-
ekopf and Lin 2009); similarly, context sensitivity provided
little precision benefit in analysis of some C programs (Ruf
1995) but was significant for some Java applications (Lhoták
and Hendren 2006).

Our analysis is trace-sensitive, a form of context sensitiv-
ity based on cloning of functions. Guyer and Lin’s client-
driven pointer analysis for C also uses cloning in providing
a customizable level of context sensitivity to client analyses
(Guyer and Lin 2005). Significant differences between their
work and ours are the target language (C vs. Python) and the
client analyses considered (error detection vs. optimization).
Lattner et al. use a form of context sensitivity that collapses
strongly connected components and then inlines everything
(Lattner et al. 2007). Their analysis is for C and is flow-
insensitive, hence not appropriate for the optimizations we
consider as clients.

39

Sridharan and Bodik’s analysis (Sridharan and Bodik
2006) also collapses strongly connected components in a
context-sensitive points-to analysis for Java, but the analy-
sis mutually refines call graphs and points-to information,
while also filtering out unrealizable paths based on queried
variables, making the analysis more scalable than possible
before. The analysis is still flow-insensitive and does not
handle many dynamic features that we handle, and thus still
leaves much to be desired in precision and scalability for
optimization of dynamic languages.

We believe that trace-sensitive analysis is especially
suited for optimizations, for both dynamic languages and
static languages.

Our work is the first to assess the impact of flow sen-
sitivity, context sensitivity, and type sensitivity on preci-
sion, memory usage, and running time of alias analysis for
a dynamic object-oriented language, and evaluate the ef-
fectiveness of these analyses for program transformations
and optimizations. We give a simple example that shows
flow-sensitivity and type sensitivity are essential for a pre-
cise analysis and effective optimization, whereas a context-
insensitive or context-sensitive analysis over an SSA repre-
sentation (Hasti and Horwitz 1998; Bravenboer and Smarag-
dakis 2009) does not give the precision needed for optimiza-
tion. There are fast and scalable context-sensitive but flow-
insensitive analyses (Bravenboer and Smaragdakis 2009),
but flow- and context-sensitive analysis of dynamic lan-
guages presents unique challenges, e.g., significantly larger
memory footprint and many more strong updates.

Previous work on alias analysis for dynamic object-
oriented languages does not handle the breadth of dynamic
features that we handle. For example, the alias analysis for
PHP in (Jovanovic et al. 2006; Balzarotti et al. 2008) does
not handle first-class functions (which PHP does not sup-
port) or eval statements, and does not compare different
variants of the analysis. Jang and Choe (Jang and Choe
2009) handles only a simple subset of JavaScript.

Control flow analysis for dynamic languages has been
used for Ajax intrusion detection (Guha et al. 2009). In that
work, an interprocedural CFG for a JavaScript program is
constructed using k-CFA and then transformed into a request
graph to build an intrusion-detection proxy for the server
that the program communicates with. Similar to our type
analysis, their analysis tracks constant strings and string
operations and allows static evaluation of evals on constant
strings. They make assumptions regarding evals that we
do not make: evals return only objects that do not have
methods, and evals do not write into variables that are not
local to the argument of the eval. Their analysis is reported
to take about 45 minutes on programs of about 6K LOC but
cannot handle 10K LOC.

Type analysis for dynamic languages is well known to
be difficult. Starkiller (Salib 2004), a static type inference
engine for Python, has several limitations compared to our
work: it is flow-insensitive (i.e., does not allow variables to

have different types at different program nodes), does not
support union types, and does not track contents of collec-
tions. The type system and type inference algorithm for a
subset of JavaScript in (Anderson et al. 2005) also has these
limitations; in addition, it does not support field and method
names as strings, functions as expressions, or eval. Local-
ized Type Inference (Cannon 2005) for Python cannot infer
types of method and procedure arguments automatically, and
does not support single-value types, range types, or union
types. DiamondBack (Furr et al. 2009), a static type infer-
ence system for Ruby, supports intersection types, union
types, single-value types, and parametric polymorphism, but
it does not support analysis of eval or method calls when
the target object’s type is unknown. Our precise types for
Python are sketched briefly in (Gorbovitski et al. 2008), but
it does not describe handling of dynamic language features,
generalization during type analysis, and refinement between
analysis.

Our static type analysis plays two important roles. First,
type information is used to statically determine dynamic dis-
patch, which is crucial to obtain a precise control flow graph
(Bacon and Sweeney 1996; Sreedhar et al. 2000). Second,
type information is used to eliminate alias pairs that are
impossible due to type mismatches. Type information has
been used for the latter purpose in alias analysis for stati-
cally typed languages, e.g., Modula-3 (Diwan et al. 1998)
and Java (Lhoták and Hendren 2003), but it does not signifi-
cantly help there, because most statements that would create
such alias pairs are rejected by the type checker. In contrast,
our experiments show that static inference of precise types
provides significant benefits for alias analysis for dynamic
languages.

Storing all of the alias sets for a program can consume
a lot of memory, especially for flow-sensitive, context-
sensitive analyses. We reduce the memory requirements us-
ing a compressed representation that exploits the similarity
between alias sets at adjacent nodes in the CFG. Another
approach is to represent alias sets (or points-to sets) symbol-
ically, e.g., using BDDs (Lam et al. 2005). Unfortunately,
BDDs are slow for flow-sensitive analyses, because of the
large number of strong updates to pointer information (Hard-
ekopf and Lin 2009). Hardekopf et al. overcome this in a
partially symbolic, semi-sparse context-insensitive pointer
analysis for C (Hardekopf and Lin 2009). Extending and
evaluating those ideas in the setting of dynamic languages is
a direction for future work.

References
L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

C. Anderson, P. Giannini, and S. Drossopoulou. Towards type
inference for JavaScript. In Proc. of the 19th European Conf.
on Object-Oriented Programming, pages 428–452, 2005.

D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual
function calls. In Proc. of the 1996 ACM SIGPLAN Conf. on

40

Object-Oriented Programming Systems, Languages, and Appli-
cations, pages 324–341, 1996.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: composing static and dynamic
analysis to validate sanitization in web applications. In Proc. of
the 2008 IEEE Symp. on Security and Privacy, pages 387–401,
2008.

M. Bravenboer and Y. Smaragdakis. Strictly declarative specifi-
cation of sophisticated points-to analyses. In Proc. of the 24th
Annual ACM SIGPLAN Conf. on Object Oriented Programming,
Systems, Languages, and Applications, pages 243–262, 2009.

B. Cannon. Localized Type Inference of Atomic Types in Python.
PhD thesis, California Polytechnic State University, 2005.

J.D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive inter-
procedural computation of pointer-induced aliases and side ef-
fects. In Proc. of the 20th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, pages 232–245, 1993.

A. Diwan, K.S. McKinley, and J.E.B. Moss. Type-based alias anal-
ysis. In Proc. of the 1998 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 106–117, 1998.

M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function point-
ers. In Proc. of the 1994 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 242–256, 1994.

M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive
flow analysis using instantiation constraints. In Proc. of the 2000
ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 253–263, 2000.

J.S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for C. In Proc.
of the 7th Intl. Symp. on Static Analysis, pages 175–198, 2000.

M. Furr, J. D. An, J. S. Foster, and M. W. Hicks. Static type
inference for Ruby. In Proc. of the 2009 ACM Symp. on Applied
Computing, pages 1859–1866, 2009.

M. Gorbovitski, K.T. Tekle, T. Rothamel, S.D. Stoller, and Y.A.
Liu. Analysis and transformations for efficient query-based
debugging. In Proc. of the 8th IEEE Intl. Working Conf. on
Source Code Analysis and Manipulation, pages 174–183, 2008.

D. Goyal. Transformational derivation of an improved alias anal-
ysis algorithm. Higher-Order and Symbolic Computation, 18
(1-2):15–49, 2005.

A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for
Ajax intrusion detection. In Proc. of the 18th Intl. Conf. on World
Wide Web, pages 561–570, 2009.

S. Z. Guyer and C Lin. Error checking with client-driven pointer
analysis. Science of Computer Programming, 58(1-2):83–114,
2005.

B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer anal-
ysis. In Proc. of the 36th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, pages 226–238, 2009.

R. Hasti and S. Horwitz. Using static single assignment form to
improve flow-insensitive pointer analysis. In Proc. of the ACM
SIGPLAN 1998 Conf. on Programming Language Design and
Implementation, page 105, 1998.

M. Hind. Pointer analysis: haven’t we solved this problem yet?
In Proc. of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages
54–61, 2001.

M. Hind and A. Pioli. Evaluating the effectiveness of pointer
alias analyses. Science of Computer Programming, 39(1):31–
55, 2001.

D. Jang and K.M. Choe. Points-to analysis for JavaScript. In
Proceedings of the 2009 ACM Symp. on Applied Computing,
pages 1930–1937, 2009.

N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for
static detection of web application vulnerabilities. In Proc. of

the 2006 ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, pages 27–36, 2006.

M.S. Lam, J. Whaley, V.B. Livshits, M.C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. In Proc. of the 24th ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pages 1–12,
2005.

C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world.
In Proc. of the 2007 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 278–289, 2007.

O. Lhoták and L. Hendren. Context-sensitive points-to analysis:
is it worth it? In Proc. of the 15th Intl. Conf. on Compiler
Construction, pages 47–64, 2006.

O. Lhoták and L.J. Hendren. Scaling Java points-to analysis using
spark. In Proc. of 12th Intl. Conf. on Compiler Construction,
pages 153–169, 2003.

Y.A. Liu, S.D. Stoller, M. Gorbovitski, T. Rothamel, and Y.E. Liu.
Incrementalization across object abstraction. In Proc. of the 20th
Annual ACM SIGPLAN Conf. on Object Oriented Programming,
Systems, Languages, and Applications, pages 473–486, 2005.

Y.A. Liu, M. Gorbovitski, and S.D. Stoller. A language and frame-
work for invariant-driven transformations. In Proc. of the 8th
Intl. Conf. on Generative Programming and Component Engi-
neering, pages 55–64, 2009.

A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Trans. on Soft-
ware Engineering and Methodology, 14(1):1–41, 2005.

M. Mock, D.C. Atkinson, C. Chambers, and S.J. Eggers. Improving
program slicing with dynamic points-to data. ACM SIGSOFT
Software Engineering Notes, 27(6):71–80, 2002.

G. Ramalingam. The undecidability of aliasing. ACM Trans. on
Programming Languages and Systems, 16(5):1467–1471, 1994.

A. Rigo. Representation-based just-in-time specialization and the
Psyco prototype for Python. In Proc. of the 2004 ACM SIGPLAN
Symp. on Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 15–26, 2004.

E. Ruf. Context-insensitive alias analysis reconsidered. In Proc.
of the 1995 ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 13–22, 1995.

M. Salib. Faster than C: Static type inference with Starkiller. In
Proc. of PyCon 04, pages 2–26, 2004.

O. Shivers. Control-flow analysis in Scheme. In Proc. of the
SIGPLAN 1988 Conf. on Programming Language Design and
Implementation, pages 164–174, 1988.

V.C. Sreedhar, M. Burke, and J.D. Choi. A framework for inter-
procedural optimization in the presence of dynamic class load-
ing. In Proc. of the 2000 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 196–207, 2000.

M. Sridharan and R. Bodik. Refinement-based context-sensitive
points-to analysis for Java. In Proc. of the 2006 ACM SIGPLAN
Conf. on Programming Language Design and Implementation,
pages 387–400, 2006.

B. Steensgaard. Points-to analysis in almost linear time. In Proc.
of the 23rd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 32–41, 1996.

J. Vitek, R. N. Horspool, and J. S. Uhl. Compile-time analysis
of object-oriented programs. In Proc. of the 4th Intl. Conf. on
Compiler Construction, pages 236–250, 1992.

41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

