Probabilistic Logic Languages

Fabrizio Riguzzi
(modified by Terrance Swift)
Outline (Part 1)

1. Probabilistic Logic Languages
2. Distribution Semantics
3. Expressive Power
4. Distribution Semantics with Function Symbols
5. Conversion to Bayesian Networks
6. Related Languages
Outline (Part 2)

- Complexity of Full Distribution Semantics
- The PITA approach
- Exclusion and independence assumptions (PRISM, PITA(IND/EXC))
- An adaptive approach (PITA(OPT))
- Approximation
- Projection of non-discriminating variables
- Possibilistic and Fuzzy Logic
Combining Logic and Probability

- Useful to model domains with complex and uncertain relationships among entities
- Many approaches proposed in the areas of Logic Programming, Uncertainty in AI, Machine Learning, Databases
- Logic Programming: Distribution Semantics [Sato, 1995]
- A probabilistic logic program defines a probability distribution over normal logic programs (called instances or possible worlds or simply worlds)
- The distribution is extended to a joint distribution over worlds and interpretations (or queries)
- The probability of a query is obtained from this distribution
Probabilistic Logic Programming (PLP) Languages under the Distribution Semantics

- Probabilistic Logic Programs [Dantsin, 1991]
- Probabilistic Horn Abduction [Poole, 1993], Independent Choice Logic (ICL) [Poole, 1997]
- PRISM [Sato, 1995]
- Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al., 2004] and their semantic subclass, CP-logic [Vennekens et al., 2009]
- ProbLog [De Raedt et al., 2007]
- P-log [C.Baral et al., 2009] uses distribution semantics for LPs using the stable model semantics.
- They differ in the way they define the distribution over logic programs
sneezing(X) ← flu(X), flu_sneezing(X).
sneezing(X) ← hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).

disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).

- Distributions over facts by means of disjoint statements
- null does not appear in the body of any rule
- Worlds obtained by selecting one atom from every grounding of each disjoint statement
sneezing(X) ← flu(X), msw(flu_sneezing(X), 1).
sneezing(X) ← hay_fever(X), msw(hay_fever_sneezing(X), 1).
flu(bob).
hay_fever(bob).

values(flu_sneezing(_X), [1, 0]).
values(hay_fever_sneezing(_X), [1, 0]).
: – set_sw(flu_sneezing(_X), [0.7, 0.3]).
: – set_sw(hay_fever_sneezing(_X), [0.8, 0.2]).

- Distributions over msw facts (random switches)
- Worlds obtained by selecting one value for every grounding of each msw statement
Logic Programs with Annotated Disjunctions

\[
sneezing(X) : 0.7 \lor \text{null} : 0.3 \leftarrow \text{flu}(X).
\]
\[
sneezing(X) : 0.8 \lor \text{null} : 0.2 \leftarrow \text{hay}_\text{fever}(X).
\]
\[
\text{flu}(bob).
\]
\[
\text{hay}_\text{fever}(bob).
\]

- Distributions over the head of rules
- \text{null} does not appear in the body of any rule
- Worlds obtained by selecting one atom from the head of every grounding of each clause
\[
\text{sneezing}(X) \leftarrow \text{flu}(X), \text{flu_sneezing}(X).
\]
\[
\text{sneezing}(X) \leftarrow \text{hay_fever}(X), \text{hay_fever_sneezing}(X).
\]
\[
\text{flu}(\text{bob}).
\]
\[
\text{hay_fever}(\text{bob}).
\]
\[
0.7 :: \text{flu_sneezing}(X).
\]
\[
0.8 :: \text{hay_fever_sneezing}(X).
\]

- Distributions over facts
- Worlds obtained by selecting or not every grounding of each probabilistic fact
Case of no function symbols: finite Herbrand universe, finite set of groundings of each disjoint statement/switch/clause

Atomic choice: selection of the i-th atom for grounding $C\theta$ of disjoint statement/switch/clause C

- represented with the triple (C, θ, i)
- a ProbLog fact $p :: F$ is interpreted as $F : p \lor \text{null} : 1 - p$

Example $C_1 = \text{disjoint}([\text{flu_sneezing}(X) : 0.7, \text{null} : 0.3])$, $(C_1, \{X/\text{bob}\}, 1)$

Composite choice κ: consistent set of atomic choices

$\kappa = \{(C_1, \{X/\text{bob}\}, 1), (C_1, \{X/\text{bob}\}, 2)\}$ not consistent

The probability of composite choice κ is

$$P(\kappa) = \prod_{(C, \theta, i) \in \kappa} P_0(C, i)$$
Distribution Semantics

- **Selection** σ: a total composite choice (one atomic choice for every grounding of each disjoint statement/clause)

 $\sigma = \{(C_1, \{X/bob\}, 1), (C_2, \{bob\}, 1)\}$

 $C_1 = \text{disjoint}([\text{flu_sneezing}(X) : 0.7, \text{null} : 0.3])$.

 $C_2 = \text{disjoint}([\text{hay_fever_sneezing}(X) : 0.8, \text{null} : 0.2])$.

- A selection σ identifies a logic program w_σ called **world**

- The probability of w_σ is $P(w_\sigma) = P(\sigma) = \prod_{(C, \theta, i) \in \sigma} P_0(C, i)$

- Finite set of worlds: $W_T = \{w_1, \ldots, w_m\}$

- $P(w)$ distribution over worlds: $\sum_{w \in W_T} P(w) = 1$
Distribution Semantics

- Herbrand base $H_T = \{A_1, \ldots, A_n\}$
- Herbrand interpretation $I = \{a_1, \ldots, a_n\}$
- $P(I|w) = 1$ if I is a model of w and 0 otherwise
- $P(I) = \sum_w P(I, w) = \sum_w P(I|w)P(w) = \sum_{w,I} I$ model of $w P(w)$
- The distribution over interpretations can be seen as a joint distribution $P(A_1, \ldots, A_n)$ over the atoms of H_T
- Query: $(A_j = \text{true}) = a_j$
- $P(a_j) = \sum_{a_i, i \neq j} P(a_1, \ldots, a_m) = \sum_{I,a_j \in I} P(I)$
- $P(a_j) = \sum_{I,a_j \in I} \sum_{w \in w,I} I$ model of $w P(w)$
Distribution Semantics

- Alternatively,

\[P(a_j | w) = 1 \] if \(A_j \) is true in \(w \) and 0 otherwise

\[P(a_j) = \sum_w P(a_j, w) = \sum_w P(a_j | w) P(w) = \sum_{w|A_j} P(w) \]
Example Program (ICL)

- 4 worlds

\begin{align*}
sneezing(X) & \leftarrow flu(X), flu_sneezing(X). \\
\text{sneezing}(X) & \leftarrow hay_fever(X), hay_fever_sneezing(X). \\
\text{flu}(bob). \\
\text{hay_fever}(bob). \\
\text{flu_sneezing}(bob). \\
\text{null}. \\
\text{hay_fever_sneezing}(bob). \\
\text{hay_fever_sneezing}(bob). \\
P(w_1) = 0.7 \times 0.8 & \\
P(w_2) = 0.3 \times 0.8
\end{align*}

\begin{align*}
\text{flu_sneezing}(bob). & \\
\text{null}. \\
\text{null}. \\
P(w_3) = 0.7 \times 0.2 & \\
P(w_4) = 0.3 \times 0.2
\end{align*}

- \text{sneezing}(bob) is true in 3 worlds

\[P(\text{sneezing}(bob)) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94 \]
Example Program (LPAD)

- 4 worlds

\[
\begin{align*}
\text{sneezing}(\text{bob}) & \leftarrow \text{flu}(\text{bob}). \\
\text{sneezing}(\text{bob}) & \leftarrow \text{hay}_\text{fever}(\text{bob}). \\
\text{flu}(\text{bob}). & \\
\text{hay}_\text{fever}(\text{bob}). & \\
\end{align*}
\]

\[
\begin{align*}
P(w_1) &= 0.7 \times 0.8 \\
\text{sneezing}(\text{bob}) & \leftarrow \text{flu}(\text{bob}). \\
\text{sneezing}(\text{bob}) & \leftarrow \text{hay}_\text{fever}(\text{bob}). \\
\text{flu}(\text{bob}). & \\
\text{hay}_\text{fever}(\text{bob}). & \\
P(w_3) &= 0.7 \times 0.2 \\
\end{align*}
\]

\[
\begin{align*}
\text{sneezing}(\text{bob}) & \leftarrow \text{flu}(\text{bob}). \\
\text{null} & \leftarrow \text{flu}(\text{bob}). & \\
\text{null} & \leftarrow \text{hay}_\text{fever}(\text{bob}). \\
\text{flu}(\text{bob}). & \\
\text{flu}(\text{bob}). & \\
\text{hay}_\text{fever}(\text{bob}). & \\
P(w_2) &= 0.3 \times 0.8 \\
P(w_4) &= 0.3 \times 0.2
\end{align*}
\]

- \text{sneezing}(\text{bob}) is true in 3 worlds

\[
P(\text{sneezing}(\text{bob})) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94
\]
Example Program (ProbLog)

- 4 worlds

\[
\begin{align*}
\text{sneezing}(X) & \leftarrow \text{flu}(X), \text{flu}_\text{sneezing}(X). \\
\text{sneezing}(X) & \leftarrow \text{hay_fever}(X), \text{hay_fever}_\text{sneezing}(X). \\
\text{flu}(\text{bob}). & \text{hay_fever}(\text{bob}). \\
\text{flu_sneezing}(\text{bob}). & \\
\text{hay_fever_sneezing}(\text{bob}). & \text{hay_fever_sneezing}(\text{bob}). \\
P(w_1) &= 0.7 \times 0.8 & P(w_2) &= 0.3 \times 0.8 \\
& \text{flu_sneezing}(\text{bob}). \\
P(w_3) &= 0.7 \times 0.2 & P(w_4) &= 0.3 \times 0.2
\end{align*}
\]

- \text{sneezing}(\text{bob}) is true in 3 worlds

\[
P(\text{sneezing}(\text{bob})) = 0.7 \times 0.8 + 0.3 \times 0.8 + 0.7 \times 0.2 = 0.94
\]
Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :-
 toss(Coin), \+biased(Coin).
heads(Coin):0.6 ; tails(Coin):0.4 :-
 toss(Coin), biased(Coin).
fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
Examples

Mendel’s inheritance rules for pea plants

color(X, white) :- cg(X, 1, w), cg(X, 2, w).
color(X, purple) :- cg(X, _A, p).
cg(X, 1, A) : 0.5 ; cg(X, 1, B) : 0.5 :-
 mother(Y, X), cg(Y, 1, A), cg(Y, 2, B).
cg(X, 2, A) : 0.5 ; cg(X, 2, B) : 0.5 :-
 father(Y, X), cg(Y, 1, A), cg(Y, 2, B).

Probability of paths

path(X, X).
path(X, Y) :- path(X, Z), edge(Z, Y).
edge(a, b) : 0.3.
edge(b, c) : 0.2.
edge(a, c) : 0.6.
Enclosing Bayesian Networks

<table>
<thead>
<tr>
<th>burg</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>earthq</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarm</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alarm</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

burg(t): 0.1; burg(f): 0.9.
earthq(t): 0.2; earthq(f): 0.8.
alarm(t): -burg(t), earthq(t).
alarm(t): 0.8; alarm(f): 0.2:-burg(t), earthq(f).
alarm(t): 0.8; alarm(f): 0.2:-burg(f), earthq(t).
alarm(t): 0.1; alarm(f): 0.9:-burg(f), earthq(f).
All the PLP languages have the same expressive power

- LPADs have the “most general” syntax
- There are transformations that can convert each one into the others
- There are direct mappings among ICL, PRISM, and Problog
- There are also direct mappings from ICL/PRISM/Problog to LPAD
- A mapping from LPAD to ICL/PRISM/Problog is shown below

The CVS implementation of PLP [Meert et al., 2009] translates PLP into a BN in order to evaluate it. (Question about equivalence.)

There exists a mapping from Plog to the other languages that preserves‘ semantics for programs that have a single stable model that is well-founded.
Clause C_i with variables \overline{X}

$$H_1 : p_1 \lor \ldots \lor H_n : p_n \leftarrow B.$$

is translated into

$$H_1 \leftarrow B, \text{choice}_{i,1}(\overline{X}).$$

$$\vdots$$

$$H_n \leftarrow B, \text{choice}_{i,n}(\overline{X}).$$

$$\text{disjoint}([\text{choice}_{i,1}(\overline{X}) : p_1, \ldots, \text{choice}_{i,n}(\overline{X})]).$$
Clause C_i with variables \overline{X}

\[H_1 : p_1 \lor \ldots \lor H_n : p_n \leftarrow B. \]

is translated into

\[H_1 \leftarrow B, f_{i,1}(\overline{X}). \]
\[H_2 \leftarrow B, not(f_{i,1}(\overline{X})), f_{i,2}(\overline{X}). \]
\[\vdots \]
\[H_n \leftarrow B, not(f_{i,1}(\overline{X})), \ldots, not(f_{i,n-1}(\overline{X})). \]

\[\pi_1 :: f_{i,1}(\overline{X}). \]
\[\vdots \]
\[\pi_{n-1} :: f_{i,n-1}(\overline{X}). \]

where $\pi_1 = p_1, \pi_2 = \frac{p_2}{1-\pi_1}, \pi_3 = \frac{p_3}{(1-\pi_1)(1-\pi_2)}, \ldots$

In general $\pi_j = \frac{p_j}{\prod_{j=1}^{j-1}(1-\pi_j)}$
Combining Rule

These languages combine independent evidence for a ground atom coming from different clauses with a noisy-or combining rule. If atom A can be derived with probability p_1 from a rule and with probability p_2 from a different rule and the two derivations are independent, then $P(A) = p_1 + p_2 - p_1p_2$.

Example

$$
\text{sneezing}(X) : 0.7 \lor \text{null} : 0.3 \leftarrow \text{flu}(X).
\text{sneezing}(X) : 0.8 \lor \text{null} : 0.2 \leftarrow \text{hay_fever}(X).
\text{flu}(bob).
\text{hay_fever}(bob).
$$

$P(\text{sneezing}(bob)) = 0.7 + 0.8 - 0.7 \times 0.8 = 0.94$

Particularly useful for modeling independent causes for the same effect.
Negation

- How to deal with negation?
- Each world should have a single total model because we consider two-valued interpretations
- We want to model uncertainty only by means of random choices
- This can be required explicitly: each world should have a total well founded model/single stable model (sound programs)
- Distribution semantics for partial models has not been formalized.

 Conjecture for an atom A, the lower bound is the sum of probabilities of worlds in which A is true; while the higher bound is 1 minus the sum of probabilities of worlds in which A is false.
Function Symbols

- What if function symbols are present?
- Infinite, countable Herbrand universe
- Infinite, countable Herbrand base
- Infinite, countable grounding of the program T
- Uncountable W_T
- Each world infinite, countable
- $P(w) = 0$
- Semantics not well-defined — as so far described.
Game of dice

\[\text{on}(0,1):\frac{1}{3} ; \text{on}(0,2):\frac{1}{3} ; \text{on}(0,3):\frac{1}{3}. \]

\[\text{on}(T,1):\frac{1}{3} ; \text{on}(T,2):\frac{1}{3} ; \text{on}(T,3):\frac{1}{3} :- \]

\[\text{T1 is } T-1, \text{ T1} \geq 0, \text{ on}(T1,F), \text{ } \text{\textbackslash + on}(T1,3). \]
Hidden Markov Models

\[X(t) \rightarrow Y(t) \rightarrow X(t + 1) \]

\[X(t - 1) \rightarrow Y(t - 1) \rightarrow X(t + 1) \]

\[
\text{hmm}(S,O):-\text{hmm}(q1,[],S,O).
\]
\[
\text{hmm}(\text{end},S,S,[]).
\]
\[
\text{hmm}(Q,S0,S,[\text{L}|\text{O}]):-
\]
\[
Q \neq \text{end},
\]
\[
\text{next_state}(Q,Q1,S0),
\]
\[
\text{letter}(Q,L,S0),
\]
\[
\text{hmm}(Q1,[Q|S0],S,O).
\]
\[
\text{next_state}(q1,q1,_S):1/3;\text{next_state}(q1,q2,_S):1/3;
\]
\[
\text{next_state}(q1,\text{end},_S):1/3.
\]
\[
\text{next_state}(q2,q1,_S):1/3;\text{next_state}(q2,q2,_S):1/3;
\]
\[
\text{next_state}(q2,\text{end},_S):1/3.
\]
\[
\text{letter}(q1,a,_S):0.25;\text{letter}(q1,c,_S):0.25;
\]
\[
\text{letter}(q1,g,_S):0.25;\text{letter}(q1,t,_S):0.25.
\]
\[
\text{letter}(q2,a,_S):0.25;\text{letter}(q2,c,_S):0.25;
\]
\[
\text{letter}(q2,g,_S):0.25;\text{letter}(q2,t,_S):0.25.
\]
Semantics first proposed for ICL and PRISM.

Definition of a probability measure μ over W_T

μ assigns a probability to every element of an algebra Ω of subsets of W_T, i.e. a set of subsets closed under union and complementation.

The algebra Ω is the set of sets of worlds identified by a finite set of finite composite choices.

- Note that Ω itself is finite.
Composite Choices

- Set of worlds compatible with a composite choice, κ:
 \[\omega_\kappa = \{ w_\sigma \in \mathcal{W}_T | \kappa \subseteq \sigma \} \]

- For programs without function symbols $P(\kappa) = \sum_{w \in \omega_\kappa} P(w)$

```
sneezing(X) ← flu(X), flu_sneezing(X).
sneezing(X) ← hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).
C_1 = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
C_2 = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).
```

- $\kappa = \{(C_1, \{X/bob\}, 1)\}$, $\omega_\kappa =$

```
flu_sneezing(bob).   flu_sneezing(bob).
hay_fever_sneezing(bob). null.
P(w_1) = 0.7 \times 0.8   P(w_2) = 0.7 \times 0.2
```

- $P(\kappa) = 0.7 = P(w_1) + P(w_2)$
Compatable worlds for composite choices:

- Let K be a set of composite choices.
- Set of worlds compatible with K: $\omega_K = \bigcup_{\kappa \in K} \omega_{\kappa}$.
- $\Omega = \{ \omega_K | K$ is a finite set of finite composite choices $\}$.
Sets of Composite Choices

We’ll be interested in sets of *mutually exclusive* composite choices

- Two composite choices κ_1 and κ_2 are *exclusive* if their union is inconsistent

 $\kappa_1 = \{(C_1, \{X/bob\}, 1)\}$,
 $\kappa_2 = \{(C_1, \{X/bob\}, 2), (C_2, \{X/bob\}, 1)\}$

 $\kappa_1 \cup \kappa_2$ inconsistent

- A set K of composite choices is *mutually exclusive* if for all $\kappa_1 \in K, \kappa_2 \in K, \kappa_1 \neq \kappa_2 \Rightarrow \kappa_1$ and κ_2 are exclusive.
Sets of Composite Choices

Here’s why we want mutually exclusive composite choices. Consider first the case of no function symbols:

- In general, $\sum_{\kappa \in K} P(\kappa) \neq \sum_{w \in \omega_K} P(w)$
 - $\kappa_1 = \{(C_1, \{X/bob\}, 1)\}$, $\kappa_2 = \{(C_2, \{X/bob\}, 1)\}$, $K = \{\kappa_1, \kappa_2\}$
 - $P(\kappa_1) = 0.7$, $P(\kappa_2) = 0.8$, $\sum_{w \in \omega_K} P(w) = 0.94$
- If K is mutually exclusive, $\sum_{\kappa \in K} P(\kappa) = \sum_{w \in \omega_K} P(w)$
 - $\kappa'_2 = \{(C_1, \{X/bob\}, 2), (C_2, \{X/bob\}, 1)\}$, $K' = \{\kappa_1, \kappa'_2\}$
 - $P(\kappa'_2) = 0.3 \cdot 0.8 = 0.24$
- Probability of mutually exclusive set K of composite choices: $P(K) = \sum_{\kappa \in K} P(\kappa)$
Sets of Composite Choices

Going into more detail...

- \(K = \{ \kappa_1, \ldots, \kappa_n \} \)
- \(P(K) = P(\kappa_1 \lor \ldots \lor \kappa_n) \)
- \(P(A \lor B) = P(A) + P(B) - P(AB) \)
- \(P(A \lor B \lor C) = P(A) + P(B) + P(C) - P(AB) - P(BC) + P(ABC) \)
- ... (inclusion exclusion formula)
- \(P(\kappa_1 \land \kappa_2) \) may be:
 - 0, if \(\kappa_1, \kappa_2 \) are inconsistent
 - \(P(\kappa_1)P(\kappa_2) \) if they are independent (no common grounding \(C\theta \))
 - In general, we have to count only once repeated atomic choices
- If \(K \) is mutually incompatible \(P(\kappa_i \land \ldots \land \kappa_j) = 0 \)
- \(P(K) = P(\kappa_1) + \ldots + P(\kappa_n) \)
Set of Composite Choices

Note that two sets K_1 and K_2 of finite composite choices may correspond to the same set of worlds: $\omega_{K_1} = \omega_{K_2}$

Lemma ([Poole, 2000])

*Given a finite set K of finite composite choices, there exists a finite set K' of finite composite choices that is mutually exclusive and such that $\omega_K = \omega_{K'}$.***
Lemma ([Poole, 2000])

If K and K' are both mutually exclusive sets of composite choices such that $\omega_K = \omega_{K'}$, then $P(K) = P(K')$

- $\Omega = \{\omega_K | K$ is a finite set of finite composite choices$\}$
- Ω is an algebra

Definition

$\mu : \Omega \rightarrow [0, 1]$ is

$$\mu(\omega) = P(K)$$

for $\omega \in \Omega$ where K is a mutually exclusive finite set of finite composite choices such that $\omega_K = \omega$.
Probability Measure

- \(\mu \) satisfies the finite additivity version of Kolmogorov probability axioms
 1. \(\mu(\omega) \geq 0 \) for all \(\omega \in \Omega \)
 2. \(\mu(\emptyset) = 1 \)
 3. \(\omega_1 \cap \omega_2 = \emptyset \rightarrow \mu(\omega_1 \cup \omega_2) = \mu(\omega_1) + \mu(\omega_2) \) for all \(\omega_1 \in \Omega, \omega_2 \in \Omega \)
- So \(\mu \) is a probability measure
Probability of a Query

- Given a query Q, a composite choice κ is an explanation for Q if
 \[\forall w \in \omega_\kappa \; w \models Q \]

- A set K of composite choices is covering wrt Q if every world in which Q is true belongs to ω_K

Definition

\[P(Q) = \mu(\{ w | w \in W_T, w \models Q \}) \]

- If Q has a finite set of finite explanations that is covering, $P(Q)$ is well-defined
Example Program (ICL)

\[
\text{sneezing}(X) \leftarrow \text{flu}(X), \text{flu}_\text{sneezing}(X).
\]
\[
\text{sneezing}(X) \leftarrow \text{hay}_\text{fever}(X), \text{hay}_\text{fever}_\text{sneezing}(X).
\]
\[
\text{flu}(bob).
\]
\[
\text{hay}_\text{fever}(bob).
\]
\[
C_1 = \text{disjoint}([\text{flu}_\text{sneezing}(X) : 0.7, \text{null} : 0.3]).
\]
\[
C_2 = \text{disjoint}([\text{hay}_\text{fever}_\text{sneezing}(X) : 0.8, \text{null} : 0.2]).
\]

- **Goal** \(\text{sneezing}(bob)\)
- \(\kappa_1 = \{(C_1, \{X/bob\}, 1)\}\)
- \(\kappa_2 = \{(C_1, \{X/bob\}, 2), (C_2, \{X/bob\}, 1)\}\)
- \(K = \{\kappa_1, \kappa_2\}\) mutually exclusive finite set of finite explanations that are covering for \(\text{sneezing}(bob)\)
- \(P(Q) = P(\kappa_1) + P(\kappa_2) = 0.7 + 0.3 \cdot 0.8 = 0.94\)
The probability is well-defined provided that the query has a finite set of finite explanations that are covering.

In the semantics proposed for PRISM [Sato, 1995] this is explicitly required.

In the semantics proposed for ICL [Poole, 2000] the program is required to be acyclic.

In [Riguzzi and Swift, 2012] the notion of bounded-term depth for normal programs is extended to the distribution semantics and it is shown that such programs are well-defined.
Conversion to Bayesian Networks

- PLP can be converted to Bayesian networks
- Conversion for an LPAD T
- For each atom A in H_T a binary variable A
- For each clause C_i in the grounding of T

$$H_1 : p_1 \lor \ldots \lor H_n : p_n \leftarrow B_1, \ldots B_m, \neg C_1, \ldots, \neg C_l$$

a variable CH_i with $B_1, \ldots, B_m, C_1, \ldots, C_l$ as parents and H_1, \ldots, H_n and $null$ as values

- The CPT of CH_i is

<table>
<thead>
<tr>
<th>$CH_i = H_1$</th>
<th>$B_1 = 1, \ldots, B_m = 1, C_1 = 0, \ldots, C_l = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>p_1</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$CH_n = H_n$</td>
<td>$B_1 = 1, \ldots, B_m = 1, C_1 = 0, \ldots, C_l = 0$</td>
</tr>
<tr>
<td>0.0</td>
<td>p_n</td>
</tr>
<tr>
<td>$CH_i = null$</td>
<td>$1 - \sum_{i=1}^{n} p_i$</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Conversion to Bayesian Networks

- Each variable A corresponding to atom A has as parents all the variables CH_i of clauses C_i that have A in the head.
- The CPT for A is:

<table>
<thead>
<tr>
<th></th>
<th>at least one parent equal to A</th>
<th>remaining columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 1$</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$A = 0$</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Conversion to Bayesian Networks

\[C_1 = x_1 : 0.4 \lor x_2 : 0.6. \]
\[C_2 = x_2 : 0.1 \lor x_3 : 0.9. \]
\[C_3 = x_4 : 0.6 \lor x_5 : 0.4 \leftarrow x_1. \]
\[C_4 = x_5 : 0.4 \leftarrow x_2, x_3. \]
\[C_5 = x_6 : 0.3 \lor x_7 : 0.2 \leftarrow x_2, x_5. \]

<table>
<thead>
<tr>
<th>(CH_1, CH_2)</th>
<th>(x_1, x_2)</th>
<th>(x_1, x_3)</th>
<th>(x_2, x_2)</th>
<th>(x_2, x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_2 = 1)</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(x_2 = 0)</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_2, x_5)</th>
<th>(t,t)</th>
<th>(t,f)</th>
<th>(f,t)</th>
<th>(f,f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH_5 = x_6)</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(CH_5 = x_7)</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(CH_5 = null)</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Related Languages

- CP-logic [Vennekens et al., 2009]
- P-log [C.Baral et al., 2009]
CP-logic

- Syntactically equal to LPADs
- Aim: modeling causation
- Semantics defined in term of a tree representing a probabilistic process
- Each valid CP-theory is a valid LPAD with the same meaning
- There are LPADs that are not valid CP-theories

\[
\begin{align*}
 p : 0.5 \lor q : 0.5 & \leftarrow r. \\
 r & \leftarrow \neg p. \\
 r & \leftarrow \neg q.
\end{align*}
\]

\[
\begin{align*}
 p & \leftarrow r. \\
 q & \leftarrow r. \\
 r & \leftarrow \neg p. \\
 r & \leftarrow \neg q. \\
 M & = \{ r, p \} \\
 M & = \{ r, q \}
\end{align*}
\]

- No process satisfying temporal precedence: a rule cannot fire until the part of the process that determines whether its precondition holds is fully finished.
P-log

- Based on Answer Set Programming (ASP).
- A P-log program T defines a distribution over the stable models of a related Answer Set program $\pi(T)$.
- The probability of a query is then obtained by marginalization

```prolog
bool={t,f}.
node={a,b,c,...}.
edge: node,node -> bool.
#domain node(X),node(Y),node(Z).
path(X,Y):- edge(X,Y,t).
path(X,Y):- edge(X,Z,t), path(Z,Y).
[r(a,b)] random(edge(a,b)).
[r(a,b)] pr(edge(a,b,t))=4/10.
```

- Disjunctions and unstratified negations allowed: some programs have no model
- The distribution obtained by multiplication is not normalized.
- The probability of each stable model must be normalized.
Reasoning Tasks

- Inference: we want to compute the probability or an explanation of a query given the model and, possibly, some evidence.
- Weight learning: we know the structural part of the model (the logic formulas) but not the numeric part (the weights) and we want to infer the weights from data.
- Structure learning: we want to infer both the structure and the weights of the model from data.
Inference Tasks

- Computing the (conditional) probability of a ground query given the model and, possibly, some evidence
- Finding the most likely state of a set of query atoms given the evidence (Maximum A Posteriori/Most Probable Explanation inference)
 - In Hidden Markov Models, the most likely state of the state variables given the observations is the Viterbi path, its probability the Viterbi probability
- Finding the \(k\) most probable explanation(s)
- Finding the distribution of variable substitutions for a non-ground query.
- Finding the most probable variable substitution for a non-ground query.
Weight Learning

- **Given**
 - model: a probabilistic logic model with unknown parameters
 - data: a set of interpretations

- **Find the values of the parameters that maximize the probability of the data given the model**

- **Discriminative learning**: maximize the conditional probability of a set of outputs (e.g. ground instances for a predicate) given a set of inputs

- **Alternatively**, the data are queries for which we know the probability: minimize the error in the probability of the queries that is returned by the model
Structure Learning

- Given
 - language bias: a specification of the search space
 - data: a set of interpretations

- Find the formulas and the parameters that maximize the likelihood of the data given the model

- Discriminative learning: again maximize the conditional likelihood of a set of outputs given a set of inputs
The probabilistic logic theory is used directly as a template for generating an underlying complex graphical model [Breese et al., 1994].

Languages: CLP(BN), Markov Logic
Variables in a CLP(BN) program can be random
Their values, parents and CPTs are defined with the program
To answer a query with uninstantiated random variables, CLP(BN) builds a BN and performs inference
The answer will be a probability distribution for the variables
Probabilistic dependencies expressed by means of CLP constraints

\{ \text{Var} = \text{Function with } p(\text{Values, Dist}) \} \\
\{ \text{Var} = \text{Function with } p(\text{Values, Dist, Parents}) \}
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h, m, l], [0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l], [0.5, 0.4, 0.1]) }.

registration(r0, c16, s0).
registration(r1, c10, s0).
registration(r2, c57, s0).
registration(r3, c22, s1).
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
 p([a,b,c,d],%
%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],%
[Int,Dif])}
}.
?- [school_32].
 ?- registration_grade(r0, G).
 p(G=a) = 0.4115,
 p(G=b) = 0.356,
 p(G=c) = 0.16575,
 p(G=d) = 0.06675 ?
?- registration_grade(r0, G),
 student_intelligence(s0, h).
 p(G=a) = 0.6125,
 p(G=b) = 0.305,
 p(G=c) = 0.0625,
 p(G=d) = 0.02 ?
Markov Networks

- Undirected graphical models

Each clique in the graph is associated with a potential ϕ_i

$$P(x) = \frac{\prod_i \phi_i(x_i)}{Z}$$

$$Z = \sum_x \prod_i \phi_i(x_i)$$

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cancer</th>
<th>$\phi_i(V, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>4.5</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>4.5</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>2.7</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>4.5</td>
</tr>
</tbody>
</table>
If all the potential are strictly positive, we can use a log-linear model

\[P(x) = \frac{\exp(\sum_i w_i f_i(x_i))}{Z} \]

\[Z = \sum_x \prod_i \phi_i(x_i) \]

\[f_i(\text{Smoking}, \text{Cancer}) = \begin{cases}
1 & \text{if } \neg \text{Smoking} \lor \text{Cancer} \\
0 & \text{otherwise}
\end{cases} \]

\[w_i = 1.5 \]
Markov Logic

- A Markov Logic Network (MLN) is a set of pairs \((F, w)\) where \(F\) is a formula in first-order logic and \(w\) is a real number.
- Together with a set of constants, it defines a Markov network with:
 - One node for each grounding of each predicate in the MLN.
 - One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\).
Markov Logic Example

1.5 \(\forall x \ Smokes(x) \rightarrow Cancer(x) \)
1.1 \(\forall x, y \ Friends(x, y) \rightarrow (Smokes(x) \leftrightarrow Smokes(y)) \)

- Constants Anna (A) and Bob (B)
Markov Networks

- Probability of an interpretation x

\[P(x) = \frac{\exp(\sum_i w_i n_i(x_i))}{Z} \]

- $n_i(x_i) =$ number of true groundings of formula F_i in x

- Typed variables and constants greatly reduce size of ground Markov net
References I

References III

References IV

