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Outline

•Motivation: Why is Tabling of General
Interest?

• Definite Programs:

– Algorithms

– Tabling Applications

• Normal Programs

– Algorithms

– Tabling Applications

• Implementation

2



Motivation

• Solves inadequacies of Prolog (SLDNF)

– Termination for e.g. Datalog programs
ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- ancestor(X,Z),parent(Z,Y).

– Redundant subcomputations
join(X,Y):-

supplemental(X,X2),rel_3(X2,Y).

supplemental(X,Y):-

rel_1(X,X1),rel_2(X1,Y).

rel1 rel2 rel3
(a,b) (b,e) (e,g)

(a,c) (c,e) (e,h)

(a,d) (d,f) (f,i)

In SLD resolution, 8 join operations are performed on the above

example, while if supplemental is tabled, there will be only 6

join operations. In extreme cases, redundant subcomputations can

lead to exponential data complexity for Prolog. (See the knap-

sack problem below). Tabling has polynomial data complexity for

datalog programs with negation.
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Motivation

• Allows Logic Programming to be used with disk-
resident data.

– Aditi [112], Validity both have a set-at-a-time
interface to disk.

– A scheduling strategy for tabling is
iteration equivalent to semi-naive evaluation
of a magic program [44].
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Motivation

• Tabling is applicable to programs with negation.
In fact, tabling can also handle loops through
negation. It thus can implement three-valued
semantics for negation such as the Well-Founded
Semantics [114]

– Allows logic programs to adequately handle
inconsistencies.

The village barber shaves everyone in the vil-
lage who does not shave himself [40].

shaves(barber,Person):-

villager(Person),

not shaves(Person,Person).

shaves(doctor,doctor).

villager(barber). villager(mayor).

villager(doctor).

– Allows logic programming systems to be used
to explore Knowledge Representation.

– Tabling as defined below for WFS has poly-
nomial data completity.
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Motivation

• There has been a lot of research into it.

– Tabling and Related Research

∗ Formulation [41], [17], [108], [38], [60], [98],
[115], [120], [15], [14], [20], [22], [33], [19],
[105], [34], [94], [54], [110], [23], [27]

∗ Implementation and Systems [6], [116], [64],
[42], [2], [55], [82], [84], [106], [107], [93], [7],
[21], [43],[44], [96], [121], [45], [83], [95] [92],

∗ Optimizations [30]
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Motivation

– Magic Sets and Related Research (e.g. Alexan-
der Method)

∗ Formulation [87], [5], [97],[111], [18], [69],
[67], [8], [59], [73], [103], [39], [49], [79], [9],
[101], [89] [66]

∗ Implementation and Systems [6], [24], [112],
[80], [99], [118], [119], [37], [48], [52], [68]

∗ Optimizations [78], [70],[90], [91],[88], [61],
[102], [51], [50], [104], [16]

• Bibliography is incomplete:

– it considers only formulations of evaluation
strategies and not general theories of Datalog,
updates, etc.

– Does not consider some newer areas such as
Tabling / Magic Sets and constraints.
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Motivation

• Practical and Research Applications

– Parsing [72], [1], [63], [62]

– Program Analysis [71], [58], [57], [86], [31]

– Software Verification [100]

– Graphics and Data Visualization [46], [26]

– Diagnosis Systems [32], [28]

– Other [13], [77]

SQL3 Standard includes recursion.
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Definite Programs

Many formulations of tabling are more or less equiv-
alent for definite programs.

• Earley Deduction (1970)

• Backchain Iteration (1981)

• OLDT (1986)

• Alexander Method (1986)

• SLD-AL (QSQR) (1986-1989)

•Magic Templates (1986-88)

• Extension Tables (1987)

• SLG (1993)

• Logic Push Down Automata (1994)

A Tabled Evaluation can be characterized by

Operations plus a Search Strategy.
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Definite Programs

q(a).  q(b).  q(c).

e(a,b).  e(a,d).  e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.

6.fail

0. p(a,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)

Subgoal Answers

p(a,Z) p(a,b)
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Definite Programs
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Definite Programs
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Definite Programs: Tabling

• The search strategy for that program was a tuple-
at-a-time strategy resembling Prolog’s [45].

• One derivation path (or tree) may need to con-
sume answers from another derivation path (or
tree)

•May be more than one answer for a given tabled
subgoal
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Definite Programs: Tabling

For finite computations, a tabled evaluation can be
seen as a sequence of forests. Given a forest F a
new forest is determined by one of the following
operations.

Definition 1 • new subgoal. Given a node N with selected tabled

literal B, where B is not in F , create a new tree with root B.

• program clause resolution. Given a node N that is a root

node B, or has selected non-tabled literal B, resolve against B a pro-

gram clause that has not previously been used for resolution against

B in N .

• answer resolution. Given an active node N with selected literal

B, resolve an answer against B that has not been previously used for

resolution against B in N .

• completion If S is a set of subgoals that have been completely

evaluated remove all trees whose root is a subgoal in S.

Non-failure nodes have the form

Answer Template : −goal list

The status of a node — active, interior or an-
swer — is determined respectively by whether the
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selected literal of the node is tabled, non-tabled, or
if the goal list is empty.
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Definite Programs: Tabling

What does Completely Evaluated mean?

• A subgoal is completely evaluated iff it has all of
its possible answers.

• A subgoal S is completely evaluated when all
possible operations have been done on its nodes,
and the nodes of trees upon which S depends.

• A ground subgoal is completely evaluated when
an answer is derived for it.

Incremental Completion is necessary for efficient
evaluation of programs.
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Definite Programs: Tabling
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Definite Programs: Tabling

Subgoal Dependency Graph

p(a,Z)

p(b,Z)

p(c,Z)

Incremental Completion can be performed a SCC
at a time, or a set of SCCs at a time.
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Definite Programs: Magic

Magic provides termination properties similar to
tabling, along with goal orientation. How is a pro-
gram evaluated using Magic?
Consider

sg(X,Y):- X=Y.

sg(X,Y):- p(X,Z),sg(Z,Z1),p(Y,Z1).

Magic usually assumes a bottom-up evaluation
strategy such as semi-naive. This strategy itera-
tively derives a delta set of previously underived
answers, and plugs these answers into appropriate
places in the program to create a new delta set.
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Definite Programs: Magic

• Split program up into EDB and IDB.

• Add a filter to the beginning of each IDB clause
to make sure that whenever the clause is acti-
vated, it will have the same bindings as in a top-
down evaluation.

sg(X,Y):- call(sg(X,Y)), X=Y.

sg(X,Y):- call(sg(X,Y)),

p(X,Z),sg(Z,Z1),p(Y,Z1).

•Make sure that the proper calling filters are de-
rived.

call(sg(Z,Z1)):-call(sg(X1,X)),p(X,Z).

• Add a magic seed to represent the original query.

call(sg(1,X)).

This is only a simple version of magic.
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Definite Programs: Magic

Perform a linear semi-naive rewrite of the magic
program:

call(sg(1,X)).

call(sg(Z,Z1)):-delta_call(sg(X1,X)),p(X,Z).

sg(X,Y):- delta_call(sg(X,Y)), X=Y.

sg(X,Y):- delta_call(sg(X,Y)),

p(X,Z),sg_t-2(Z,Z1),p(Y,Z1).

sg(X,Y):- call_t-1(sg(X,Y)),

p(X,Z),delta_sg(Z,Z1),p(Y,Z1).

• Each derived predicate can be thought of as consisting of a sequence

of the delta-sets produced at each iteration. Thus, the set of facts

available at the end of iteration t consists of the first t delta sets for

each predicate.

• At time t, the second rule will join calls first produced at time t − 1

(delta call/1) with appropriate sg/2 facts from t− 2.
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• At time t, the third rule will join all calls produced by the end of t−1

with the sg/2 facts first produced at time t− 1.
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Definite Programs: Magic

Add a simple EDB to the program:

call(sg(1,X)).

call(sg(Z,Z1)):-delta_call(sg(X1,X)),p(X,Z).

sg(X,Y):- delta_call(sg(X,Y)), X=Y.

sg(X,Y):- delta_call(sg(X,Y)),

p(X,Z),sg_t-1(Z,Z1),p(Y,Z1).

sg(X,Y):- call_t(sg(X,Y)),

p(X,Z),delta_sg(Z,Z1),p(Y,Z1).

p(1,3). p(1,4). p(2,3). p(2,4).

• Iteration 0: call(sg(1, Y )) added (magic seed).

• Iteration 1: sg(1, 1), call(sg(3, Y )), call(sg(4, Y )) added.

• Iteration 2: sg(3, 3), sg(4, 4) added.

• Iteration 3: sg(1, 2), sg(1, 1) each derived twice, sg(1, 2) added.

• Iteration 4: Fixpoint.

23



Definite Programs: Grammars

Consider the grammar

expr --> expr + term

expr --> term

term --> term * factor

term --> factor

factor --> ( expr )

factor --> integer(Int)
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Definite Programs: Grammars

A translation into Prolog-style DCGs.

expr --> term, addterm.

addterm --> [].

addterm --> [+], expr.

term --> factor, multfactor.

multfactor --> [].

multfactor --> [*], term.

factor --> [I], {integer(I)}.

factor --> [’(’], expr, [’)’].

• the programmer has executed left-recursion
elimination and left-factoring.

• grammar now has right-associative operators rather
than the left-associative operators of the original
grammar.
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Definite Programs: Grammars

The same grammar using tabling.

:- table expr/2, term/2.

expr --> expr, [+], term.

expr --> term.

term --> term, [*], factor.

term --> factor.

factor --> [’(’], expr, [’)’].

factor --> [Int], {integer(Int)}.

• Syntactic variant of original grammar.

• Has no associativity problem
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Definite Programs: Grammars

• Applying tabling to a DCG grammar can effec-
tively give Earley Parsing [41]

– Supplementary Tabling (Supplementary Magic)
can convert the grammar to Chomsky Normal
Form1.

• Earley Parsing of grammars in Chomsky Normal
Form takes at most O(N3) for ambiguous gram-
mars; at most O(N2) for unambiguous gram-
mars; and is linear for a large class of grammars.

• Additional optimizations such as Left Factoring
can be performed by CRA optimizations as de-
scribed in [30].

1Implementing Earley’s Dotted Rules.
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Definite Programs: Grammars

• It is efficient to represent sentences in Datalog
when using tabling (see below in Implementa-
tion).

’C’(every,0,1).

’C’(man,1,2).

’C’(loves,2,3).

’C’(a,3,4).

’C’(woman,4,5).

• Tabling (and Earley Parsing) offer useful com-
plexity advantages for other grammatical formalisms
such as categorial grammars [1].
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Definite Programs:
Dynamic Programming

The minimum edit distance problem: find the min-
imum number of insertions, deletions, or replace-
ments to turn one string into another.

:- table med/3.

med(0,0,0).

med(0,M,M) :- M > 0.

med(N,0,N) :- N > 0.

med(N,M,C) :- N > 0, M > 0,

N1 is N-1, M1 is M-1,

med(N1,M,C1), C1a is C1+1,

med(N,M1,C2), C2a is C2+1,

med(N1,M1,C3),

a(N,A), b(M,B),

(A==B -> C3a=C3; C3a is C3+1),

min(C1a,C2a,Cm1), min(Cm1,C3a,C).

• c.f. [65] pg. 153–154 for an equivalent imperative
solution.
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Definite Programs: Dynamic
Programming

Solutions to med/3 recursively create a M × N

array:
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Definite Programs:
Dynamic Programming

The knap-sack problem:

Given n items, each of integer size ki (1 ≤ i ≤ n),
and a knap-sack size K.

• determine whether there is a subset of the items
that sums to K.

• Find such a subset.
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Definite Programs:
Dynamic Programming

A Prolog solution to the knapsack problem.

ks(0,0).

ks(I,K) :- I>0,

I1 is I-1, ks(I1,K).

ks(I,K) :- I>0,

item_size(I,Ki),

K1 is K-Ki, K1 >= 0,

I1 is I-1, ks(I1,K1).

item_size(1,2).

item_size(2,3).

item_size(3,5).

item_size(4,6).

Worst-case comlexity is 2I .
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Definite Programs:
Dynamic Programming

A tabling solution to the knapsack problem.

:- table ks/2.

ks(0,0).

ks(I,K) :- I>0,

I1 is I-1, ks(I1,K).

ks(I,K) :- I>0,

item_size(I,Ki), K1 is K-Ki,

K1 >= 0, I1 is I-1,

ks(I1,K1).

item_size(1,2).

item_size(2,3).

item_size(3,5).

item_size(4,6).

Worst-case complexity is I2.
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Definite Programs:
Dynamic Programming

But how do you find the subset(s)?

ksp(0,0,[]).

ksp(I,K,P) :- I>0,

I1 is I-1,

ks(I1,K),

ksp(I1,K,P).

ksp(I,K,[I|P]) :- I>0,

item_size(I,Ki),

K1 is K-Ki, K1 >= 0,

I1 is I-1,

ks(I1,K1),

ksp(I1,K1,P).

• Note that ks/2 does not repeat computations.

• cf. [65] pg. 110 for an equivalent imperative
solution.
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Definite Programs:
Dynamic Programming

• Note that with the goal-orientation of tabling,
in certain problems it may not be necessary to
build an entire array. One such case occurs when
tabling is used in the Unification Factoring com-
piler optimization [29].

• [48] offers other approaches to dynamic program-
ming using tabling.
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Definite Programs: Applications

Program Analysis

• Expoits the ability of tabled evaluation to find
minimal models of definite programs

• General Strategy: Abstract Compilation (e.g.,
see [35, 53])

– From a given source (concrete) program, obtain an ab-
stract program.

– Concrete semantics of abstract program
≡ abstract semantics of concrete program.

– Evaluate abstract program using some complete eval-
uation strategy.
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Applications: Program Analysis

Example: Groundness Analysis (from [25])

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

⇓

g_append(g,Y,Y).

g_append(X1,Ys,Z1) :- iff(X1,X,Xs), iff(Z1,X,Zs),

g_append(Xs,Ys,Zs).

iff(g,g,g).

iff(n,n,n).

iff(n,n,g).

iff(n,g,n).

• Elegance of formulation (“specification-based”).

• Ease of implementation.

• Applies to imperative [85], functional [31] and
logic [25] program analysis.

• Efficient enough for simple logic and functional
program analysis [31] to be put in compilers.
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Applications: Program Analysis

Semantic equations can be expressed as metapro-
grams

Example: While programs

interp( S 1 ; S 2 ) --> interp(S 1), interp(S 2).

interp( if E then S t else S f ) --> expr eval(E, Val),

Val == true -> interp(S 1)

; interp(S 2).

interp( while E do S) --> expr eval(E, Val),

Val == true -> interp(S),

interp( while E do S)

; []

interp( X := E ) --> expr eval(E, Val),

store(Val, X).
...

expr eval( (E 1 + E 2) , Val) --> ...
...

38



Applications: Program Analysis

Generating abstract programs:

• Express abstract semantics as metaprograms

• Partially evaluate abstract semantic equations
wrt. input (concrete) program

39



Metaprogramming and Tabling

Power of combining metaprogramming with tabling
yields ability to express a variety of semantics.

Applications:

• Program analysis

•Model checking (see CCS, below)

• Constraint languages

• Knowledge representation (see Negation, below)
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Definite Programs:
Applications

CCS as a Horn Program: (Y.S. Ramakrishna)

:- table trans/3.

% Prefix: Act.P Act-> P

trans(pref(Act, P), Act, P).

% Choice: P = P1 + P2

trans(choice(P, _Q), Act_a, P1) :-trans(P, Act_a, P1).

trans(choice(_P, Q), Act_a, Q1) :-trans(Q, Act_a, Q1).

% Parallel: P = Q | R

trans(par(P, Q), Act_a, par(P1, Q)) :-trans(P, Act_a, P1).

trans(par(P, Q), Act_a, par(P, Q1)) :-trans(Q, Act_a, Q1).

% Represent Coactions

trans(par(P, Q), tau, par(P1, Q1)) :-

trans(P, Act_a, P1), trans(Q, Act_b, Q1),

comp(Act_a, Act_b).

trans(par(P, Q), tau, par(P1, Q1)) :-

trans(P, Act_a, P1), trans(Q, Act_b, Q1),

comp(Act_b, Act_a).

% Restriction: P\L Act-> P1\L

trans(rest(P,L), Act_a, rest(P1,L)) :-

trans(P, Act_a, P1),legitimate_action(Act_a, L).

% Relabelling: P = Q [f]

trans(relab(P, Hom_f), Act_b, relab(P1, Hom_f)) :-

trans(P, Act_a, P1),map(Hom_f, Act_a, Act_b).
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% Transitive Redefinition

trans(P, Act_a, Q) :- def(P, R), trans(R, Act_a, Q).
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Applications: Program Analysis

• The previous meta-interpreter, when combined
with a model checking algorithm can be used for
verification of concurrent systems.

• Time and space utilization are roughly compa-
rable with special-purpose model checkers
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Definite Programs:
Topics in Definite Tabling

Recall that a tabled evaluation can be character-
ized by operations plus scheduling.

• Changes in Scheduling: Local and Breadth-First

• Changes in Operations: Checking for Variance
vs. Subsumption

44



Definite Programs:
Scheduling

Tabled evaluations have new subgoal operation
and answer resolution operation which must
be scheduled along with the program clause
resolution step of SLD.

• Can return answers as soon as they are derived,
or postpone their return.

• Can create a new tree as soon as there is a se-
lected literal for it, or postpone this operation.

• Prolog’s strategy is approximated by postponing
neither the return of answers or the creation of
new trees.

• Postponing answer return out of an SCC until
an SCC is completely evaluated gives local eval-
uation [45].

• Postponing both operations until the end of an
iteration, gives breadth-first evaluation, typi-

45



cal of semi-naive magic evaluations. (Joint work
with J. Freire).
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Definite Programs:
Tabling and Magic

Consider a tuple-at-a-time evaluation of same-generation
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Definite Programs:
Tabling and Magic

Now consider a set-at-a-time evaluation

In particular, this is how a semi-naive evaluation
would evaluate a magic-rewritten same-generation
program.
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Definite Programs:
Tabling and Magic

Relations have been often studied: [111], [18],
[103], [15], [106], [36].

• Asymptotically Equivalent: A version of magic
templates under naive evaluation is asymptot-
ically equivalent to a version of QSQR tabling
[97].

• Iteration Equivalent: A version of magic tem-
plates under semi-naive evaluation is asymptot-
ically iteration equivalent to a version of tabling
[45]. This means

– At each iteration a magic fact is added if a
new subgoal is called

– At each iteration a non-magic fact is derived
(added) if a new answer is derived (added).
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Definite Programs:
Tabling and Magic

• Tabling starts from resolution and is a program-
mer’s view of combining top-down and bottom-
up.

•Magic starts from semi-naive evaluation and is
a database query processor’s view of combining
top-down and bottom-up.

• Tabling captures disk-access methods of magic
via Breadth-First Tabling.

•Magic captures the dynamic dependencies of tabling
via Ordered Search [79]

• Both allow subsumption or variance of calls or
answers.

Reflections in a fun-house mirror?
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Definite Programs:
Operations

The operations mentioned before assumed a vari-
ant check for subgoals and answers. Alternately one
could use subgoal subsumption or answer subsump-
tion.

Consider the program

p(X):- p(f(X)).

p(a).

Minimal model is {p(a)}.

As previously defined, the tabling evaluation of a
query ?- p(X) would create an infinite number of
trees.

p(X),p(f(X)),p(f(f(X))),...

Subgoal subsumption addresses this problem.

51



Definite Programs:
Subgoal Subsumption

Definition 2 • new non-subsumed subgoal.
Given a node N with selected tabled literal B,
where B is not subsumed by a subgoal in F ,
create a new tree with root B.

Theorem 1 Let P be a program with a finite
model in which every predicate is tabled, and E
be an evaluation consisting of new non-subsumed
subgoal, program clause resolution, an-
swer resolution and completion. Then E
will correctly terminate after a finite number of
operations.

• Originally stated in [108] using OLDT formal-
ism.
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Definite Programs: Subgoal
Subsumption

• Subgoal Subsumption can also be of use for Dat-
alog programs

Consider a same-generation program.

sg(X,X).

sg(X,Y):- sg(Y,X).

sg(X,Y):- up(X,X1),sg(X1,X2),down(X2,Y).

53



Definite Programs:
Subgoal Subsumption

For the query sg(f, f )(X,Y ) the annotation is

sg(f,f)(X,X).

sg(f,f)(X,Y):- sg(f,f)(Y,X).

sg(f,f)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).

sg(b,f)(X,X).

sg(b,f)(X,Y):- sg(f,b)(Y,X).

sg(b,f)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).

sg(f,b)(X,X).

sg(f,b)(X,Y):- sg(b,f)(Y,X).

sg(f,b)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).
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Definite Programs: Answer Subsumption

Definition 3 • (non-subsuming) answer
resolution. Given an active node N with
selected literal B, resolve an answer A against
B if

– A that has not been previously used by N .

– A is not subsumed by any other answer in the
tree for B.

This tends to be most useful when subsumption
is used on a partial order other than that of terms.

• In the 3-valued information ordering true and
false are greater than undefined. Therefore, true
answers subsume undefined answers.

• Subsumption can be generalized to implication
for both subgoals and answers. In an appropriate
constraint domain

p(X) : (X > 2)⇒ p(X) : (X > 3)
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Definite Programs:
Answer Subsumption

Answer Subsumption models min and max ag-
gregate operators.

Example: find the shortest distance between two
people in the same generation.

sgi(X,X)(0).

sgi(X,Y)(I) :-

anc(X,Z),

subsumes(min)(sgi(Z,Z1),I1),

anc(Y,Z1), I is I1+1.

:- subsumes(min)(sgi(joan,carl),I).
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Variance vs. Subsumption

• Call Variance + Answer Variance gives
Prolog-style observables that are suitable for meta-
interpretation.

• Call Variance + Answer Subsumption is useful
for non-stratified negation. Call variance in non-
floundering programs avoids constructive nega-
tion. Answer subsumption is used to handle un-
certain answers.

• Call Subsumption is useful for minimal model
computations of definite or stratified programs.
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Tabling Programs with Negation

• Realistic programs use negation, how is negation
combined with tabling?

• Can the greater expressive power of tabling also
be used as a basis for a Logic Programming im-
plementations of Non-Monotonic Reasoning?

Intuition: The well-founded semantics (WFS) treats
all paths with infinite positive recursion as failed,
and all paths with infinite recursion through nega-
tion as undefined. Thus the loop-checking features
of tabling can be used to evaluate WFS.
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Negation

The following progam uses negation in a straight-
forward way, but may cause Prolog to go into an
infinite loop.

get_best_choices(Course,Teacher,Final):-

can_teach(Course,Initial_choice),

best_choice(Course,Initial_choice,Final_choice).

best_choice(Course,Teacher,Teacher):-

not better_choice(Course,Teacher).

best_choice(Course,Teacher,Final):-

just_as_good_choice(Course,Teacher,Other),

best_choice(Course,Other,Final).

better_choice(Course,Teacher):-

can_teach(Course,Teacher1),

not (Tearcher1 = Teacher),

rates(Course,Teacher1,Rank1),

rates(Course,Teacher,Rank),

Rank1 > Rank.

just_as_good_choice(Course,Teacher,Other):-

can_teach(Course,Other),

not (Other = Teacher),

rates(Course,Other,Rank1),

rates(Course,Teacher,Rank),
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Rank1 >= Rank.
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Negation:
Towards WFS through stratification
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Negation:
Towards WFS through stratification

Lower stratification classes are computed by

• Determining a dependency graph (DG)

• Determining whether components in the depen-
dency graph contain cycles through negation

Examples:

• Predicate Stratification [4]: single DG for entire
program, based on predicate dependencies.

• Local Stratification [75]: single DG for entire
(grounded) program, based on atom dependen-
cies.
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Negation:
Towards WFS through stratification
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Negation:
Towards WFS through stratification

The basic idea of forming a dependency graph and
checking for loops through negation is performed it-
eratively in the higher stratification classes such as
modular stratification [89] and weak stratification
[74]. We consider the highest of these, Dynamic
Stratification [76, 11] in detail.

• The power of Dynamic stratification can be seen
from the following theorem

Theorem 2 [76] A program is Dynamically
Stratified iff it has a two-valued well-founded
model.
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Negation:
Dynamic Stratification

Dynamic stratification iteratively finds an inter-
pretation I for a ground program, and reduces the
rest of the program with respect to I . Start with
I0 = ∅

Ah :- A1, ..., Am, not Am+1, ..., not An

• To determine positive facts find the least fixpoint
of the operator

– TI(T ) = {A : there is a clause B ← L1, ..., Ln

in P and a ground substitution θ such that
A = Bθ and for every 1 ≤ i ≤ n either Liθ

is true in I , or Liθ ∈ T};

• To determine negative facts, find the greatest

fixpoint of the operator

– FI(F ) = {A : for every clause B ← L1, ..., Ln

in P and a ground substitution θ such that
A = Bθ and there is some i (1 ≤ i ≤ n),
such that Liθ is false in I or Liθ ∈ F}.
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Negation

Consider the program:

p(b).

p(c) :- not p(a).

p(X) :- t(X,Y,Z), not p(Y), not p(Z).

t(a,b,a).

t(a,a,b).

the ground instantiation of this program is:

p(b).

p(c):- not p(a).

p(a) :- t(a,a,a), not p(a), not p(a).

p(a) :- t(a,a,b), not p(a), not p(b).

:

p(a) :- t(a,b,a), not p(b), not p(a).

:

p(c) :- t(c,c,c), not p(c), not p(c).

t(a,b,a).

t(a,a,b).
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Negation

The first partial model, I0 is ∅ so the operators
effectively work on the program

p(b).

p(c):- undef.

p(a) :- t(a,a,a), undef,undef.

p(a) :- t(a,a,b), undef,undef.

:

p(a) :- t(a,b,a), undef,undef.

:

p(c) :- t(c,c,c), undef,undef.

t(a,b,a).

t(a,a,b).

Whose fixpoint gives I1 in which

Itrue
1 = {p(b), t(a, a, b), t(a, b, a)}

are true and

I
false
1 = {t(a, a, a), t(a, a, c), ...}
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are false.
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Negation

Thus the second reduction is

p(c):- undef.

p(b).

t(a,b,a).

t(a,a,b).

Now Itrue
2 = Itrue

1 , while I
false
2 = I

false
1 ∪{p(a)},

and the third reduction is

p(c).

p(b).

t(a,b,a).

t(a,a,b).

Which adds p(c) to Itrue
3 . Further iterations will

not change I3, which is, in fact, a model for the
program.

• Any undefined literals at the end of this itera-
tive process may be said to be in the ultimate
stratum.
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Negation

The method just shown was pure bottom-up.

• To make it goal-oriented requires a notion of rel-
evance.

Assuming a left-to-right computation rule:

– In Prolog, relevant literals for a selected clause
belong to a failing prefix.

p(a) :- t(a,b,a), not p(b), not p(a).

– To get this dynamic stratification an evalua-
tion cannot view only a prefix.

p(a) :- t(a,a,b), not p(a), not p(a).

Are relevant literals all those in a body for a selected
clause?
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Negation
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Negation
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Negation
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Negation

These operations can be expressed in SLG-style
terminology as follows:

• negative return Given a node N :

Answer template← Delay list|not B,Goal list

where B is true in F create a failure node as the
child of B. If B is failed, create a unique child

Answer template← Delay list|Goal list

with appropriate status.

• delay Given a node N :

Answer template← Delay list|not B,Goal list

delay evaluation of not B by creating a child of
N :

Answer template← not B,Delay list|Goal list

• simplification Given an answer A whose de-
lay list contains a literal L, if L is true in F ,
remove L from the delay list of A. If L is false
in F , remove A from the table.
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Negation

Is this programming or specification?

Left-to-right dynamic stratification allows only fail-
ing prefixes

• FMi
(F ) = {A : for every clause B ← L1, ..., Ln

in P and a ground substitution θ such that A =
Bθ and (1) is some i (1 ≤ i ≤ n), such that
Liθ is false in Mi or Liθ ∈ F ; (2) there exists
a failing prefix: for all j (1 ≤ j ≤ i − 1), Ljθ

is true in I}.

By adjusting the operations of SLG, a tabling
strategy SLGRD can be formulated with the fol-
lowing property.

Theorem 3 [94] Given a ground program P , an
SLGRD evaluation will only delay on encounter-
ing a literal in the ultimate left-to-right dynamic
stratum.

We conjecture that a similar theorem is possible
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for other formalisms such as Well-Founded Ordered
Search [101].
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Meta-Interpreting in WFS

To meta-interpret a program with loops, table the
meta-interpreter.

:- table demo/1.

demo(true).

demo(’,’(A,B)):- !,demo(A),demo(B).

demo(not A):- !,not demo(A).

demo(A):- clause(A,B),demo(B).

• Note Use of cuts with tabled predicates
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Negation

A meta-interpreter for well-founded semantics with
explicit negation (WFSX) [3]

demo(_)(true).

demo(X)(’,’(A,B)):-!,

demo(X)(A),demo(X)(B).

demo(t)(not(A)):-!, not(demo(tu)(A)).

demo(tu)(not(A)):-!, not(demo(t)(A)).

demo(t)(A):- rule(A,B), demo(t)(B).

demo(tu)(A):- rule(A,B), demo(tu)(B),

exchange(A,A_opp),demo(tu)(not(A_opp)).

exchange(-B,B):-!.

exchange(B,-B).

• Note use of Hilog and Tabling
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Negation

Similar meta-interpreters transformations can be
performed for

• Head-Cycle Free Disjunctive Logic Programs [10]

• Generalized Horn Programs [12]

• Extended Databases [117, 109]

• Imex Negation [56]

• A restriction to WFS of the action language A
[47].

Tabling can also be used as a preprocessor for
stable model computations.
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Negation

An Extended Logic Program (C. Damasio)

perforation(X) <-

sudden_pain(X),abd_tenderness(X),

peritoneal_irritation(X),

not_believed high_amylase(X).

pancreatitis(X) <-

sudden_pain(X),abd_tenderness(X),

peritoneal_irritation(X),

not_believed jobert(X).

-nourish(X) <- perforation(X).

-nourish(X) <- pancreatitis(X).

h2_antagonist(X) <- pancreatitis(X).

h2_antagonist(X) <- perforation(X).

surgery_indication(X) <- perforation(X).

-surgery_indication(X) <- pancreatitis(X).
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anesthesia(X) <- surgery_indication(X).
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Negation

Suppose a patient comes in with

sudden_pain(patient) <- true.

abd_tenderness(patient) <- true.

peritoneal_irritation(patient) <- true.

A paraconsistent model is derived

• Indications are contradictory. The patient has
both a perforation and pancreatitis. As a result,
there is an indication for surgery and an indica-
tion against.

• Nonetheless, the patient should be given h2 antagonists
and should not be nourished.
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Negation

Suppose an amylase test is performed and comes
back high.

Then the belief in the perforation will be with-
drawn, as will the surgery indication.

Alternatively, suppose the user did not want to
make an epistimological commitment about Jobert’s
Syndrome. Define:

jobert <- unknown.

where

unknown <- not unknown.

• pancreatitis(patient) would therefore have
truth-value unknown.

• The delayed clause would be

pancreatitis(patient):- believed not jobert.

There are four truth values to use: true, false, both
and neither.
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Implementation of Tabling

Some Implementations of Tabling

• Semi-Naive Model: Coral, Aditi, LDL, LogicBase

•WAM Model: Portable SLG, XSB2,

[81] provides a relatively recent survey.

Currently:

• Systems based on the WAM model are about an
order of magnitude faster for in-memory data,
and have a tighter integration with Prolog.

• Systems based on the semi-naive model have a
tighter integration with disk.

2Tabling features in XSB were implemented by J. Freire and P. Rao
along with the authors.
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Implementation of Tabling

Features necessary for tabling (from a Prolog per-
spective).

•Mechanism to suspend and resume a computa-
tion

•Mechanism to access tables

•Mechanism to detect (incremental) completion

•Mechanism to handle undefined literals in a clause
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Implementation of Tabling

Issue: Suspension and Resumption of subgoals.

• Suspension is used to wait for answers, to wait
for information about a negative subgoal or to
delay the start of a new tree.

• Resuming is necessary to return answers, to re-
turn information about a negative goal, or to
create a tree for a suspended subgoal.

The various tabling strategies — batched, local,
breadth-first — are reflected at the implementa-
tion level by suspending and resuming computation
paths. Semi-naive can also be seen as a particular
way to suspend and resume computations.

• A WAM-based strategy can resume suspended
environments by

– re-executing a computation path; or

– restoring a computation path using a forward
trail.
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Implementation of Tabling:
Table Access Mechanisms

• Subgoal Check/Insert

– Tabling: new (non-subsuming) subgoal

– Magic: Creating a delta set of magic facts

• Answer Check/Insert

– Tabling: Interning an answer in the table

– Magic: Creating a delta set of non-magic facts

• Answer Backtracking

– Tabling: (non-subsuming) answer
resolution

– Magic: Joining a delta set of magic or
non-magic facts.

Examples of Implementation Structures

• Coral uses hash-consed values for ground terms.

• XSB uses tries (Implemented by P. Rao [84]).
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Implementation of Tabling:
Table Access

rt(b,V,d) rt(a,g(b,c),c)

rt(a,f(a,b),a) rt(a,f(a,V),V)

Tries allow check/insert in a single pass and makes
the duplicate check nearly costless.
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Implementation of Tabling

Issue: How to incrementally complete a table.

• XSB uses a stack-based mechanism [21]

• Vanilla Magic uses a statically defined control
strategy.

• Ordered search uses a dynamic control strategy
[79]

Issue: How to handle unknown/undefined literals

• One issue involves dynamically changing the com-
putation rule

• A second issue involves representing atoms that
are neither true nor false.

• XSB implements delay and simplification [95]

•WFOS [101] uses the Alternating Fixpoint of
[113]
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Implementation of Tabling:
Optimizations

• Tabling is weak for acyclic right-recursive queries

Left:

ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- ancestor(X,Z),parent(Z,Y).

Right:

ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- parent(X,Z),ancestor(Z,Y).

What if parent is a chain of length N?

Then N calls:

a(1,X), a(2,X), a(3,X),...,a(n,X)

But O(N2) answers

a(1,2),a(1,3),a(1,4),...,a(1,n)

a(2,3),a(2,4),...,a(2,n)

a(3,4),...,a(3,n)

:

a(n-1,n)
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Implementation of Tabling:
Optimizations

Approaches to right recursion problem

• If the recursion is acyclic and non-repeating, use
SLD!

• Use Tail-recursion optimization to only return
answers to the original query. Linear in number
of answers in this example. [88], [16].

• Transform right recursion into left recursion if
possible, using NRSU-factoring [70].

– This strategy works for right recursion under
all query forms, but does not work for in-
stance, for same generation or for the right
recursions in the CCS example.
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Implementation of Tabling
Copy Avoidance

Structural recursion is acyclic for Prolog-style terms

append([],L,L).

append([H|T].L,[H|T1]):- append(T.L,T1).

which can be seen to have a right recursive form:

append([],L,L).

append(Term.L,[H|T1]):- cons(Term,H,T),append(T.L,T1).

Consider the query

append([a,b,X],[c],Y).

The following queries are made

append([a,b,X],[c],Y).

append([b,X],[c],Y).

append([X],[c],Y).

append([],[c],Y).

Still quadratic in the size of the first argument if
you must copy from execution area to table. Other
possible solutions:

• Intern Ground Structures in Table
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• Can, in principle, use structure-sharing techniques
for non-ground terms. [33] [104].
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Implementation of Tabling

join(X,Y):-

supplemental(X,X2),rel_3(X2,Y).

supplemental(X,X2):-

rel_1(X,X1),rel_2(X1,X2).

Where join/2 and supplemental/2 are tabled,
may be more efficient than

join(X,Y):-

rel_1(X,X1),rel_2(X1,X2),rel_3(X2,Y).

• A simple optimization consists of folding EDB
predicates into new tabled predicates. This is
called Supplemental Magic Sets [8] or Supple-
mental Tabling.

• Both rediscover Earley’s observation that the com-
plexity of grammar processing is proportional to
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the number of non-terminals on the RHS of a
production [41].
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Summary

• Tabling and Magic are usually different formula-
tions of the same algorithms. Tabling thus pro-
vides a potential way to peform disk access effi-
ciently from a logic program.

• Tabling can be tightly coupled with Prolog, so
that it is possible to program with tabling

• Tabling provides a proper computational basis
for certain forms of Non-monotonic reasoning.

• Tabling adds power to logic programming in ad-
dressing important application areas such as pro-
gram verification, execution of program analy-
sis, grammar-processing, and reasoning for intel-
ligent agents.
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11. (answer) p(b,c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

7a. p(b,Z)

10. (interior) p(b,c) :- q(c)

q(a).  q(b).  q(c).

e(a,b).  e(a,d).  e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.Subgoal Answers

p(a,Z)

p(b,c)p(b,Z)

p(a,b)

6.fail

0. p(a,Z)

7. (active) p(a,Z):- p(b,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)
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q(a).  q(b).  q(c).

e(a,b).  e(a,d).  e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.

16. fail16a. fail

6.fail19. fail

7a. p(b,Z)

0. p(a,Z)

13a. p(c,Z)

11. (answer) p(b,c)

10. (interior) p(b,c) :- q(c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

13. (active) p(b,Z) :- p(c,Z)

p(c,Z) :- p(c,Y),p(Y,Z)
14. (active) 15. (interior)

p(c,Z) :- e(c,Y),q(Y)

p(a,Z) :- p(c,Z)
18. (active)7. (active) p(a,Z):- p(b,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)12. (answer) p(a,c)

17. fail

Subgoal Answers

p(a,Z) p(a,b)
p(a,c)

p(b,c)p(b,Z)

p(c,Z)

106



17. fail

6.fail19. fail 4. (answe) p(a,b)

16a. fail 16. fail

10. (interior) p(b,c) :- q(c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

13. (active) p(b,Z) :- p(c,Z)

15. (interior)p(c,Z) :- e(c,Y),q(Y)p(c,Z) :- p(c,Y),p(Y,Z)14. (active)

11. (answer) p(b,c)

3. (interior) p(a,b) :- q(b) 5. (interior) p(a,d) :- q(d)

2. (interior) p(a,Z) :- e(a,Z),q(Z)1. (active) p(a,z):- p(a,Y),p(Y,Z)

18. (active)
p(a,Z) :- p(c,Z)

7. (active) p(a,Z):- p(b,Z)

12. (answer) p(a,c)

13a. p(c,Z)

7a. p(b,Z)

0. p(a,Z)
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1

1 2 3 4

2

3

1 1 2 3

2

3 3

2 1 3

2 2

b

e

g

ba e t

sg(X,Y):- p(X,Z1),sg(Z1,Z),p(Y,Z).

sg(X,X).

p(1,3) p(1,4)

p(2,3). p(2,4).

sg(1,Y) sg(1,1)

sg(1,2)

sg(2,Y)

sg(3,Y)

sg(2,2)

sg(3,3)

AnswersSubgoals 

0. sg(1,Y)

1. sg(1,1) 2. sg(1,Y):-p(1,Z1),sg(Z1,Z),p(Y,Z)

3.  sg(1,Y):-sg(3,Z),p(Y,Z)

5.  sg(1,Y):-p(Y,4)

6.  sg(1,2) 7. sg(1,1)

9. sg(1,Y):-sg(4,Z),p(Y,Z)

12. sg(1,2) 12. sg(1,1)

11. sg(1,Y):-p(Y,4)

fail fail fail

4. sg(3,3)
sg(Z1,Z),p(Y,Z)

3. sg(3,Y)

8. sg(3,Y):-p(3,Z1)

10. sg(4,4)
sg(Z1,Z),p(Y,Z)

9. sg(4,Y)

13 sg(4,Y):-p(4,Z1)

fail

fail
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sg(1,Y) sg(1,1)

sg(1,2)

sg(2,Y)

sg(3,Y)

sg(2,2)

sg(3,3)

AnswersSubgoals 

0. sg(1,Y)

1. sg(1,1) 1. sg(1,Y):-p(1,Z1),sg(Z1,Z),p(Y,Z)

1. sg(1,Y):-sg(4,Z),p(Y,Z)1. sg(1,Y):-sg(3,Z),p(Y,Z)

3. sg(1,Y):-p(Y,4) 3. sg(1,Y):-p(Y,4)

3. sg(1,1) 3. sg(1,2) 3. sg(1,1)3. sg(1,2)

sg(Z1,Z),p(Y,Z)

sg(Z1,Z),p(Y,Z)

2. sg(3,Y)

2. sg(4,Y)

2. sg(3,3) 2. sg(3,Y):-p(3,Z1)

2. sg(4,4) 2. sg(4,Y):-p(4,Z1)
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lr-dynamically stratified weakly stratified

dynamically stratifed

(lr)-modularly stratified

lr-weakly stratified

locally stratifed

predicate stratified

110



just_as_good_choice/3

get_best_choices/3

better_choice/3

can_teach/2 rates/2

best_choice/3

demo(can_teach/2)

demo(better_choice/3)

demo(rates/2)

demo(best_choice/3)

demo(get_best_choices/3)

not

not

demo(ust_as_good_choice/3)
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p(c)

(suspended)  p(c):- not p(a)

p(a)

p(b)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):- 
t(a,a,b),not p(a), not p(b).

(suspended) p(a):- 
not p(a),not p(b)

(answer) p(b)
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p(c)

(suspended)  p(c):- not p(a)

p(a)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):- 
t(a,a,b),not p(a), not p(b).

(suspended) p(a):- 
not p(a),not p(b)

(answer)  p(c):- not p(a) |

(active) p(a):- 
not p(a) | not p(b)

fail

p(b)

(answer) p(b)
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p(c)

(suspended)  p(c):- not p(a)

p(a)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):- 
t(a,a,b),not p(a), not p(b).

(suspended) p(a):- 
not p(a),not p(b)

(active) p(a):- 
not p(a) | not p(b)

fail

p(b)

(answer) p(b)

(answer)  p(c)
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a b

f/2 g/2

b d

c

c

b

a

1

2 2

3

3 3 3

2.2

2.1 2.1

2.2

a V1

V1

V2
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