
Tabled Logic Programs: Principles,
Practice and Applications

C.R. Ramakrishnan
I.V. Ramakrishnan

Konstantinos Sagonas
Terrance Swift

David S. Warren

• Annotated version of Tutorial Slides presented at
Joint International Conference and Symposium
on Logic Programming, Bonn, Germany 1996.

1

Outline

•Motivation: Why is Tabling of General
Interest?

• Definite Programs:

– Algorithms

– Tabling Applications

• Normal Programs

– Algorithms

– Tabling Applications

• Implementation

2

Motivation

• Solves inadequacies of Prolog (SLDNF)

– Termination for e.g. Datalog programs
ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- ancestor(X,Z),parent(Z,Y).

– Redundant subcomputations
join(X,Y):-

supplemental(X,X2),rel_3(X2,Y).

supplemental(X,Y):-

rel_1(X,X1),rel_2(X1,Y).

rel1 rel2 rel3
(a,b) (b,e) (e,g)

(a,c) (c,e) (e,h)

(a,d) (d,f) (f,i)

In SLD resolution, 8 join operations are performed on the above

example, while if supplemental is tabled, there will be only 6

join operations. In extreme cases, redundant subcomputations can

lead to exponential data complexity for Prolog. (See the knap-

sack problem below). Tabling has polynomial data complexity for

datalog programs with negation.

3

Motivation

• Allows Logic Programming to be used with disk-
resident data.

– Aditi [112], Validity both have a set-at-a-time
interface to disk.

– A scheduling strategy for tabling is
iteration equivalent to semi-naive evaluation
of a magic program [44].

4

Motivation

• Tabling is applicable to programs with negation.
In fact, tabling can also handle loops through
negation. It thus can implement three-valued
semantics for negation such as the Well-Founded
Semantics [114]

– Allows logic programs to adequately handle
inconsistencies.

The village barber shaves everyone in the vil-
lage who does not shave himself [40].

shaves(barber,Person):-

villager(Person),

not shaves(Person,Person).

shaves(doctor,doctor).

villager(barber). villager(mayor).

villager(doctor).

– Allows logic programming systems to be used
to explore Knowledge Representation.

– Tabling as defined below for WFS has poly-
nomial data completity.

5

Motivation

• There has been a lot of research into it.

– Tabling and Related Research

∗ Formulation [41], [17], [108], [38], [60], [98],
[115], [120], [15], [14], [20], [22], [33], [19],
[105], [34], [94], [54], [110], [23], [27]

∗ Implementation and Systems [6], [116], [64],
[42], [2], [55], [82], [84], [106], [107], [93], [7],
[21], [43],[44], [96], [121], [45], [83], [95] [92],

∗ Optimizations [30]

6

Motivation

– Magic Sets and Related Research (e.g. Alexan-
der Method)

∗ Formulation [87], [5], [97],[111], [18], [69],
[67], [8], [59], [73], [103], [39], [49], [79], [9],
[101], [89] [66]

∗ Implementation and Systems [6], [24], [112],
[80], [99], [118], [119], [37], [48], [52], [68]

∗ Optimizations [78], [70],[90], [91],[88], [61],
[102], [51], [50], [104], [16]

• Bibliography is incomplete:

– it considers only formulations of evaluation
strategies and not general theories of Datalog,
updates, etc.

– Does not consider some newer areas such as
Tabling / Magic Sets and constraints.

7

Motivation

• Practical and Research Applications

– Parsing [72], [1], [63], [62]

– Program Analysis [71], [58], [57], [86], [31]

– Software Verification [100]

– Graphics and Data Visualization [46], [26]

– Diagnosis Systems [32], [28]

– Other [13], [77]

SQL3 Standard includes recursion.

8

Definite Programs

Many formulations of tabling are more or less equiv-
alent for definite programs.

• Earley Deduction (1970)

• Backchain Iteration (1981)

• OLDT (1986)

• Alexander Method (1986)

• SLD-AL (QSQR) (1986-1989)

•Magic Templates (1986-88)

• Extension Tables (1987)

• SLG (1993)

• Logic Push Down Automata (1994)

A Tabled Evaluation can be characterized by

Operations plus a Search Strategy.

9

Definite Programs

q(a). q(b). q(c).

e(a,b). e(a,d). e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.

6.fail

0. p(a,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)

Subgoal Answers

p(a,Z) p(a,b)

10

Definite Programs

11

Definite Programs

12

Definite Programs: Tabling

• The search strategy for that program was a tuple-
at-a-time strategy resembling Prolog’s [45].

• One derivation path (or tree) may need to con-
sume answers from another derivation path (or
tree)

•May be more than one answer for a given tabled
subgoal

13

Definite Programs: Tabling

For finite computations, a tabled evaluation can be
seen as a sequence of forests. Given a forest F a
new forest is determined by one of the following
operations.

Definition 1 • new subgoal. Given a node N with selected tabled

literal B, where B is not in F , create a new tree with root B.

• program clause resolution. Given a node N that is a root

node B, or has selected non-tabled literal B, resolve against B a pro-

gram clause that has not previously been used for resolution against

B in N .

• answer resolution. Given an active node N with selected literal

B, resolve an answer against B that has not been previously used for

resolution against B in N .

• completion If S is a set of subgoals that have been completely

evaluated remove all trees whose root is a subgoal in S.

Non-failure nodes have the form

Answer Template : −goal list

The status of a node — active, interior or an-
swer — is determined respectively by whether the

14

selected literal of the node is tabled, non-tabled, or
if the goal list is empty.

15

Definite Programs: Tabling

What does Completely Evaluated mean?

• A subgoal is completely evaluated iff it has all of
its possible answers.

• A subgoal S is completely evaluated when all
possible operations have been done on its nodes,
and the nodes of trees upon which S depends.

• A ground subgoal is completely evaluated when
an answer is derived for it.

Incremental Completion is necessary for efficient
evaluation of programs.

16

Definite Programs: Tabling

17

Definite Programs: Tabling

Subgoal Dependency Graph

p(a,Z)

p(b,Z)

p(c,Z)

Incremental Completion can be performed a SCC
at a time, or a set of SCCs at a time.

18

Definite Programs: Magic

Magic provides termination properties similar to
tabling, along with goal orientation. How is a pro-
gram evaluated using Magic?
Consider

sg(X,Y):- X=Y.

sg(X,Y):- p(X,Z),sg(Z,Z1),p(Y,Z1).

Magic usually assumes a bottom-up evaluation
strategy such as semi-naive. This strategy itera-
tively derives a delta set of previously underived
answers, and plugs these answers into appropriate
places in the program to create a new delta set.

19

Definite Programs: Magic

• Split program up into EDB and IDB.

• Add a filter to the beginning of each IDB clause
to make sure that whenever the clause is acti-
vated, it will have the same bindings as in a top-
down evaluation.

sg(X,Y):- call(sg(X,Y)), X=Y.

sg(X,Y):- call(sg(X,Y)),

p(X,Z),sg(Z,Z1),p(Y,Z1).

•Make sure that the proper calling filters are de-
rived.

call(sg(Z,Z1)):-call(sg(X1,X)),p(X,Z).

• Add a magic seed to represent the original query.

call(sg(1,X)).

This is only a simple version of magic.

20

Definite Programs: Magic

Perform a linear semi-naive rewrite of the magic
program:

call(sg(1,X)).

call(sg(Z,Z1)):-delta_call(sg(X1,X)),p(X,Z).

sg(X,Y):- delta_call(sg(X,Y)), X=Y.

sg(X,Y):- delta_call(sg(X,Y)),

p(X,Z),sg_t-2(Z,Z1),p(Y,Z1).

sg(X,Y):- call_t-1(sg(X,Y)),

p(X,Z),delta_sg(Z,Z1),p(Y,Z1).

• Each derived predicate can be thought of as consisting of a sequence

of the delta-sets produced at each iteration. Thus, the set of facts

available at the end of iteration t consists of the first t delta sets for

each predicate.

• At time t, the second rule will join calls first produced at time t − 1

(delta call/1) with appropriate sg/2 facts from t− 2.

21

• At time t, the third rule will join all calls produced by the end of t−1

with the sg/2 facts first produced at time t− 1.

22

Definite Programs: Magic

Add a simple EDB to the program:

call(sg(1,X)).

call(sg(Z,Z1)):-delta_call(sg(X1,X)),p(X,Z).

sg(X,Y):- delta_call(sg(X,Y)), X=Y.

sg(X,Y):- delta_call(sg(X,Y)),

p(X,Z),sg_t-1(Z,Z1),p(Y,Z1).

sg(X,Y):- call_t(sg(X,Y)),

p(X,Z),delta_sg(Z,Z1),p(Y,Z1).

p(1,3). p(1,4). p(2,3). p(2,4).

• Iteration 0: call(sg(1, Y)) added (magic seed).

• Iteration 1: sg(1, 1), call(sg(3, Y)), call(sg(4, Y)) added.

• Iteration 2: sg(3, 3), sg(4, 4) added.

• Iteration 3: sg(1, 2), sg(1, 1) each derived twice, sg(1, 2) added.

• Iteration 4: Fixpoint.

23

Definite Programs: Grammars

Consider the grammar

expr --> expr + term

expr --> term

term --> term * factor

term --> factor

factor --> (expr)

factor --> integer(Int)

24

Definite Programs: Grammars

A translation into Prolog-style DCGs.

expr --> term, addterm.

addterm --> [].

addterm --> [+], expr.

term --> factor, multfactor.

multfactor --> [].

multfactor --> [*], term.

factor --> [I], {integer(I)}.

factor --> [’(’], expr, [’)’].

• the programmer has executed left-recursion
elimination and left-factoring.

• grammar now has right-associative operators rather
than the left-associative operators of the original
grammar.

25

Definite Programs: Grammars

The same grammar using tabling.

:- table expr/2, term/2.

expr --> expr, [+], term.

expr --> term.

term --> term, [*], factor.

term --> factor.

factor --> [’(’], expr, [’)’].

factor --> [Int], {integer(Int)}.

• Syntactic variant of original grammar.

• Has no associativity problem

26

Definite Programs: Grammars

• Applying tabling to a DCG grammar can effec-
tively give Earley Parsing [41]

– Supplementary Tabling (Supplementary Magic)
can convert the grammar to Chomsky Normal
Form1.

• Earley Parsing of grammars in Chomsky Normal
Form takes at most O(N3) for ambiguous gram-
mars; at most O(N2) for unambiguous gram-
mars; and is linear for a large class of grammars.

• Additional optimizations such as Left Factoring
can be performed by CRA optimizations as de-
scribed in [30].

1Implementing Earley’s Dotted Rules.

27

Definite Programs: Grammars

• It is efficient to represent sentences in Datalog
when using tabling (see below in Implementa-
tion).

’C’(every,0,1).

’C’(man,1,2).

’C’(loves,2,3).

’C’(a,3,4).

’C’(woman,4,5).

• Tabling (and Earley Parsing) offer useful com-
plexity advantages for other grammatical formalisms
such as categorial grammars [1].

28

Definite Programs:
Dynamic Programming

The minimum edit distance problem: find the min-
imum number of insertions, deletions, or replace-
ments to turn one string into another.

:- table med/3.

med(0,0,0).

med(0,M,M) :- M > 0.

med(N,0,N) :- N > 0.

med(N,M,C) :- N > 0, M > 0,

N1 is N-1, M1 is M-1,

med(N1,M,C1), C1a is C1+1,

med(N,M1,C2), C2a is C2+1,

med(N1,M1,C3),

a(N,A), b(M,B),

(A==B -> C3a=C3; C3a is C3+1),

min(C1a,C2a,Cm1), min(Cm1,C3a,C).

• c.f. [65] pg. 153–154 for an equivalent imperative
solution.

29

Definite Programs: Dynamic
Programming

Solutions to med/3 recursively create a M × N

array:

30

Definite Programs:
Dynamic Programming

The knap-sack problem:

Given n items, each of integer size ki (1 ≤ i ≤ n),
and a knap-sack size K.

• determine whether there is a subset of the items
that sums to K.

• Find such a subset.

31

Definite Programs:
Dynamic Programming

A Prolog solution to the knapsack problem.

ks(0,0).

ks(I,K) :- I>0,

I1 is I-1, ks(I1,K).

ks(I,K) :- I>0,

item_size(I,Ki),

K1 is K-Ki, K1 >= 0,

I1 is I-1, ks(I1,K1).

item_size(1,2).

item_size(2,3).

item_size(3,5).

item_size(4,6).

Worst-case comlexity is 2I .

32

Definite Programs:
Dynamic Programming

A tabling solution to the knapsack problem.

:- table ks/2.

ks(0,0).

ks(I,K) :- I>0,

I1 is I-1, ks(I1,K).

ks(I,K) :- I>0,

item_size(I,Ki), K1 is K-Ki,

K1 >= 0, I1 is I-1,

ks(I1,K1).

item_size(1,2).

item_size(2,3).

item_size(3,5).

item_size(4,6).

Worst-case complexity is I2.

33

Definite Programs:
Dynamic Programming

But how do you find the subset(s)?

ksp(0,0,[]).

ksp(I,K,P) :- I>0,

I1 is I-1,

ks(I1,K),

ksp(I1,K,P).

ksp(I,K,[I|P]) :- I>0,

item_size(I,Ki),

K1 is K-Ki, K1 >= 0,

I1 is I-1,

ks(I1,K1),

ksp(I1,K1,P).

• Note that ks/2 does not repeat computations.

• cf. [65] pg. 110 for an equivalent imperative
solution.

34

Definite Programs:
Dynamic Programming

• Note that with the goal-orientation of tabling,
in certain problems it may not be necessary to
build an entire array. One such case occurs when
tabling is used in the Unification Factoring com-
piler optimization [29].

• [48] offers other approaches to dynamic program-
ming using tabling.

35

Definite Programs: Applications

Program Analysis

• Expoits the ability of tabled evaluation to find
minimal models of definite programs

• General Strategy: Abstract Compilation (e.g.,
see [35, 53])

– From a given source (concrete) program, obtain an ab-
stract program.

– Concrete semantics of abstract program
≡ abstract semantics of concrete program.

– Evaluate abstract program using some complete eval-
uation strategy.

36

Applications: Program Analysis

Example: Groundness Analysis (from [25])

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

⇓

g_append(g,Y,Y).

g_append(X1,Ys,Z1) :- iff(X1,X,Xs), iff(Z1,X,Zs),

g_append(Xs,Ys,Zs).

iff(g,g,g).

iff(n,n,n).

iff(n,n,g).

iff(n,g,n).

• Elegance of formulation (“specification-based”).

• Ease of implementation.

• Applies to imperative [85], functional [31] and
logic [25] program analysis.

• Efficient enough for simple logic and functional
program analysis [31] to be put in compilers.

37

Applications: Program Analysis

Semantic equations can be expressed as metapro-
grams

Example: While programs

interp(S 1 ; S 2) --> interp(S 1), interp(S 2).

interp(if E then S t else S f) --> expr eval(E, Val),

Val == true -> interp(S 1)

; interp(S 2).

interp(while E do S) --> expr eval(E, Val),

Val == true -> interp(S),

interp(while E do S)

; []

interp(X := E) --> expr eval(E, Val),

store(Val, X).
...

expr eval((E 1 + E 2) , Val) --> ...
...

38

Applications: Program Analysis

Generating abstract programs:

• Express abstract semantics as metaprograms

• Partially evaluate abstract semantic equations
wrt. input (concrete) program

39

Metaprogramming and Tabling

Power of combining metaprogramming with tabling
yields ability to express a variety of semantics.

Applications:

• Program analysis

•Model checking (see CCS, below)

• Constraint languages

• Knowledge representation (see Negation, below)

40

Definite Programs:
Applications

CCS as a Horn Program: (Y.S. Ramakrishna)

:- table trans/3.

% Prefix: Act.P Act-> P

trans(pref(Act, P), Act, P).

% Choice: P = P1 + P2

trans(choice(P, _Q), Act_a, P1) :-trans(P, Act_a, P1).

trans(choice(_P, Q), Act_a, Q1) :-trans(Q, Act_a, Q1).

% Parallel: P = Q | R

trans(par(P, Q), Act_a, par(P1, Q)) :-trans(P, Act_a, P1).

trans(par(P, Q), Act_a, par(P, Q1)) :-trans(Q, Act_a, Q1).

% Represent Coactions

trans(par(P, Q), tau, par(P1, Q1)) :-

trans(P, Act_a, P1), trans(Q, Act_b, Q1),

comp(Act_a, Act_b).

trans(par(P, Q), tau, par(P1, Q1)) :-

trans(P, Act_a, P1), trans(Q, Act_b, Q1),

comp(Act_b, Act_a).

% Restriction: P\L Act-> P1\L

trans(rest(P,L), Act_a, rest(P1,L)) :-

trans(P, Act_a, P1),legitimate_action(Act_a, L).

% Relabelling: P = Q [f]

trans(relab(P, Hom_f), Act_b, relab(P1, Hom_f)) :-

trans(P, Act_a, P1),map(Hom_f, Act_a, Act_b).

41

% Transitive Redefinition

trans(P, Act_a, Q) :- def(P, R), trans(R, Act_a, Q).

42

Applications: Program Analysis

• The previous meta-interpreter, when combined
with a model checking algorithm can be used for
verification of concurrent systems.

• Time and space utilization are roughly compa-
rable with special-purpose model checkers

43

Definite Programs:
Topics in Definite Tabling

Recall that a tabled evaluation can be character-
ized by operations plus scheduling.

• Changes in Scheduling: Local and Breadth-First

• Changes in Operations: Checking for Variance
vs. Subsumption

44

Definite Programs:
Scheduling

Tabled evaluations have new subgoal operation
and answer resolution operation which must
be scheduled along with the program clause
resolution step of SLD.

• Can return answers as soon as they are derived,
or postpone their return.

• Can create a new tree as soon as there is a se-
lected literal for it, or postpone this operation.

• Prolog’s strategy is approximated by postponing
neither the return of answers or the creation of
new trees.

• Postponing answer return out of an SCC until
an SCC is completely evaluated gives local eval-
uation [45].

• Postponing both operations until the end of an
iteration, gives breadth-first evaluation, typi-

45

cal of semi-naive magic evaluations. (Joint work
with J. Freire).

46

Definite Programs:
Tabling and Magic

Consider a tuple-at-a-time evaluation of same-generation

47

Definite Programs:
Tabling and Magic

Now consider a set-at-a-time evaluation

In particular, this is how a semi-naive evaluation
would evaluate a magic-rewritten same-generation
program.

48

Definite Programs:
Tabling and Magic

Relations have been often studied: [111], [18],
[103], [15], [106], [36].

• Asymptotically Equivalent: A version of magic
templates under naive evaluation is asymptot-
ically equivalent to a version of QSQR tabling
[97].

• Iteration Equivalent: A version of magic tem-
plates under semi-naive evaluation is asymptot-
ically iteration equivalent to a version of tabling
[45]. This means

– At each iteration a magic fact is added if a
new subgoal is called

– At each iteration a non-magic fact is derived
(added) if a new answer is derived (added).

49

Definite Programs:
Tabling and Magic

• Tabling starts from resolution and is a program-
mer’s view of combining top-down and bottom-
up.

•Magic starts from semi-naive evaluation and is
a database query processor’s view of combining
top-down and bottom-up.

• Tabling captures disk-access methods of magic
via Breadth-First Tabling.

•Magic captures the dynamic dependencies of tabling
via Ordered Search [79]

• Both allow subsumption or variance of calls or
answers.

Reflections in a fun-house mirror?

50

Definite Programs:
Operations

The operations mentioned before assumed a vari-
ant check for subgoals and answers. Alternately one
could use subgoal subsumption or answer subsump-
tion.

Consider the program

p(X):- p(f(X)).

p(a).

Minimal model is {p(a)}.

As previously defined, the tabling evaluation of a
query ?- p(X) would create an infinite number of
trees.

p(X),p(f(X)),p(f(f(X))),...

Subgoal subsumption addresses this problem.

51

Definite Programs:
Subgoal Subsumption

Definition 2 • new non-subsumed subgoal.
Given a node N with selected tabled literal B,
where B is not subsumed by a subgoal in F ,
create a new tree with root B.

Theorem 1 Let P be a program with a finite
model in which every predicate is tabled, and E
be an evaluation consisting of new non-subsumed
subgoal, program clause resolution, an-
swer resolution and completion. Then E
will correctly terminate after a finite number of
operations.

• Originally stated in [108] using OLDT formal-
ism.

52

Definite Programs: Subgoal
Subsumption

• Subgoal Subsumption can also be of use for Dat-
alog programs

Consider a same-generation program.

sg(X,X).

sg(X,Y):- sg(Y,X).

sg(X,Y):- up(X,X1),sg(X1,X2),down(X2,Y).

53

Definite Programs:
Subgoal Subsumption

For the query sg(f, f)(X,Y) the annotation is

sg(f,f)(X,X).

sg(f,f)(X,Y):- sg(f,f)(Y,X).

sg(f,f)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).

sg(b,f)(X,X).

sg(b,f)(X,Y):- sg(f,b)(Y,X).

sg(b,f)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).

sg(f,b)(X,X).

sg(f,b)(X,Y):- sg(b,f)(Y,X).

sg(f,b)(X,Y):-

up(X,X1),sg(b,f)(X1,X2),down(X2,Y).

54

Definite Programs: Answer Subsumption

Definition 3 • (non-subsuming) answer
resolution. Given an active node N with
selected literal B, resolve an answer A against
B if

– A that has not been previously used by N .

– A is not subsumed by any other answer in the
tree for B.

This tends to be most useful when subsumption
is used on a partial order other than that of terms.

• In the 3-valued information ordering true and
false are greater than undefined. Therefore, true
answers subsume undefined answers.

• Subsumption can be generalized to implication
for both subgoals and answers. In an appropriate
constraint domain

p(X) : (X > 2)⇒ p(X) : (X > 3)

55

Definite Programs:
Answer Subsumption

Answer Subsumption models min and max ag-
gregate operators.

Example: find the shortest distance between two
people in the same generation.

sgi(X,X)(0).

sgi(X,Y)(I) :-

anc(X,Z),

subsumes(min)(sgi(Z,Z1),I1),

anc(Y,Z1), I is I1+1.

:- subsumes(min)(sgi(joan,carl),I).

56

Variance vs. Subsumption

• Call Variance + Answer Variance gives
Prolog-style observables that are suitable for meta-
interpretation.

• Call Variance + Answer Subsumption is useful
for non-stratified negation. Call variance in non-
floundering programs avoids constructive nega-
tion. Answer subsumption is used to handle un-
certain answers.

• Call Subsumption is useful for minimal model
computations of definite or stratified programs.

57

Tabling Programs with Negation

• Realistic programs use negation, how is negation
combined with tabling?

• Can the greater expressive power of tabling also
be used as a basis for a Logic Programming im-
plementations of Non-Monotonic Reasoning?

Intuition: The well-founded semantics (WFS) treats
all paths with infinite positive recursion as failed,
and all paths with infinite recursion through nega-
tion as undefined. Thus the loop-checking features
of tabling can be used to evaluate WFS.

58

Negation

The following progam uses negation in a straight-
forward way, but may cause Prolog to go into an
infinite loop.

get_best_choices(Course,Teacher,Final):-

can_teach(Course,Initial_choice),

best_choice(Course,Initial_choice,Final_choice).

best_choice(Course,Teacher,Teacher):-

not better_choice(Course,Teacher).

best_choice(Course,Teacher,Final):-

just_as_good_choice(Course,Teacher,Other),

best_choice(Course,Other,Final).

better_choice(Course,Teacher):-

can_teach(Course,Teacher1),

not (Tearcher1 = Teacher),

rates(Course,Teacher1,Rank1),

rates(Course,Teacher,Rank),

Rank1 > Rank.

just_as_good_choice(Course,Teacher,Other):-

can_teach(Course,Other),

not (Other = Teacher),

rates(Course,Other,Rank1),

rates(Course,Teacher,Rank),

59

Rank1 >= Rank.

60

Negation:
Towards WFS through stratification

61

Negation:
Towards WFS through stratification

Lower stratification classes are computed by

• Determining a dependency graph (DG)

• Determining whether components in the depen-
dency graph contain cycles through negation

Examples:

• Predicate Stratification [4]: single DG for entire
program, based on predicate dependencies.

• Local Stratification [75]: single DG for entire
(grounded) program, based on atom dependen-
cies.

62

Negation:
Towards WFS through stratification

63

Negation:
Towards WFS through stratification

The basic idea of forming a dependency graph and
checking for loops through negation is performed it-
eratively in the higher stratification classes such as
modular stratification [89] and weak stratification
[74]. We consider the highest of these, Dynamic
Stratification [76, 11] in detail.

• The power of Dynamic stratification can be seen
from the following theorem

Theorem 2 [76] A program is Dynamically
Stratified iff it has a two-valued well-founded
model.

64

Negation:
Dynamic Stratification

Dynamic stratification iteratively finds an inter-
pretation I for a ground program, and reduces the
rest of the program with respect to I . Start with
I0 = ∅

Ah :- A1, ..., Am, not Am+1, ..., not An

• To determine positive facts find the least fixpoint
of the operator

– TI(T) = {A : there is a clause B ← L1, ..., Ln

in P and a ground substitution θ such that
A = Bθ and for every 1 ≤ i ≤ n either Liθ

is true in I , or Liθ ∈ T};

• To determine negative facts, find the greatest

fixpoint of the operator

– FI(F) = {A : for every clause B ← L1, ..., Ln

in P and a ground substitution θ such that
A = Bθ and there is some i (1 ≤ i ≤ n),
such that Liθ is false in I or Liθ ∈ F}.

65

Negation

Consider the program:

p(b).

p(c) :- not p(a).

p(X) :- t(X,Y,Z), not p(Y), not p(Z).

t(a,b,a).

t(a,a,b).

the ground instantiation of this program is:

p(b).

p(c):- not p(a).

p(a) :- t(a,a,a), not p(a), not p(a).

p(a) :- t(a,a,b), not p(a), not p(b).

:

p(a) :- t(a,b,a), not p(b), not p(a).

:

p(c) :- t(c,c,c), not p(c), not p(c).

t(a,b,a).

t(a,a,b).

66

Negation

The first partial model, I0 is ∅ so the operators
effectively work on the program

p(b).

p(c):- undef.

p(a) :- t(a,a,a), undef,undef.

p(a) :- t(a,a,b), undef,undef.

:

p(a) :- t(a,b,a), undef,undef.

:

p(c) :- t(c,c,c), undef,undef.

t(a,b,a).

t(a,a,b).

Whose fixpoint gives I1 in which

Itrue
1 = {p(b), t(a, a, b), t(a, b, a)}

are true and

I
false
1 = {t(a, a, a), t(a, a, c), ...}

67

are false.

68

Negation

Thus the second reduction is

p(c):- undef.

p(b).

t(a,b,a).

t(a,a,b).

Now Itrue
2 = Itrue

1 , while I
false
2 = I

false
1 ∪{p(a)},

and the third reduction is

p(c).

p(b).

t(a,b,a).

t(a,a,b).

Which adds p(c) to Itrue
3 . Further iterations will

not change I3, which is, in fact, a model for the
program.

• Any undefined literals at the end of this itera-
tive process may be said to be in the ultimate
stratum.

69

Negation

The method just shown was pure bottom-up.

• To make it goal-oriented requires a notion of rel-
evance.

Assuming a left-to-right computation rule:

– In Prolog, relevant literals for a selected clause
belong to a failing prefix.

p(a) :- t(a,b,a), not p(b), not p(a).

– To get this dynamic stratification an evalua-
tion cannot view only a prefix.

p(a) :- t(a,a,b), not p(a), not p(a).

Are relevant literals all those in a body for a selected
clause?

70

Negation

71

Negation

72

Negation

73

Negation

These operations can be expressed in SLG-style
terminology as follows:

• negative return Given a node N :

Answer template← Delay list|not B,Goal list

where B is true in F create a failure node as the
child of B. If B is failed, create a unique child

Answer template← Delay list|Goal list

with appropriate status.

• delay Given a node N :

Answer template← Delay list|not B,Goal list

delay evaluation of not B by creating a child of
N :

Answer template← not B,Delay list|Goal list

• simplification Given an answer A whose de-
lay list contains a literal L, if L is true in F ,
remove L from the delay list of A. If L is false
in F , remove A from the table.

74

Negation

Is this programming or specification?

Left-to-right dynamic stratification allows only fail-
ing prefixes

• FMi
(F) = {A : for every clause B ← L1, ..., Ln

in P and a ground substitution θ such that A =
Bθ and (1) is some i (1 ≤ i ≤ n), such that
Liθ is false in Mi or Liθ ∈ F ; (2) there exists
a failing prefix: for all j (1 ≤ j ≤ i − 1), Ljθ

is true in I}.

By adjusting the operations of SLG, a tabling
strategy SLGRD can be formulated with the fol-
lowing property.

Theorem 3 [94] Given a ground program P , an
SLGRD evaluation will only delay on encounter-
ing a literal in the ultimate left-to-right dynamic
stratum.

We conjecture that a similar theorem is possible

75

for other formalisms such as Well-Founded Ordered
Search [101].

76

Meta-Interpreting in WFS

To meta-interpret a program with loops, table the
meta-interpreter.

:- table demo/1.

demo(true).

demo(’,’(A,B)):- !,demo(A),demo(B).

demo(not A):- !,not demo(A).

demo(A):- clause(A,B),demo(B).

• Note Use of cuts with tabled predicates

77

Negation

A meta-interpreter for well-founded semantics with
explicit negation (WFSX) [3]

demo(_)(true).

demo(X)(’,’(A,B)):-!,

demo(X)(A),demo(X)(B).

demo(t)(not(A)):-!, not(demo(tu)(A)).

demo(tu)(not(A)):-!, not(demo(t)(A)).

demo(t)(A):- rule(A,B), demo(t)(B).

demo(tu)(A):- rule(A,B), demo(tu)(B),

exchange(A,A_opp),demo(tu)(not(A_opp)).

exchange(-B,B):-!.

exchange(B,-B).

• Note use of Hilog and Tabling

78

Negation

Similar meta-interpreters transformations can be
performed for

• Head-Cycle Free Disjunctive Logic Programs [10]

• Generalized Horn Programs [12]

• Extended Databases [117, 109]

• Imex Negation [56]

• A restriction to WFS of the action language A
[47].

Tabling can also be used as a preprocessor for
stable model computations.

79

Negation

An Extended Logic Program (C. Damasio)

perforation(X) <-

sudden_pain(X),abd_tenderness(X),

peritoneal_irritation(X),

not_believed high_amylase(X).

pancreatitis(X) <-

sudden_pain(X),abd_tenderness(X),

peritoneal_irritation(X),

not_believed jobert(X).

-nourish(X) <- perforation(X).

-nourish(X) <- pancreatitis(X).

h2_antagonist(X) <- pancreatitis(X).

h2_antagonist(X) <- perforation(X).

surgery_indication(X) <- perforation(X).

-surgery_indication(X) <- pancreatitis(X).

80

anesthesia(X) <- surgery_indication(X).

81

Negation

Suppose a patient comes in with

sudden_pain(patient) <- true.

abd_tenderness(patient) <- true.

peritoneal_irritation(patient) <- true.

A paraconsistent model is derived

• Indications are contradictory. The patient has
both a perforation and pancreatitis. As a result,
there is an indication for surgery and an indica-
tion against.

• Nonetheless, the patient should be given h2 antagonists
and should not be nourished.

82

Negation

Suppose an amylase test is performed and comes
back high.

Then the belief in the perforation will be with-
drawn, as will the surgery indication.

Alternatively, suppose the user did not want to
make an epistimological commitment about Jobert’s
Syndrome. Define:

jobert <- unknown.

where

unknown <- not unknown.

• pancreatitis(patient) would therefore have
truth-value unknown.

• The delayed clause would be

pancreatitis(patient):- believed not jobert.

There are four truth values to use: true, false, both
and neither.

83

Implementation of Tabling

Some Implementations of Tabling

• Semi-Naive Model: Coral, Aditi, LDL, LogicBase

•WAM Model: Portable SLG, XSB2,

[81] provides a relatively recent survey.

Currently:

• Systems based on the WAM model are about an
order of magnitude faster for in-memory data,
and have a tighter integration with Prolog.

• Systems based on the semi-naive model have a
tighter integration with disk.

2Tabling features in XSB were implemented by J. Freire and P. Rao
along with the authors.

84

Implementation of Tabling

Features necessary for tabling (from a Prolog per-
spective).

•Mechanism to suspend and resume a computa-
tion

•Mechanism to access tables

•Mechanism to detect (incremental) completion

•Mechanism to handle undefined literals in a clause

85

Implementation of Tabling

Issue: Suspension and Resumption of subgoals.

• Suspension is used to wait for answers, to wait
for information about a negative subgoal or to
delay the start of a new tree.

• Resuming is necessary to return answers, to re-
turn information about a negative goal, or to
create a tree for a suspended subgoal.

The various tabling strategies — batched, local,
breadth-first — are reflected at the implementa-
tion level by suspending and resuming computation
paths. Semi-naive can also be seen as a particular
way to suspend and resume computations.

• A WAM-based strategy can resume suspended
environments by

– re-executing a computation path; or

– restoring a computation path using a forward
trail.

86

Implementation of Tabling:
Table Access Mechanisms

• Subgoal Check/Insert

– Tabling: new (non-subsuming) subgoal

– Magic: Creating a delta set of magic facts

• Answer Check/Insert

– Tabling: Interning an answer in the table

– Magic: Creating a delta set of non-magic facts

• Answer Backtracking

– Tabling: (non-subsuming) answer
resolution

– Magic: Joining a delta set of magic or
non-magic facts.

Examples of Implementation Structures

• Coral uses hash-consed values for ground terms.

• XSB uses tries (Implemented by P. Rao [84]).

87

Implementation of Tabling:
Table Access

rt(b,V,d) rt(a,g(b,c),c)

rt(a,f(a,b),a) rt(a,f(a,V),V)

Tries allow check/insert in a single pass and makes
the duplicate check nearly costless.

88

Implementation of Tabling

Issue: How to incrementally complete a table.

• XSB uses a stack-based mechanism [21]

• Vanilla Magic uses a statically defined control
strategy.

• Ordered search uses a dynamic control strategy
[79]

Issue: How to handle unknown/undefined literals

• One issue involves dynamically changing the com-
putation rule

• A second issue involves representing atoms that
are neither true nor false.

• XSB implements delay and simplification [95]

•WFOS [101] uses the Alternating Fixpoint of
[113]

89

Implementation of Tabling:
Optimizations

• Tabling is weak for acyclic right-recursive queries

Left:

ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- ancestor(X,Z),parent(Z,Y).

Right:

ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- parent(X,Z),ancestor(Z,Y).

What if parent is a chain of length N?

Then N calls:

a(1,X), a(2,X), a(3,X),...,a(n,X)

But O(N2) answers

a(1,2),a(1,3),a(1,4),...,a(1,n)

a(2,3),a(2,4),...,a(2,n)

a(3,4),...,a(3,n)

:

a(n-1,n)

90

Implementation of Tabling:
Optimizations

Approaches to right recursion problem

• If the recursion is acyclic and non-repeating, use
SLD!

• Use Tail-recursion optimization to only return
answers to the original query. Linear in number
of answers in this example. [88], [16].

• Transform right recursion into left recursion if
possible, using NRSU-factoring [70].

– This strategy works for right recursion under
all query forms, but does not work for in-
stance, for same generation or for the right
recursions in the CCS example.

91

Implementation of Tabling
Copy Avoidance

Structural recursion is acyclic for Prolog-style terms

append([],L,L).

append([H|T].L,[H|T1]):- append(T.L,T1).

which can be seen to have a right recursive form:

append([],L,L).

append(Term.L,[H|T1]):- cons(Term,H,T),append(T.L,T1).

Consider the query

append([a,b,X],[c],Y).

The following queries are made

append([a,b,X],[c],Y).

append([b,X],[c],Y).

append([X],[c],Y).

append([],[c],Y).

Still quadratic in the size of the first argument if
you must copy from execution area to table. Other
possible solutions:

• Intern Ground Structures in Table

92

• Can, in principle, use structure-sharing techniques
for non-ground terms. [33] [104].

93

Implementation of Tabling

join(X,Y):-

supplemental(X,X2),rel_3(X2,Y).

supplemental(X,X2):-

rel_1(X,X1),rel_2(X1,X2).

Where join/2 and supplemental/2 are tabled,
may be more efficient than

join(X,Y):-

rel_1(X,X1),rel_2(X1,X2),rel_3(X2,Y).

• A simple optimization consists of folding EDB
predicates into new tabled predicates. This is
called Supplemental Magic Sets [8] or Supple-
mental Tabling.

• Both rediscover Earley’s observation that the com-
plexity of grammar processing is proportional to

94

the number of non-terminals on the RHS of a
production [41].

95

Summary

• Tabling and Magic are usually different formula-
tions of the same algorithms. Tabling thus pro-
vides a potential way to peform disk access effi-
ciently from a logic program.

• Tabling can be tightly coupled with Prolog, so
that it is possible to program with tabling

• Tabling provides a proper computational basis
for certain forms of Non-monotonic reasoning.

• Tabling adds power to logic programming in ad-
dressing important application areas such as pro-
gram verification, execution of program analy-
sis, grammar-processing, and reasoning for intel-
ligent agents.

96

References

[1] E. Aarts. Investigations in Logic Language and Computation. PhD thesis, University of
Utrecht, 1995.

[2] J. Alferes, C. Damasio, and L. Pereira. SLX a top-down derivation procedure for programs
with explicit negation. In M. Bruynooghe, editor, Intl Logic Programming Symp, pages 424–
439, 1994.

[3] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic
reasoning. Journal of Automated Reasoning, 1995.

[4] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 19–88. Morgan
Kaufmann, 1988.

[5] F. Banchilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In PODS. ACM, 1986.

[6] F. Banchilhon and R. Ramakrishnan. An amateur’s introduction to recursive query processing
strategies. In Proc. of SIGMOD 1986 Conf., pages 16–52. ACM, 1986.

[7] J. Barklund. Tabulation of functions in logic programs. Technical report, Uppsala University,
1995.

[8] C. Beeri and R. Ramakrishnan. On the power of magic. J. Logic Programming, 10(3):255–299,
1991.

[9] C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Extending the well-founded
and valid semantics for aggregateion. In International Logic Programming Symposium, 1993.

[10] R. Ben-Eliahu and R. Dechter. Propositional semantics for disjunctive logic programs. In
Joint International Conference and Symposium on Logic Programming, 1992.

[11] N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic programs. Theo-
retical Computer Science, 78:85–112, 1991.

[12] H. Blair and V.S. Subrahmanian. Paraconsistent logic programming. Theoretical Computer
Science, 68:135–154, 1989.

[13] R. Bol. Loop checking in partial deduction. Journal of Logic Programming, 16:25–46, 1993.

[14] R. Bol and L. Degerstedt. Tabulated resolution for well-founded semantics. In Proc. of the
Symp. on Logic Programming, 1993.

[15] R. Bol and L. Degerstedt. The underlying search for magic templates and tabulation. In
Proc. of the Tenth Int’l Conf. on Logic Programming, pages 793–812, 1993.

97

[16] S. Brass. SLDMagic — an improved magic set technique. In B. Novikov and J. Schmidt,
editors, Advances in Databases and Information Systems, 1996.

[17] D.R. Brough and A. Walker. Some practical properties of logic programming interpreters.
In H. Aiso, editor, International Conference on FIfth Generation Computer Systems, pages
149–158, 1984.

[18] F. Bry. Query evaluation in recursive databases: Bottom-up and top-down reconciled. In
Deductive and Obkect-Oriented Databases, pages 25–44, 1990.

[19] W. Chen. Query evaluation of alternating fixpoint logic. Technical report, SMU, 1994.

[20] W. Chen and L. Adams. Constructive negation of general logic programs. Technical report,
SMU, 1994.

[21] W. Chen, T. Swift, and D.S. Warren. Efficient top-down computation of queries under the
well-founded semantics. J. Logic Programming, 24(3):161–199, September 1995.

[22] W. Chen and D.S. Warren. Computation of stable models and its integration with logical
query evaluation. IEEE Transactions on Knowledge and Data Engineering, 1995.

[23] Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20–74, January 1996.

[24] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL
system prototype. IEEE Transactions on Knowledge and Data Engineering, 2:76–89, 1990.

[25] M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional logic programs
and a Magic wand. In ILPS, pages 114–129. MIT Press, 1993. (To appear in JLP).

[26] M. Consens, A. Mendelzon, and D. Vista. Deductive database support for data visualization.
Technical report, U. Toronto, 1994.

[27] C. Damasio. Paraconsistency and Negation in Logic Programs. PhD thesis, Univ. Nova de
Lisboa, 1995.

[28] C. Damasio, W. Nejdl, L. Pereira, and M. Schroeder. Model-based diagnosis preferences and
strategies representation with logic meta-programming. 1995.

[29] S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Principles and practice of unification
factoring. ACM Transactions on Programming Languages and Systems, September 1996.

[30] S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and T. Swift. Optimizing clause res-
olution: Beyond unification factoring. In Proc. of the Int’l Logic Programming Symposium,
1995.

[31] S. Dawson, C.R. Ramakrishnan, and D.S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In ACM PLDI, 1996. To Appear.

98

[32] I. de Almeida Morá and J. Alferes. Modelling diagnosis systems with logic programming.
Technical report, Univ. Nova de Lisboa, 1995.

[33] E. Villemont de la Clergerie. Layer sharing: an improved structure-sharing framework. In
Proc. of the 20th. Symp. on Principles of Programming Languages, pages 345–359, 1993.

[34] E. Villemont de la Clergerie and B. Lang. Lpda: Another look at tabulation in logic pro-
gramming. In International Conference on Logic Programming, pages 470–488, 1994.

[35] S. Debray and D.S. Warren. Functional computations in logic programs. ACM TOPLAS,
11(3):451–481, July 1989.

[36] Lars Degerstedt and Ulf Nilsson. Magic Computation for Well-founded Semantics. In Jürgen
Dix, Luis Moniz Pereira, and Teodor C. Przymusinski, editors, Non-Monotonic Extensions of
Logic Programming, number 927 in LNAI, pages 181–204. Springer-Verlag, June 1994.

[37] M. Derr, S. Morishita, and G. Phipps. Design and implementation of the Glue-Nail database
system. In Proc. of the SIGMOD 1993 Conf., pages 147–156. ACM, 1993.

[38] S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, SUNY at Stony
Brook, 1987.

[39] F. Dong and L.V. Lakshmanan. Deductive databases with incomplete information. In Joint
International Conference and Symposium on Logic Programming, 1992.

[40] P. Dung. Negation as hypothesis: An abductive foundation for logic programming. In Inter-
national Logic Programming Conference, pages 1–17, 1991.

[41] Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

[42] C. Fan and S. Dietrich. Extension table built-ins for prolog. Software — Practice and Expe-
rience, 22:573–597, 1992.

[43] J. Freire, R. Hu, T. Swift, and D.S. Warren. Parallelizing tabled evaluation. In 7th Interna-
tional PLILP Symposium, pages 115–132. Springer-Verlag, 1995.

[44] J. Freire, T. Swift, and D.S. Warren. Treating I/O seriously: Resolution reconsidered for disk.
Technical report, SUNY at Stony Brook, 1995.

[45] J. Freire, T. Swift, and D.S. Warren. Beyond depth-first: Improving tabled logic programs
through alternative scheduling strategies. In 8th International PLILP Symposium. Springer-
Verlag, 1996.

[46] H. Gao. Declarative Picture Description and Interpretation in Logic. PhD thesis, Department
of Computer Science, SUNY at Stony Brook, 1993.

99

[47] M. Gelfond and V. Lifshitz. Representing actions in extended logic programming. In Joint
Int’l Conf and Symp on Logic Programming, pages 559–573, 1992.

[48] S. Greco, D. Sacca, and C. Zaniolo. Dynamic programming optimization for logic queries
with aggregates. In International Symposium on Logic Programming, pages 575–589, 1993.

[49] A. Gupta and I. Mumick. Magic sets transformations in non-recursive systems. In PODS,
pages 354–367, 1992.

[50] J. Han. Compilation and evaluation of linear mutual recursions. Information Sciences, 69:157–
183, 1993.

[51] J. Han and L. Liu. Efficient evaluation of multiple linear recursions. IEEE Transactions on
Software Engineering, 17(12):1241–1252, 1991.

[52] J. Han, L. Liu, and Z. Xie. LogicBase: A deductive database system prototype. Technical
report, Simon Fraser University, 1994.

[53] M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical compilation
tool. Journal of Logic Programming, 13(1,2,3 and 4):349–366, 1992.

[54] G. Janssens, M. Bruynooghie, and V. Dumortier. A blueprint for an abstract machine for the
abstract interpretation of (constraint) logic programs. In International Logic Programming
Symposium, pages 336–351, 1995.

[55] B. Jayaraman and K. Moon. Implementation of subset logic progrms. Technical report, Dept.
of Computer Science, SUNY Buffalo, 1994.

[56] C. Jonker. Constraints and Negations in Logic Programs. PhD thesis, Utrecht University,
1994.

[57] T. Kanamori. Abstract interpretation based on alexander templates. Journal of Logic Pro-
gramming, 15:31–54, 1993.

[58] T. Kanamori and T. Kawamura. Abstract interpretation based on oldt resolution. Journal of
Logic Programming, 15:1–30, 1993.

[59] D. Kemp and P. Stuckey. Semantics of logic programs with aggregates. In International Logic
Programming Symposium, pages 387–404, 1991.

[60] D. Kemp and R. Topor. Completeness of a top-down query evaluation procedure for stratified
databases. In Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages 178–194,
1988.

[61] David B. Kemp, Kotagiri Ramamohanarao, and Zoltan Somogyi. Right-, left- and multi-linear
rule transformations that maintain context information. In Proceedings of the 16th Conference
on Very Large Data Bases, pages 380–391, 1990.

100

[62] R. Larson, D. S. Warren, J. Freire, and K. Sagonas. Semantica. MIT Press, 1995. In
preparation.

[63] R. Larson, D. S. Warren, J. Freire, and K. Sagonas. Syntactica. MIT Press, 1995.

[64] Alexandre Lefebvre. Recursive aggregates in the eks-v1 system. Technical Report KB34,
ECRC, 1991.

[65] U. Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

[66] S. Morishita. An Extension of Van Gelder’s Alternating Fixpoint to Magic Programs. Journal
of Computer System Sciences, 52:506–521, June 1996.

[67] I. Mumick, S. Finklestein, R. Ramakrishnan, and H. Pirahesh. Magic conditions. In PODS,
1990.

[68] I. Mumick and H. Pirahesh. Implementation of Magic-sets in a Relational Database System.
In Proceedings of the ACM SIGMOD International Conference on the Management of Data,
pages 103–114, 1994.

[69] I. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of duplicates and aggregates. In
Proc. of the 16th Int’l Conf. on Very Large Data Bases, pages 264–277. VLDB End., 1990.

[70] J. Naughton, R. Ramakrishnan, Y. Sagiv, and J. Ullman. Argument reduction through
factoring. In Proc. of the 15th Int’l Conf. on Very Large Data Bases, pages 173–182. VLDB
End., 1989.

[71] Ulf Nilsson. Abstract interpretation: A kind of magic. In PLILP91, pages 299–310, 1991.

[72] F.C.N. Pereira and D.H.D. Warren. Parsing as deduction. In Proceedings of the 21st Annual
Meeting of the Association for Computational Linguistics, pages 137–144, 1983.

[73] G. Phipps, M. Derr, and K. Ross. Glue-Nail: A deductive database system. pages 308–317,
1991.

[74] H. Przymusinska and T. Przymusinski. Weakly perfect model semantics for logic programs. In
5th International Conference and Symposium on Logic Programming, pages 1106–1123, 1988.

[75] T.C. Przymusinski. On the declarative semantics of deductive databases and logic program-
ming. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 193–216. Morgan Kaufmann, 1988.

[76] T.C. Przymusinski. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS, pages 11–21, 1989.

[77] R. Ramakrishnan, editor. Applications of Logic Databases. Kluwer Academic Publishers,
1995.

101

[78] R. Ramakrishnan, C. Beeri, and R. Krishnamurthi. Optimizing existential datalog queries.
In Proc. of the ACM Symp. on Principles of Database Systems, pages 89–102. ACM, 1988.

[79] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in bottom-up
evaluation. In Proc. of the Joint Int’l Conf. and Symp. on Logic Programming, 1992.

[80] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Seshadri. Implemen-
tation of the CORAL Deductive Database System. In Proceedings of the ACM SIGMOD
International Conference on the Management of Data, pages 167–176, 1993.

[81] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive database systems. Journal
of Logic Programming, 23(2):125–149, 1995.

[82] R. Ramesh and W. Chen. A portable method of integrating SLG resolution into Prolog
systems. In Proc. of the Symp. on Logic Programming, 1994.

[83] P. Rao, C.R. Ramakrishnan, and I.V. Ramakrishnan. A thread in time saves tabling time. In
1996 Joint International Conference and Symposium on Logic Programming, 1996.

[84] P. Rao, I.V. Ramakrishnan, K. Sagonas, T. Swift, and D.S. Warren. Efficient table access
mechanisms for logic programs. In International Conference on Logic Programming, 1995. To
Appear.

[85] T. Reps. Demand interprocedural program analysis using logic databases. In R. Ramakrish-
nan, editor, Applications of Logic Databases. Kluwer Academic, 1994.

[86] T. Reps. Shape analysis as a generalized path problem. In ACM Symposium on Partial
Evaluation and Semantics-based Program Manipulation, pages 1–11. ACM Press, 1995.

[87] J. Rohmer, R. Lescoeur, and J. Kerisit. The Alexander method: a technique for the processing
of recursive atoms in deductive databases. New Generation Computing, 4:522–528, 1986.

[88] K. Ross. Modular acyclicity and tail recursion in logic programs. In Proc. of 10th PODS,
1991.

[89] K.A. Ross. Modular stratification and magic sets for datalog programs with negation. In
JACM, pages 1216–1266, 1994.

[90] D. Sacca and C. Zaniolo. The generalized counting method for recursive logic queries. Theo-
retical Computer Science, 62:187–220, 1989.

[91] Y. Sagiv. Is there anything better than magic? In Proc. of the 1990 North American
Conference, pages 235–254, 1990.

[92] K. Sagonas. The SLG-WAM: A Search-Efficient Engine for Well-Founded Evaluation of
Normal Logic Programs. PhD thesis, SUNY at Stony Brook, 1996.

102

[93] K. Sagonas, T. Swift, and D.S. Warren. XSB as an efficient deductive database engine. In
Proc. of SIGMOD 1994 Conf. ACM, 1994.

[94] K. Sagonas, T. Swift, and D.S. Warren. The limits of fixed-order computation. Technical
report, SUNY at Stony Brook, 1995.

[95] K. Sagonas, T. Swift, and D.S. Warren. An abstract machine for computing the well-founded
semantics. In Joint International Conference and Symposium on Logic Programming., 1996.

[96] K. Sagonas, T. Swift, and D.S. Warren. An abstract machine for fixed-order stratified pro-
grams. In Proc. of 13th Conference on Automated Deduction., 1996.

[97] H. Seki. On the power of Alexandrer templates. In Proc. of 8th PODS, pages 150–159. ACM,
1989.

[98] H. Seki and H. Itoh. A query evaluation method for stratified programs under the extended
CWA. In Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages 195–211, 1988.

[99] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of set terms in the logic data language
(LDL). Journal of Logic Programming, 12:89–119, 1992.

[100] S. Smolka, O. Sokolsky, and S. Zhang. Model checking in the modal µ-calculus. In IEEE
LICS, 1994.

[101] P. Stuckey and S. Sudarshan. Well-founded ordered search. In 13th conference on Foundations
of Software Technology and Theoretical Computer Science, pages 161–172, 1993.

[102] S. Sudarshan. Optimizing Bottom-up Query Evaluation for Deductive Databases. PhD thesis,
University of Wisconsin, 1992.

[103] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in deductive databases. In
Proc. of the 17th Int’l Conf. on Very Large Data Bases, pages 501–511. VLDB End., 1991.

[104] S. Sudarshan and R. Ramakrishnan. Optimizations of bottom-up evaluation with non-ground
terms. In Proc. of the Symp. on Logic Programming, 1993.

[105] T. Swift. Efficient Evaluation of Normal Logic Programs. PhD thesis, SUNY at Stony Brook,
1994.

[106] T. Swift and D. S. Warren. An abstract machine for SLG resolution: definite programs. In
Proceedings of the Symposium on Logic Programming, pages 633–654, 1994.

[107] T. Swift and D. S. Warren. Analysis of sequential SLG evaluation. In Proceedings of the
Symposium on Logic Programming, pages 219–238, 1994.

[108] H. Tamaki and T. Sato. OLDT resolution with tabulation. In Third Int’l Conf. on Logic
Programming, pages 84–98, 1986.

103

[109] F. Teusink. A proof procedure for extended logic programs. In International Logic Program-
ming Symposium, pages 235–249, 1993.

[110] D. Toman. Top-down beats bottom-up for constraint extensions of datalog. In International
Logic Programming Symposium, pages 98–115, 1995.

[111] J. Ullman. Bottom-up beats top-down for datalog. In Proc. of 8th PODS, pages 140–149.
ACM, 1989.

[112] J. Vaghani, K. Ramamohanorao, D. Kemp, Z. Somogyi, and P. Stuckey. Design overview
of the Aditi deductive database system. In Seventh Int’l Conf. on Data Engineering, pages
240–247, 1991.

[113] A. van Gelder. The alternating fixpoint of logic programs with negation. In Proc. of 8th
PODS, pages 1–10. ACM, 1989.

[114] A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for
general logic programs. JACM, 38(3):620–650, 1991.

[115] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,
69:1–53, 1989.

[116] L. Vieille, P. Bayer, V. Kuchenhoff, and A. Lefebvre. EKS-V1, a short overview. In AAAI-90
Workshop on Knowledge Base Management Systems, 1990.

[117] G. Wagner. Reasoning with inconsistency in extended deductive databases. In International
Workshop on Logic Programming and Non-Monotonic Reasoning, pages 300–315, 1994.

[118] A. Walker. The Syllog expert database system. Technical report, IBM, 1992.

[119] A. Walker. Backchain iteration: Towards a practical inference method that is simple enough
to be proved terminating, sound, and complete. J. Automated Reasoning, 11(1):1–23, 1993.
Originally formulated in New York University TR 34, 1981.

[120] D. S. Warren. Memoing for logic programs with applications to abstract interpretatino and
partial deduction. Communications of the ACM, 1992.

[121] J. Wunderwald. A portable implementation of memoing evaluation. In LOPSTR 95, 1995.

104

11. (answer) p(b,c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

7a. p(b,Z)

10. (interior) p(b,c) :- q(c)

q(a). q(b). q(c).

e(a,b). e(a,d). e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.Subgoal Answers

p(a,Z)

p(b,c)p(b,Z)

p(a,b)

6.fail

0. p(a,Z)

7. (active) p(a,Z):- p(b,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)

105

q(a). q(b). q(c).

e(a,b). e(a,d). e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

:- table p/2.

16. fail16a. fail

6.fail19. fail

7a. p(b,Z)

0. p(a,Z)

13a. p(c,Z)

11. (answer) p(b,c)

10. (interior) p(b,c) :- q(c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

13. (active) p(b,Z) :- p(c,Z)

p(c,Z) :- p(c,Y),p(Y,Z)
14. (active) 15. (interior)

p(c,Z) :- e(c,Y),q(Y)

p(a,Z) :- p(c,Z)
18. (active)7. (active) p(a,Z):- p(b,Z)

1. (active) p(a,z):- p(a,Y),p(Y,Z) 2. (interior) p(a,Z) :- e(a,Z),q(Z)

5. (interior) p(a,d) :- q(d)3. (interior) p(a,b) :- q(b)

4. (answe) p(a,b)12. (answer) p(a,c)

17. fail

Subgoal Answers

p(a,Z) p(a,b)
p(a,c)

p(b,c)p(b,Z)

p(c,Z)

106

17. fail

6.fail19. fail 4. (answe) p(a,b)

16a. fail 16. fail

10. (interior) p(b,c) :- q(c)

9. (interior) p(b,Z) :- e(b,Z),q(Z) 8. (active) p(b,Z) :- p(b,Y),p(Y,Z)

13. (active) p(b,Z) :- p(c,Z)

15. (interior)p(c,Z) :- e(c,Y),q(Y)p(c,Z) :- p(c,Y),p(Y,Z)14. (active)

11. (answer) p(b,c)

3. (interior) p(a,b) :- q(b) 5. (interior) p(a,d) :- q(d)

2. (interior) p(a,Z) :- e(a,Z),q(Z)1. (active) p(a,z):- p(a,Y),p(Y,Z)

18. (active)
p(a,Z) :- p(c,Z)

7. (active) p(a,Z):- p(b,Z)

12. (answer) p(a,c)

13a. p(c,Z)

7a. p(b,Z)

0. p(a,Z)

107

1

1 2 3 4

2

3

1 1 2 3

2

3 3

2 1 3

2 2

b

e

g

ba e t

sg(X,Y):- p(X,Z1),sg(Z1,Z),p(Y,Z).

sg(X,X).

p(1,3) p(1,4)

p(2,3). p(2,4).

sg(1,Y) sg(1,1)

sg(1,2)

sg(2,Y)

sg(3,Y)

sg(2,2)

sg(3,3)

AnswersSubgoals

0. sg(1,Y)

1. sg(1,1) 2. sg(1,Y):-p(1,Z1),sg(Z1,Z),p(Y,Z)

3. sg(1,Y):-sg(3,Z),p(Y,Z)

5. sg(1,Y):-p(Y,4)

6. sg(1,2) 7. sg(1,1)

9. sg(1,Y):-sg(4,Z),p(Y,Z)

12. sg(1,2) 12. sg(1,1)

11. sg(1,Y):-p(Y,4)

fail fail fail

4. sg(3,3)
sg(Z1,Z),p(Y,Z)

3. sg(3,Y)

8. sg(3,Y):-p(3,Z1)

10. sg(4,4)
sg(Z1,Z),p(Y,Z)

9. sg(4,Y)

13 sg(4,Y):-p(4,Z1)

fail

fail

108

sg(1,Y) sg(1,1)

sg(1,2)

sg(2,Y)

sg(3,Y)

sg(2,2)

sg(3,3)

AnswersSubgoals

0. sg(1,Y)

1. sg(1,1) 1. sg(1,Y):-p(1,Z1),sg(Z1,Z),p(Y,Z)

1. sg(1,Y):-sg(4,Z),p(Y,Z)1. sg(1,Y):-sg(3,Z),p(Y,Z)

3. sg(1,Y):-p(Y,4) 3. sg(1,Y):-p(Y,4)

3. sg(1,1) 3. sg(1,2) 3. sg(1,1)3. sg(1,2)

sg(Z1,Z),p(Y,Z)

sg(Z1,Z),p(Y,Z)

2. sg(3,Y)

2. sg(4,Y)

2. sg(3,3) 2. sg(3,Y):-p(3,Z1)

2. sg(4,4) 2. sg(4,Y):-p(4,Z1)

109

lr-dynamically stratified weakly stratified

dynamically stratifed

(lr)-modularly stratified

lr-weakly stratified

locally stratifed

predicate stratified

110

just_as_good_choice/3

get_best_choices/3

better_choice/3

can_teach/2 rates/2

best_choice/3

demo(can_teach/2)

demo(better_choice/3)

demo(rates/2)

demo(best_choice/3)

demo(get_best_choices/3)

not

not

demo(ust_as_good_choice/3)

111

p(c)

(suspended) p(c):- not p(a)

p(a)

p(b)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):-
t(a,a,b),not p(a), not p(b).

(suspended) p(a):-
not p(a),not p(b)

(answer) p(b)

112

p(c)

(suspended) p(c):- not p(a)

p(a)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):-
t(a,a,b),not p(a), not p(b).

(suspended) p(a):-
not p(a),not p(b)

(answer) p(c):- not p(a) |

(active) p(a):-
not p(a) | not p(b)

fail

p(b)

(answer) p(b)

113

p(c)

(suspended) p(c):- not p(a)

p(a)

(interior) p(a):- t(a,b,A),not p(b), not p(a).

(suspended) p(b):- not p(b), not p(a)

fail

(interior) p(a):-
t(a,a,b),not p(a), not p(b).

(suspended) p(a):-
not p(a),not p(b)

(active) p(a):-
not p(a) | not p(b)

fail

p(b)

(answer) p(b)

(answer) p(c)

114

a b

f/2 g/2

b d

c

c

b

a

1

2 2

3

3 3 3

2.2

2.1 2.1

2.2

a V1

V1

V2

115

