
Design Patterns for Tabled
Logic Programming

Terrance Swift
CENTRIA: Centro de Inteligência Artificial

Universidade Nova de Lisboa

International Conference on Applications of Declarative
Programming and Knowledge Management

• Present various tabling “patterns”

• Used as an organizing concept; not a means for automated software
engineering.ß

• “Vanilla” tabling -- query evaluation for definite programs

• Tabled negation for the well-founded and stable semantics

• Beyond query evaluation -- call subsumption for (sub-)model generation

• Beyond t,f,u -- answer subsumption for quantitative and para-
consistent programming

• State of the preceding features within XSB 3.2 (and 3.3 alpha)

Outline

The tabling methodology discussed in this talk was developed and
implemented by (in alphabetical order)

Luis de Castro, Baoqiu Cui, Steve Dawson,
Ernie Johnson, Juliana Freire, Michael Kifer,

Rui F. Marques, C.R. Ramakrishnan, I.V. Ramakrishnan,
Prasad Rao, Konstantinos Sagonas, Diptikalyan Saha,

Terrance Swift,
David S. Warren

Citations for most of the work discussed here can be found in
http://www.cs.sunysb.edu/~tswift/webpapers/tplp-submit.pdf

• Tabling changes the evaluation strategy of a logic
program -- sometimes dramatically

• This can ensure termination, and reduce (or
increase) complexity

• A more sophisticated evaluation strategy allows
more sophisiticated semantics to be implemented
more easily

Why Table?

Inadequacies of Prolog (SLDNF)
* Lack of termination for e.g. Datalog
programs

ancestor(X,Y):- ancestor(X,Z),parent(Z,Y).
ancestor(X,Y): -parent(X,Y).

* Although SLD is complete for all definite
programs, it may not terminate for all
bounded term-depth programs (e.g. Datalog
programs)

* The following slide shows an SLD search
tree for a query to ancestor/2 above

anc(X,Y):! anc(X,Z),par(Z,Y)

Y = 3

par(2,Y)

Y = 2par(1,X),par(X,Y)

anc(1,Z1),par(Z1,Z),par(Z,X),par(X,Y)

anc(1,Z),par(Z,X),par(X,Y)

par(1,Y)anc(1,X),par(X,Y)

anc(1,Y)

par(1,2). par(2,3). par(3,4). par(4,5).

anc(X,Y):! par(X,Y)

• The SLD tree contains all solutions but is
infinite

• Loop-checking could achieve termination, but
will not address complexity

Poor complexity, even when SLD terminates

sg(X,X).
sg(X,Y):- par(X,Z),sg(Z,Z1),par(Y,Z1).

Evaluating sg/2 with SLD will be
proportional to the number of paths in the
graph, rather than the number of edges

0. anc(1,Y):! anc(1,Y)

 par(2,3). par(3,4). par(4,5). par(1,2).

7. anc(1,4):!

6. anc(1,Y):! par(3,Y)

5. anc(1,3):!

4. anc(1,Y):! par(2,Y) 3. anc(1,2):!

2. anc(1,Y):! par(1,Y)1. anc(1,Y):! anc(1,X),par(X,Y)

Tabled evaluation of ancestor/2

* Tabling factors out repeated subcomputations by keeping track
of which (tabled) subgoals have been called. E.g repeated calls to

 anc(X,Y):- anc(X,Y),par(Z,Y)

* Computation of each tabled subgoal can be modeled as a
separate tree -- a computation is now a forest of trees

* A bounded term-depth (finite) program is simply one in which
the size of all subgoals and answers is bounded.

-- Such programs have a finite number of subgoals and
answers

* For comparison with ancestor/2, the next slide shows a more
general situation of sg/2

* The forest for ?- sg(1,X) would contain a tree similar to the
following for every node in the graph

sg(1,Y):! sg(1,Y)

sg(1,2):!sg(1,1):! sg(1,1):! sg(1,2):! sg(1,1):! sg(1,2):!sg(1,2):!sg(1,1):!

sg(1,1):!

sg(1,Y):! par(11,Y)sg(1,Y):! par(10,Y)sg(1,Y):! par(11,Y)sg(1,Y):! par(10,Y)

sg(1,Y):! sg(11,Z’),par(Z’,Y)sg(1,Y):! sg(10,Z’),par(Z’,Y)

sg(1,Y):! par(1,Z),sg(Z,Z’),par(Z’,Y)

The repeated computations are thus factored into n trees
-- though there is still some redundancy

But don’t table all predicates!

append([],L,L).
append([H|T],L,[H|T1]):- append(T,L,T1).

can be seen to have a right recursive form:

append([],L,L).
append(Term.L,[H|T1]):- cons(Term,H,T),append(T,L,T1).

The query: append([a,b,X],[c],Y) is quadratic in the size of
the goal in most implementations. It makes the subqueries

append([a,b,X],[c],Y).
append([b,X],[c],Y).
append([X],[c],Y).
append([],[c],Y).

* SLD(NF) is great for traversing Prolog terms -- which are
trees (when rational terms are not implemented)

* For programs like append/3, there is no redundancy to
factor, even if copying into the table was not an issue

* Tabling therefore augments Prolog -- it by no means replaces
SLDNF.

Left Recursion
 pred(...) :- pred(...),L1,...Ln.

Linear Recursion
 pred(...):- L1,...,LM-1,pred(...),LM+1,...,LN.

Non-Linear Recursion
 pred(...):-

 L1,...Lk-1,pred(...),Lk+1,...,LM-1,pred(...), LM,..., LN.

* Left Linear Recursion is most efficient for tabling for
most calling patterns

* Not all recursion can be transformed to left recursion
(e.g. sg/2)

* But recursive search through general data structures
represented by sets of clauses can be extremely useful

• So how does all this help?

• Tabling can be used to traverse through information
stored as sets of facts (or clauses)

• One major example is that of the representation of a
given transition system through a process logic

• CCS, π-calculus, Petri nets, etc.

• Consider an example for Elementary Nets, where
each place can have at most one token

p1

t4
t2

c2

 b2

p2

t3t1
b1

c1

% Prolog representation of the above Producer-Consumer Net
:- index(trans/2,trie).
trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).
trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

% Program to determine reachability of an elementary net
:- table reachable/2.
reachable(InConf,NewConf):-
 reachable(InConf,Conf),
 hasTransition(Conf,NewConf).
reachable(InConf,NewConf):-
 hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-
 get_trans_for_conf_1(Conf,Conf,Trans),
 flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).
get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-
 findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),
 check_concession(Trans,Conf,Trans1),
 get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).
check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-
 ord_subset(In,Input),
 ord_disjoint(Out,Input),!,
 check_concession(T,Input,T1).
check_concession([_Trans|T],Input,T1):-
 check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-
 ord_subtract(Conf,In,Diff),
 flatsort([Out|Diff],Temp),

reachable(InConf,NewConf):-
 reachable(InConf,Conf),
 hasTransition(Conf,NewConf).
reachable(InConf,NewConf):-
 hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 apply_trans_to_conf(Trans,Conf,NewConf).

The heart of this code is left-recursion

hasTransition/2 is a complex form of parent/2, edge/2, etc.

get_trans_for_conf/2 finds all transitions that are enabled by the
current configuration -- for an elementary net, this means that each
input place has a token and each output place does not have a token.

apply_trans_to_conf/2 simply applies the transition to the
configuration to produce a new configuration

Tabling and Model-Checking

* A temporal logic can also be programmed using tabling in a similarly
simple manner

-- Alternation-free modal μ-calculus, CTL, LTL
-- Uses two mutually recursive predicates
State |= Property and State |/= Property
-- Can be programmed with negation or without if |/= /2 is
dualized.

* Tabling can produce concise but efficient model checkers

-- In the past tabling has been used to check workflows, multi-
agent systems, real-time systems, etc.

* If the model checker makes use only of definite programs, they can
take advantage of YAPs or-parallel engine with tabling

:- table |=/2. :- table |/=/2.

State s |= prop(P):- State s |/= prop(P):-
 has prop(State s,P). \+ has prop(State s,P).

State s |= diam(Act a,F):- State s |/= diam(Act a,F):-
 trans(State s,Act a,State_t), tfindall(State_t, trans(State_s,Act_a,State_t), State_ts)
 ʼlist |/=ʼ(State_ts, F).

State_s |= and(X1, X2)):- State s |/= and(X1, X2)):-
 State_s |= X1, State_s |= X2. State s |/= X1 ; State s |= X2.

State s |= or(X1, X2)):- State s |/= or(X1, X2)):-
 State s |= X1 ; State s |= X2. State s |/= X1, State s |/= X2.

State s |= form(X):- State s |/= form(X):-
 formula def(X, Y), formula def(X, Y),
 (Y = lfp(Z), (Y = lfp(Z),
 State s |= Z tnot(State s |= State s, Z)
 ; ;
 Y = gfp(Z), Y = gfp(Z),
 tnot(State s |/= Z). State s |/=Z).

Alternation-Free Modal-mu Calculus

Tabling and parsing

* Similar to chart parsers, early deduction

* Applications include

-- Parsing Montague grammars for educational
software

-- Parsing in XSB, Inc’s Ontology-Driven Extraction,
which uses an ontology to drive feature extraction
for catalogs or databases of airplane parts.

* These applications table mutually recursive
productions

There are numerous other applications of tabling definite
programs in machine learning, the semantic web, etc. But for
now, we’ve identified 3 different patterns

Tabling Pattern 1: Left recursion for transitive closure
-- ancestor/2, reachable/2 for elementary nets.

Tabling Pattern 2: Non-left recursion for transitive closure
(e.g. sg/2)

Tabling Pattern 3: Mutually recursive predicates without
negation (e.g. parsing Montague grammars, ontology-driven
parsing alternation-free modal-μ calculus when dualized
programs are used)

• “Vanilla” tabling -- query evaluation for definite programs

• Tabled negation for the we"-founded and stable semantics

• Beyond query evaluation -- call subsumption for
(sub-)model generation

• Beyond t,f,u -- answer subsumption for quantitative and
para-consistent programming

• State of the preceding features within XSB 3.2

Tabled negation can also evaluate programs according to the
3-valued well-founded semantics.

The vi"age barber shaves everyone in the vi"age who does not shave himself
(and only those people)

This can be expressed in a logic program (using default negation) as

shaves(barber,Person):-
 villager(Person),
 not shaves(Person,Person).
shaves(doctor,doctor).

villager(barber). villager(mayor). villager(doctor).

The barber shaves the mayor, does not shave the doctor, and it is
unknown whether he shaves himself.

Tabling treats positive loops as a least fixed-point, but (ground)
negative loops as undefined.

... so how is this useful?

It gives a semantics for a" normal logic programs

It allows logic programs to adequately handle inconsistencies
and paraconsistencies.

Diagnostic Criteria for Dementia of the Alzheimers Type
A. The development of multiple cognitive defects manifested by both

1. memory impairment (impaired ability to learn new information or to recall previously
learned information)
2. one (or more) of the following cognitive disturbances

1. aphasia (language disturbance)
2. apraxia (impaired ability to carry out motor activities despite intact motor function)
3. agnosia (failure to recognize or identify objects despite intact sensory functions)
4. disturbance in executive functioning (i.e., planning, organizing, sequencing,
abstracting)

B. The cognitive deficits in criteria A1 and A2 each cause significant impairment in social or
occupational functioning and
represent a significant decline from a previous level of functioning.
C. The course is characterized by gradual onset and continuing cognitive decline.
D. The cognitive deficits in Criteria A1 and A2 are not due to any of the following

1. other central nervous system conditions that cause progressive deficits in memory and
cognition (e.g. cerebrovascular disease, Parkinson's disease, Huntington's disease, subdural
hematomanormal-pressure hydrocephalus, brain tumor)
2. systemic conditions that are known to cause dementia (e.g. hypothyroidism, vitamin B12 or
folic acid deficiency, niacin deficiency, hypercalcemia, neurosyphilis, HIV infection)
3. substance-induced conditions

E. The deficits do not occur exclusively during the course of a delirium
F. The disturbance is not better accounted for by another Axis I disorder (e.g., Major Depressive Disorder,
Schizophrenia)

WFS Applications -- Medical Informatics

* The preceding text was from Diagnostic and Statistical Manual of Mental
Disorders Edition IV (DSM-IV) which is the guide to how US physicians
diagnose mental distorders

* Major depressive disorder has a similar exclusion condition (not better
accounted for by...)

* Different physicians were on the dementia committee and the mood-
disorder committee

The exclusion conditions can be modelled by loops through negation

'Alzheimers Dementia' :-
 not_better 'Major Depressive Disorder'
'Major Depressive Disorder':-
 not_better 'Alzheimers Dementia'

* In this formulation it could be unknown whether a given patient
suffers from dementia or depression (if she fulfulled all other criteria)

* The 2-valued Stable Models semantics would give 2 (or more) scenarios:
one where the patient had dementia, the other where the patient had
depression

* The well-founded model is contained in the intersection of all stable
models -- so why not use stable models?

* The best semantics depends on the use-case

-- for diagnosis unknown may be best, indicating that more
information is required.

-- for planning, multiple scenarios may be best so that all
contingencies can be accounted for

* Object logics may give rise to non-stratification. Consider the
``Nixon diamond'' problem in F-logic

% A republican has a unique policy of being a non-pacifist
republican[policy *-> nonpacifist].
% A quaker has a unique policy of being a pacifist
quaker[policy *-> pacifist].
% nixon is a quaker
nixon:quaker.
% nixon is a republican
nixon:republican.

* This knowledge base translates into a non-stratified program where

-- Nixon’s policy is undefined; or

-- Nixon is a pacifist or a non-pacifist (exclusively)

* In either case, you have to handle updates to a programs inheritance
structure -- somehow

3-valued or 2-valued?

* Recent work in cognitive psychology (Stenning & van
Lambalgen) indicate that people interpret situations using 3-
valued logics

-- This theory is based on numerous cognitive tests (e.g.
Wason test)

-- In fact, they posit a neural net model of a 3-valued
completion semantics

-- This semantics differs from WFS in that positive loops
with no answers are treated as undefined rather than false

* Stable models are highly useful. WFS is sometimes seen as a
step towards stable model semantics, but WFS can be useful by
itself.

* A 3-valued completion semantics is preferred by some for
modelling human cognition.

* WFS is relevant, so it can be query-oriented -- you don’t need
to ground the entire program (which could have non-constant
terms or use an external database)

* WFS has quadratic data complexity (but almost always
behaves linearly)

* Still, you can often have the best of both worlds since tabling
produces the well-founded residual of a query.

* Let’s say you wanted to query an object database that
included Nixon as previously.

* The inheritance hierarchy may be inconsistent only when
applied to instances (i.e. the T-box may be consistent)

* Nixon is an instance. We may know that Nixon’s attributes
may not affect those of any other instance.

* It may be that most of Nixon’s attributes are consistent
(uniquely determined)

*A query may be performed under WFS, and only the non-
stratified part would be sent to a stable model generator

SLG tabling adds delaying and simplification to evaluate WFS
which allows it to find unfounded sets more effectively

The table for the query can be seen as a transformation of a
program, where literals that are undefined in WFS were
delayed, but could not be simplified.

Various queries about Nixon might give rise to a table like

hasAdministration(nixon,[1969-1975]).
:
hasPolicy(nixon,pacifist):- not hasPolicy(nixon,nonpacifist) |
hasPolicy(nixon,nonpacifist):- not hasPolicy(nixon,pacifist) |

* XSB now includes Smodels in its distribution. XSB’s XASP
library takes allows a user to specify which parts of a table are
to be sent to Smodels to be solved

* Clearly, a query may not traverse all possible clauses and ground
them -- so it has to be semantically reasonable to do this
-- i.e. we know that a loop through negation concerning one
instance is independent of loops through negation concerning
other instances

* This gives rise to a different approach to ASP than those using
lparse, gringo, etc.

* XASP allows each thread to have its own Smodels instance

* XASP is being extended to handle probabilistic reasoning using
Plog (by C. Damasio and students)

Preferences

Let’s go back to the dementia/depression example

Let’s say that when in doubt you’d diagnose and treat depression, and
you want to automate that. You could

1. rewrite your DSM-IV program
2. indicate that depression is to be preferred to dementia (perhaps
under certain conditions). e.g.

prefer(depression,dementia):- <some conditions>
prefer(dementia,depression):- <other conditions>

These preferences work on top of WFS, and a program is transformed to
check for preferences (ideally when compiled) by adding tabled negation

Note that we are preferring solutions (derived atoms) not rules (extends
approach of Govindarajan, Jayaraman and Mantha to WFS

% Program to determine reachability of an elementary net
:- table reachable/2.
reachable(InConf,NewConf):-
 reachable(InConf,Conf),
 hasTransition(Conf,NewConf).
reachable(InConf,NewConf):-
 hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-
 get_trans_for_conf_1(Conf,Conf,Trans),
 flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).
get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-
 findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),
 check_concession(Trans,Conf,Trans1),
 get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).
check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-
 ord_subset(In,Input),
 ord_disjoint(Out,Input),!,
 check_concession(T,Input,T1).
check_concession([_Trans|T],Input,T1):-
 check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-
 ord_subtract(Conf,In,Diff),
 flatsort([Out|Diff],Temp),

* Preferences can be added to the Petri net example

* The preceding Petri net code can be extended to handle
nearly all common workflow control patterns -- and to
allow a net to be based on dynamic information

* In such a case, preferences allow a workflow to be
configured to a local policy without recoding the workflow

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 sk_not(preferred(SomeTrans,Trans,AllTrans,Conf))
 apply_trans_to_conf(Trans,Conf,NewConf).

* Preference logic grammars add preferences to Prolog’s Definite
Clause Grammars

* Preference address ambiguities in the grammar
-- Different parse (sub)trees may be encoded in the solution
-- Preferences resolve ambiguities outside of the rules

* One project rewrote an industrial data “standardizer” written
using Prolog DCGs and transformed it into prefrence logic
grammars.
-- The grammar for the resulting standardizer was about 1/5 the
size of the original (though a little slower)
-- The resulting standardizer has been used by XSB, Inc on
various projects

* Simple grammar rules + preferences are conceptually easier than
more complex grammar rules

* The language Silk is being funded as a rule-based knowledge
representation language by the Halo Project

-- Silk is based on Flora-2 which is based on XSB

* Silk uses a type of defeasibility logic that is similar to
preferences as described here.

Tabling Pattern 4: Tabled Negation for amalgamating data
-- DSM-IV knowledge representation

Tabling Pattern 5: Tabling as grounder for an ASP solver
to produce partial stable models
-- Acorda and other projects at CENTRIA

Tabling Pattern 6: Tabling as implementation for
preferences (or similar WFS-based non-monotonic
constructs)
-- Taking preferred transitions in a workflow

Tabling Pattern 7: Tabling as implementation of
Preference Logic Grammars
-- XSB, Inc data standardizer

• “Vanilla” tabling -- query evaluation for definite programs

• Tabled negation for the well-founded and stable
Semantics

• Beyond query evaluation -- ca" subsumption for (sub-)model
generation.

• Beyond t,f,u -- answer subsumption for quantitative and
para-consistent programming

• Progress on mult-threading and parallelism

Call Subsumption

* Maybe you want the full bottom-up (well-founded) model of
something, rather than just queries to that model

* Program analysis -- types, shapes, etc for the entire program
(module)

* RDF inferencing -- want full set of triples implied by a page

* Highly connected OWL ontologies

* Consider a query ?- sg(X,Y) to

sg(X,X)
sg(X,Y):- par(X,Z),sg(Z,Z1),par(Y,Z1).

* As discussed, this will give a number of subgoals sg(X,Y), sg(1,Y),
sg(2,Y),...

* If call variance is used, the table for sg(1,Y) cannot reuse the
information for sg(X,Y) because the two terms are not variants

* If call subsumption is used, then sg(1,Y) can reuse the information from
sg(X,Y), which will reduce space and time.

* In XSB (and other systems) the declaration :- table sg/2 means to table
using call variance

* The declaration :- table sg/2 as subsumptive specifies call
subsumption. Call subsumption can also be set up as the default tabling
mode by default.

 A Fragment of the OWL Wine Ontology

 <owl:Class rdf:ID="PinotBlanc">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasColor" />
 <owl:hasValue rdf:resource="#White" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Wine" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#madeFromGrape" />
 <owl:hasValue rdf:resource="#PinotBlancGrape" />
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#madeFromGrape" />
 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</
owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

The ontology is translated by KAON2 to a definite program with about 1000
clauses

pinotblanc(X) :- q24(X).
pinotblanc(X) :- pinotblanc(Y),kaon2equal(X, Y).
pinotblanc(X) :- wine(X),madefromgrape(X, Y),ot____nom21(Y).

madefromgrape(Y, X) :- madeintowine(X, Y).
madefromgrape(X, X) :- riesling(X),kaon2namedobjects(X).
madefromgrape(X, X) :- wine(X),kaon2namedobjects(X).
% 18 others

wine(X) :- q14(X).
wine(X) :- texaswine(X).
% 24 others
wine(X) :- q24(X).
% 31 others

q24(X) :- pinotblanc(X).
q24(X) :- muscadet(X).
q24(X) :- q24(Y),kaon2equal(X, Y).

Regardless of whether this program can be optimized, it is
highly recursive

pinotblanc(yellowTail) depends on
pinotblank(X) depends on wine(X)

and on
wine(yellowTail)

Nearly every concept depends on nearly every other concept
(more or less)

Each predicate is called with multiple instantiations

* When using call variance to evaluate a query XSB throws a
memory error

* When using call subsumption to evaluate a query, XSB
terminates

* The time is comparable with ontoBroker and is much faster
than some ASP systems (Liang et. al 2009)

* The program can use the declaration :- autotable and default
call subsumption. However analysis tools are needed to help
decide whether to use call subsumption or call variance.

* WFS cannot fully evaluate a" ontologies -- a theorem prover
may be needed for that

Tabling Pattern 8: Evaluation of generated recursive code
through autotable (with or without call subsumption)
-- Wine ontology translated to logic programming clauses

• “Vanilla” tabling -- query evaluation for definite
programs

• Tabled negation for the well-founded and stable
Semantics

• Beyond query evaluation -- call subsumption for
(sub-)model generation

• Beyond t,f,u -- answer subsumption for quantitative
and para-consistent programming

• Progress on multi-threading and parallelism

Outline

* When a new answer A is derived for a subgoal S, it is added
to the table for S only if A is not a variant of some other
answer for S

* On the other hand, you might add an answer only if it were
not subsumed by some other answer for S

* When talking about the lattice of terms, this does not seem
to be very useful

* However, the idea could be generalized to other partial
orders or lattices

Subgoal

F
New Answers

Answers

Answer

* In general, apply a function F to a set of answers to get a
new set of answers

* Or, incrementally, apply F to a new answer plus a set of
answers

* In a simple case F = keep a" maximal answers w.r.t. a given partial
order

* But this is just what we did with preferences
-- Operationally, rather than maintaining a set of answers
which we destructively update, we only derive preferred
answers
-- A reflexive partial order gives rise to undefined truth values

* Consider a (small!) portion of an ontology used by XSB, Inc on
a project to help the US Government find sources for medical
supplies (this can be thought of as monotonic inheritance as
opposed to the non-monotonic inheritance of Nixon)

* Code on next page is a simplified syntax of XSB’s Coherent
Description Framework library (used on the project)

* A query about the material of a DemaTechPGA suture should return
polyglyconicAcid

* A query about the material of some other suture for which no information is
known should return absSutMaterial

% Classes
hasAttr(absSutPart,hasMaterial,absSutMaterial)
maxAttr(absSutPart,hasMaterial,absSutMaterial,1)

isa(material,domainTypes)
 isa(absSutMaterial,material)
 isa(catgut,absSutMaterial) % obsolete in US
 isa(vicryl,absSutMaterial)
 isa(vicryl_rapide,absSutMaterial)
 isa(monocryl,absSutMaterial)
 isa(polyglyconicAcid,absSutMaterial)
 :

% Objects
object_hasAttr(‘DemaTechPGA’,hasMaterial,polyglyconicAcid)

TOP

FALSE TRUE

BOTTOM

TOP

vs.

* When maintaining ordering over a lattice keeping (or
deriving) only maximal answers is no longer sifficient

* Lattices may require destructive operations on the answers

* If one p(a):true and p(a):false are both derived, then the
table should only contain p(a):top -- which wasn’t directly
derived

* Consider a model of quantitative degrees of belief [van Emden
’86]. An annotated atom A:[ET,EF] is an atom A is annotated with
-- ET, a number between 0 and 1 indicating a measure of
evidence that A is true; and
-- EF, a number between 0 and 1 indicating that A is false.
-- [ET EF] join [ET EF] = [max(ET ET),max(EF EF)]

* Resolution for these annotated literals can be defined. The main
idea is:
- A goal A:[ET,EF] is true in an interpretation J of a program P
if there is are rules

AI:[EIT,EIF] :- BodyI

in P such that each AI unifies with A, each BodyI is true in J,
[E’T,E’F] = join [EIT,EIF], E'T >= ET and FT =< F'T

* Generalizing this approach to upper semi-lattices, you get
Generalized Annotated Programs (GAPs) that can model many kinds
of quantitative, paraconsistent, and temporal reasoning.

* From our perspective, GAPs can be implemented using answer
subsumption. To illustrate on ground programs, when an answer
A:[annew] is derived:
-- Add A:[annew] if the table does not have an answer with
substitution A; or
-- Add A:[anjoin] -- the join of annew and anold where A:[anold]
is the answer for A in the table.

* This formalism is similar to others, such as Residuated Lattice
Programs

* XSB has a meta-interpreter for stratified GAP’s in its gap library

* This is a general approach that can be applied to other
domains

* Time or probability lattices
-- join may be intersection of two intervals where the
partial order indicates a precision of knowledge
-- can help in implementing Hybrid Probabilistic Programs,
perhaps Logic Programs with Annotated Disjunctions

* Bilattices of knowledge and truth

* How can answer subsumption be used for process logics?

* Reachability in a (finite) elementary net is clearly decidable:
since each place can hold at most 1 token there are a finite
number of states

* General Petri nets (Place-Transition Nets) can have any number
of tokens in a place (although the tokens are not distinguished)

* Reachability in Place-Transition nets is still decidable through a
method called ω-sequences

-- Define a partial order ≥ ω on configurations where C ≥ ω C’ if
C and C’ have tokens in the same set Pl of places, C has at
least as many tokens as C’ for all places, and for some non-
empty Plsub ⊆ Pl places C has strictly more tokens than C’

-- If this happens, abstract the tokens in each place in Plsub to
have the special token ω (which is greater than any integer)

% Program to determine omega abstraction.
:- table reachable(_,gte_omega/3-bottom/1)..
reachable(InConf,NewConf):-
 reachable(InConf,Conf),
 hasTransition(Conf,NewConf).
reachable(InConf,NewConf):-
 hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-
 get_trans_for_conf_1(Conf,Conf,Trans),
 flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).
get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-
 findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),
 check_concession(Trans,Conf,Trans1),
 get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).
check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-
 ord_subset(In,Input),
 ord_disjoint(Out,Input),!,
 check_concession(T,Input,T1).
check_concession([_Trans|T],Input,T1):-
 check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-
 ord_subtract(Conf,In,Diff),
 flatsort([Out|Diff],Temp),

* table reachable(_,gte_omega/3) indicates that
- reachable/2 is tabled
- gte_omega/3 is a join operator (on configurations)

* This is compiled into an XSB predicate filterReduce/3
-- Its only in the CVS version of XSB, and we’re still
working out the kinks.

* If p/3 is tabled, then a constrained goal p(X,Y,Z): X > Z
can also be tabled.

* Constrained answers may also be returned, such as
 p(X,Y,Z): X > Z + Y, Y > 0

* In XSB, attributed variables are copied into and out of tables as any
other term

* Subsumption works for constrained goals in an analagous manner.
 p(X): X > 2 subsumes p(X): X > 3.

-- In case this is confusing, note that the set X > 2 is smaller than the
set X > 3, so that any answer to X > 2 is also an answer to X > 3

* Answer subsumption with constraints has not yet been fully tested in
XSB

* Constrained Variables in calls are not presently handled in call
subsumption.

* Many Constraint Logic Programs do not benefit from tabling, as the logic
program is used primarily to set up the constraints.

* Tabling can help search through a state space where the states can
be labelled with constraints.

* Examples in natural language analysis, program analysis, verification, ILP

* Another example concerns a type of Colored Petri Net which generalizes
place-transition nets by allowing tokens to be distinguished

* Rather than collecting tokens, a transition collects constraints until its
constraint set entails a formula (and does not fire otherwise). Once the
constraint fires, new constraints may be applied to the resulting
configuration.

% Program to determine reachability of an elementary net
:- table reachable/2.
reachable(InConf,NewConf):-
 reachable(InConf,Conf),
 hasTransition(Conf,NewConf).
reachable(InConf,NewConf):-
 hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-
 get_trans_for_conf(Conf,AllTrans),
 member(Trans,AllTrans),
 apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-
 get_trans_for_conf_1(Conf,Conf,Trans),
 flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).
get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-
 findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),
 check_concession(Trans,Conf,Trans1),
 get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).
check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-
 ord_subset(In,Input),
 ord_disjoint(Out,Input),!,
 check_concession(T,Input,T1).
check_concession([_Trans|T],Input,T1):-
 check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-
 ord_subtract(Conf,In,Diff),
 flatsort([Out|Diff],Temp),

The original

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-
 ord_subtract(Conf,In,Diff),
 flatsort([Out|Diff],Temp)

is rewritten to

apply_trans_to_conf(trans(In,Entailment,Out),Conf,NewConf):-
 unify_for_entailment(In,Conf,MidConf),
 entailed(Entailment),
 call_new_constraints(Out,OutPlaces),
 flatsort([OutPlaces|MidConf],NewConf).

unify_for_entailment(In,Conf,MidConf) unifies the variables in the
configuration with the variables in the transition

Tabling Pattern 9: Tabled preferences to return only the
best answers according to a partial order
-- Medical Parts Ontology

Tabling Pattern 10: Answer subsumption for paraconsistent
and quantitative reasoning

Tabling Pattern 11: Tabling to explore a state space where
constraints are associated with states
-- Constraint-based analysis of security protocols (Sarna-
Starosta)

Multi-threading

Each XSB thread has its own facilities for creating and
releasing private tables, and reclaiming their space
-- Private threads have all functionality discussed here
including their own private version smodels
-- Answer Subsumption requires a synchronization
mechanism that does not currently scale

XSB threads can also communicate through message queues as
can SWI and YAP (Ciao has a similar mechanism)

Tables can also be shared among threads in XSB to support
concurrency (work is being done to have them support
parallelism)
-- No call subsumption with shared tables yet.

State of Implementation

* Definite Tabling: Stable

* Tabling for WFS: Stable

* XASP: Stable but persnickety

* Call Subsumption: Stable (recently extended to WFS, but extension has
been well tested)

* Multi-threading: Reasonably stable for reasonable programs :-)
This includes private and shared tables

* Answer Subsumption: Reasonably stable, but still hard to use

* Tabled Constraints: Attributed variables have been used for a Ph. D.
thesis. Large projects using tabling with CLP(R) or CHR could uncover
bugs

Program, Forest, and Table for the query ?- p(a,Z).

This example uses double recursion (2 occurrences of a/2
in the body). Tabling is more efficient with left recursion.

6a. p(b,Z)

7. p(b,Z) :- p(b,Y),p(Y,Z)

9. p(b,c) :- q(Z)

10. p(b,c) :-

12. p(b,Z) :- p(c,Z)

8. p(b,Z) :- e(b,Z),q(Z)

11. p(a,c) :-

1. p(a,Z) :- p(a,Y),p(Y,Z) 2. p(a,Z) :- e(a,Z),q(Z)

0. p(a,Z)

6. p(a,Z) :- p(b,Z)

4. p(a,b) :-

3. p(a,b) :- q(b) 5. p(a,d) :- q(d)

12a. p(c,Z)

14. p(c,Z):- e(c,Z),q(Z)13. p(c,Z) :- p(c,Y),p(Y,Z)

p(a,c)

Subgoal

p(a,b)p(a,Z)

p(b,Z)
p(c,Z)

Answers

Incomplete

Incomplete

Incomplete

p(b,c)

State

q(a). q(b). q(c).

:- table p/2.

e(a,b). e(a,d). e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

