
Concurrent and Local Evaluation of Normal

Programs

Rui Marques
CITI, Dep. Informatica FCT, Universidade Nova de Lisboa

Terrance Swift
CENTRIA Universidade Nova de Lisboa

1



Motivation

• Develop a MT-TLP system

– That supports a variety of tabling functions

– That is maintainable

– That uses algorithms that are provably correct

∗ Otherwise, the complexity of
tabling + abstract engine + concurrency
is too much

• Here we examine a critical feature of such a system using
a scheduling strategy called Local Evaluation

This presentation assumes a minimal amount about tabling
and so simplifies various definitions: see the paper for all the
formal details

2



Local Evaluation: Model of Tabling

• A tree models the steps taken to derive answers for a tabled
subgoal

– In this presentation we may refer to subgoals and their
trees interchangeably

– A tree that has been completely evaluated may be
marked as completed

• A forest of trees models the state of an evaluation

• A (transfinite) sequence of forests models an evaluation

3



Local Evaluation: Main Idea

• Completely evaluate each mutually dependent set of sub-
goals before returning an answer to a subgoal not in that
set

6. p(1,Y) <- p(2,Y) 19. p(1,Y) <- p(3,Y) 5. p(1,3) <- 

1. p(1,Y) <- p(1,Y)

7. p(2,Y) <- p(2,Y)

18. p(1,3) <- 20. Fail

17. Fail

10. p(2,3) <- 

9. p(2,Y) <- a(2,Y)8. p(2,Y) <- p(2,Z),p(Z,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

4. p(1,2) <- 

11. p(2,Y) <- p(3,Y)

14. p(3,Y) <- a(3,Y)13. p(3,Y) <- 
p(3,Z), p(Z,Y)

12. p(3,Y) <- p(3,Y)

16. Fail 15. Fail

:- table p/2.

p(X,Y) :- p(X,Z), p(Z,Y).

p(X,Y) :- a(X,Y).

a(1,2). a(1,3). a(2,3).

4



Local Evaluation: Example

sgi(X,Y)(D) :- arc(X,Y).

sgi(X,Y)(D) :-

arc(X,Z), subsumes(min)(sgi(Z,Z1),D1),

arc(Y,Z1), D is D1+1.

6

.

.
.
.
.

21

43

n−2n−3

0

5

n−1 n

.

• Time for ?-p(bound,free) is linear in edges for Local
Evaluation, Linear in size of paths for Batched Evaluation

5



Local Evaluation: Details

Let’s be more precise about Local Evaluation (see the paper
for the “fine print”). Let F be a forest in a tabled evaluation

• A subgoal dependency graph Subgoal Dependency Graph

for F

– Has a vertex for each non-completed subgoal in F

– Has an edge (S1, S2) if S2 is the underlying subgoal of
a selected literal (or a delay literal) in the tree for S1

p(1,Y)

p(3,Y)

p(2,Y)

6



Local Evaluation: Details

• There is a function from SLG forests to SDGs – i.e. a
forest F defines SDG(F)

• Since SDGs are directed graphs, Strongly Connected Com-
ponents (SCCs) can be defined for them.

– A maximal SCC is contained in no other SCC

– An independent SCC S is one where no subgoal in S

depends on a subgoal not in S

• A Local Evaluation is one where an operation is applied
only to trees whose subgoals are in a maximal independent
SCC (modulo a few small provisos)

7



Concurrent SLG

Concurrent SLG adds a few new definitions to SLG

• Each tree T in a forest (F) is marked with a unique thread
id (informally Thread owns T or the subgoal of T )

• A node N is thread compatible with a subgoal S if S is
complete or S and N are owned by the same thread

• A tabled literal cannot be resolved (or delayed or simpli-
fied) unless its node is thread compatible with its selected
subgoal

• A set of subgoals cannot be completed unless they are
owned by the same thread

• This can lead to deadlock – mutually dependent subgoals
owned by different threads where no operations are possi-
ble on trees for those subgoals

• To resolve this, a new usurpation operation is defined

– If Thread1 owns a subgoal that is in a deadlock, it can
usurp (remark) all the subgoals in that deadlock cycle

8



Concurrent Local SLG: Example

Subgoal2

Subgoal1

Thread 3Thread 2Thread 1

• Abstract SDG for a computation

• Subgoal2 owned by thread 2 calls Subgoal1 owned by
thread 1

• For thread 2 to perform a Local Evaluation, it must apply
operations in the tree for Subgoal1

• However, since Subgoal1 is owned by thread 1, it is not
thread compatible with thread 2

• No operations apply to subgoals owned by thread 2 in this
forest; (thread 2 suspends)

9



Concurrent Local SLG

Subgoal2

Subgoal1

Thread 3Thread 2Thread 1

• Now Subgoal1 calls Subgoal2

• No operations are applicable to the SCC owned by thread
1 and thread 2: it is in deadlock

10



Concurrent Local SLG

Subgoal2

Subgoal1

Thread 3Thread 2Thread 1

• Thread 1 usurps the subgoals of thread 2 and remarks the
trees (and subgoals)

• Now thread compatability restrictions don’t apply

11



Concurrent Local SLG: Dependencies

• SDG(F) is as before.

• SDG(F , Thread) is SDG(FThread) where (FThread) is
the subforest of F that T owns.

• The Thread Dependency Graph of F (TDG(F)) is de-
fined as follows

– The vertices of TDG(F) are the thread ids marking
trees in F

– (Thread1, Thread2) is an edge in TDG(F) if (S1, S2)
is an edge in SDG(F), Thread1 owns S1, and Thread2

owns S2

12



Properties of Concurrent Local SLG

• Concurrent SLG has same correctness and termination
properties as SLG

• Addition of usurpation does not change complexity of
SLG

• Concurrent Local SLG is based on locality in the SDG(F , Thread)
for each thread

– Has the same correctness and termination properties
as Local SLG

– N threads, each performing a Local Evaluation on
SDG(F , Thread), together perform a Local Evalua-
tion on SDG(F) (N finite)

13



Concurrent Local SLG: Operational Properties

• Any thread Thread contains a single maximal indepen-
dent SCC in SDG(F , Thread)

• Each node in TDG(F) has at most one outgoing edge

– i.e, any deadlock is a simple cycle in TDG(F)

These properties considerably simplify the algorithm. A
thread suspends when it selects a literal that is not thread
compatible with itself. Thus

• If a thread T detects a deadlock, all threads in the dead-
lock cycle will be suspended except for T

• Each suspended thread T can be awakened when the sub-
goal on which it was suspended completes. (T can then
resumes execution by backtracking through answers for
the completed table)

14



Concurrent Local SLG: Implementation

• Implementation changes mostly concern the tabletry in-
struction that is called when a tabled subgoal is encoun-
tered.

• completion isntruction also wakes up threads suspended
on a completed subgoal

Instruction tabletry (sequential version)

/* Subg is in argument registers; Tcurrent is current thread */

Perform the subgoal check insert(Subg) operation in the table

If Subg is new

Create a generator choice point to resolve program clauses

Else if Subg is incomplete

Create a consumer choice point to resolve answer clauses

Else if subg is complete

Branch to root of trie to execute instructions for completed table

15



Concurrent Local SLG: Implementation

Instruction tabletry (Concurrent Local Version)

/* Subg is in argument registers; Tcurrent is current thread */

Perform the subgoal check insert(Subg) operation in the table

If Subg is not new and is marked by another thread

Lock global TDG mutex

If deadlock(Tcurrent,Subg.ThreadMark)

/* all other threads in the independent SCC are suspended at deadlock */

usurp(Tcurrent,Subg,Subg.ThreadMark)

Else unlock TDG mutex; suspend the calling thread until Subg completes

/* Proceed as in the sequential case */

/* if Subg was usurped, treat it as a new subgoal */

If Subg is new

Create a generator choice point to resolve program clauses

Unlock global TDG mutex

Else if Subg is incomplete

Create a consumer choice point to resolve answer clauses

Else if subg is complete

Branch to root of trie to execute instructions for completed table

16



Concurrent Local SLG: Implementation

• As currently implemented in XSB, a usurping thread red-
erives usurped computations from scratch (although it
does not need to re-insert previously derived answers into
the table).

– So far, experiments show that usurpation occurs sur-
prisingly rarely

• Details of the implementation are subtle; however they
amount to about 300 lines of code added to tabletry with
minimal refactoring of existing code.

– This means that the approach is quite general for var-
ious tabling functions (as shown below)

– It also means that there is little overhead for this ap-
proach beyond overheads for shared table space (i.e.
one or two new conditions in tabletry)

– It also means that the approach is portable: all tabling
systems execute special code when encountering a tabled
subgoal

17



Summary

• Local Evaluation is critical for Answer Subsumption (quan-
titative and paraconsistent logics, maximal abduction) and
useful for WFS. Also reduces stack space for many com-
putations.

• Our approach shares completed tables only. This leads to
an implementation

– Whose correctness and critical properties are provable

– That can be modularly added to a tabling engine

– Is currenly working in XSB (please use anonymous CVS
until v. 3.2 comes out)

– Supports WFS (including residual programs), Answer
Subsumption, and Tabled Constraints

• Concurrent Batched Evaluation allows a tabled consumer
and producer to communicate in a manner analogous to
message queues. XSB contains an experimental version of
this

• In the longer term, we are working on have dynamic schedul-
ing of Concurrent Local and Batched Evaluation

18


