Terminating Evaluation of Logic Programs with Finite Three-Valued
Models

FABRIZIO RIGUZZI, University of Ferrara
TERRANCE SWIFT, Coherent Knowledge Systems, Inc. and NOVALincs, Universidade Nova de
Lisboa, Portugal

As evaluation methods for logic programs have become more sophisticated, the classes of programs for which
termination can be guaranteed have expanded. From the perspective of answer set programs that include
function symbols, recent work has identified classes for which grounding routines can terminate either on
the entire program [Calimeri et al. 2008] or on suitable queries [Baselice et al. 2009]. From the perspective
of tabling, it has long been known that a tabling technique called subgoal abstraction provides good ter-
mination properties for definite programs [Tamaki and Sato 1986], and this result was recently extended
to stratified programs via the class of bounded term-size programs [Riguzzi and Swift 2013]. In this paper
we provide a formal definition of tabling with subgoal abstraction resulting in the SLGgp algorithm. More-
over, we discuss a declarative characterization of the queries and programs for which SLGsa terminates. We
call this class strongly bounded term-size programs and show its equivalence to programs with finite well-
founded models. For normal programs strongly bounded term-size programs strictly includes the finitely
ground programs of [Calimeri et al. 2008]. SLGsp has an asymptotic complexity on strongly bounded term-
size programs equal to the best known and produces a residual program that can be sent to an answer set
programming system. Finally, we describe the implementation of subgoal abstraction within the SLG-WAM
of XSB and provide performance results.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming
General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Tabled Logic Programming, Termination

1. INTRODUCTION

The study of termination has proven a fruitful topic in logic programming. The ma-
jority of work has focussed on analyzing termination of definite programs under SLD
resolution and its extensions, such as arithmetic (e.g., [Decorte et al. 1999; Serebrenik
and De Schreye 2004; Codish et al. 2005; Serebrenik and De Schreye 2005; Nguyen
and De Schreye 2005; Bruynooghe et al. 2007; Nguyen et al. 2007; Schneider-Kamp
et al. 2010; Voets and De Schreye 2011]). Another recent branch of work has focused
on defining classes of disjunctive programs for which a model-preserving ground in-
stantiation can be obtained in finite time, along with algorithms to produce these in-
stantiations [Syrjanen 2001; Gebser et al. 2007; Calimeri et al. 2008; Baselice et al.
2009; Lierler and Lifshitz 2009; Baselice and Bonatti 2010; Calimeri et al. 2011; Greco
et al. 2012; Greco et al. 2013]. A third branch of work has explored the termination

Author’s addresses: F. Riguzzi, fabrizio.riguzzi@unife.it Dipartimento di Matematica e Informatica — Uni-
versity of Ferrara, Via Saragat 1, [-44122, Ferrara, Italy; T. Swift, tswift@cs.suysb.edu CENTRIA — Univer-
sidade Nova de Lisboa.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 F. Riguzzi and T. Swift

properties of query evaluation for definite or normal programs under tabling [Ver-
baeten et al. 2001; Riguzzi and Swift 2013]. The study of termination for tabling is of
particular importance as tabling has come to underly several research and commercial
knowledge representation systems [Alferes et al. 2013; Yang et al. 2013; Grosof et al.
2012].

Rather than starting with SLD resolution, with grounding techniques or with
tabling, one could ask what evaluation methods terminate for programs with models
that are finitely representable in some manner. Of course, a model can be represented
using sets of different elements — from one perspective a program itself is a set of
rules representing its model — but for this paper we use the standard approach of
representing models as sets of ground atoms from a program’s Herbrand base!. The
next question is what portion of a model needs to be represented. Let P be a normal
program with an infinite Herbrand base. A two-valued interpretation, Zp, of P is ar-
guably best represented by its set of true atoms (true(Zp)), as reasoning can still be
done in a complete manner on the false atoms (false(Zp)) when the closed-world as-
sumption is used. However, both tabling systems and grounders work with programs
whose well-founded model may be three-valued, and if Zp is three-valued, at least two
of its three truth assignments must be represented via finite sets. In this paper, we fo-
cus on programs that have three-valued models where both true(Z”) and atoms whose
truth assignment is undefined (undef(Z*)) can be represented as finite sets of ground
atoms. We term such finite models canonical.

Example 1.1. Consider the normal program P;,;:

p(s(X)) + p(X).
p(0).
q(0).

P;,; does not have a finite well-founded model (denoted WFM Pint) as both

true(W FMP=) and false(W F M=) are infinite. However, the superficially similar pro-
gram, Pg,:

p(X) < p(f(X)).

does have a (canonical) finite model, as true(W F M%) and undef (W F M*#) are both
finite. Finally, the program Pi,¢_yndef:

gg) — p(f(X)).
g(k)) « not r(X), not r(f(X)).

p(
(
7(

(0).

)

does not have a canonical finite model, as undef (W F M Pini-wmder) is no longer finite.

1 Although we do not consider them in this paper, more general definitions are sometimes useful, such as al-
lowing non-ground universally quantified atoms, or allowing non-ground atoms whose variables are subject
to constraints over some domain.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:3

This paper explores how programs that have canonical finite models relate to pre-
vious termination classes, and how such programs can be evaluated in a top-down
manner. Specifically, the results of this paper are as follows.

— We extend the fixed-point definition of bounded term-size programs [Riguzzi and
Swift 2013] to strongly bounded term-size programs, and show that this new notion
coincides with the class of programs that have a canonical finite well-founded model.
We then show that for programs that are both normal and safe, bounded term-size
programs strictly include finitely ground programs [Calimeri et al. 2008].

— We show that tabled SLG resolution, extended with subgoal abstraction, [Tamaki
and Sato 1986; Riguzzi and Swift 2013] finitely terminates and correctly computes
queries to safe, strongly bounded term-size programs. In addition, when depth-based
abstraction functions are used, the abstract complexity of query evaluation equals
the best complexity that is known?. As usual with SLG, the derived answers can be
seen as a partially transformed program that preserves the stable model semantics,
and so can be used by a grounder.

— We describe a publically available, engine-level implementation of subgoal abstrac-
tion that is sound and complete for safe, strongly bounded term-size programs, and
provide performance results concerning this engine.

— We discuss how these results have recently been used for applications (e.g., [Liang
and Kifer 2013], and discuss further areas to which these results are relevant (e.g.,
[Jansen et al. 2013; Grosof and Swift 2013]).

2. BACKGROUND

We recall those concepts of logic programming used in this paper. For a general treat-
ment see e.g., [Lloyd 1987].

We assume a language £ containing a finite set F of predicate and function symbols,
and a countable set of program variables from the set V. A term is either a variable
(e.g., Y), a function symbol of arity 0 (e.g., ¢) or a function symbol of arity n applied
to a tuple of n terms (e.g., f(¢1,...,tn)). Symbols within a term may be represented
through positions which are members of the set II. A position in a term is either the
empty string A that reaches the root of the term, or the string =.i that reaches the ith
child of the term reached by 7, where = is a position and ¢ an integer. For a term ¢t we
denote the symbol at position 7 in ¢ by t|,. For example, p(a, f(X))]2.1 = X. We suppose

that £ also contains a countable set of variables V), disjoint from V, called position
variables of the form X, where 7 is a position. A position variable is used in order to
associate a given variable with a position of interest in a term.

An atom A for a predicate symbol p of arity n is p applied to a tuple of n terms:
p(t1,...,tn); pred(A) indicates the predicate of the atom A. A literal is either an atom
A or the negation of an atom not A. A term, atom or literal is ground if it does not
contain variables. A substitution 6 is a set of pairs V/s where V is a variable and s is
a term. A substitution applied to a term/atom/literal ¢, indicated with ¢6, replaces each
variable V in ¢ that appears in a pair V/¢ in 6 with ¢. An atom A subsumes an atom B
if there is a substitution @ such that A0 = B3.

We assume that a program P is defined over a language £. The set of ground terms
of a language L is called the Herbrand universe of £ and is denoted by #., or as Hp

2The complexity results of Section 4.6 are significantly more precise than previous results for SLG, which
showed that an evaluation required a number of operations that was polynomial in the size of a ground
program.

3We assume that the non-position variables of A and B are standardized apart and that unification is
performed with an occur check. Note that since each position variable is tied to a specific position in a term,
position variables do not need to be standardized apart.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 F. Riguzzi and T. Swift

if £ consists of the predicate and function symbols in P. The set of ground atoms of a
language L is called the Herbrand base and is denoted as B or as Bp. Two atoms are
considered identical if they are variants of each other (informally, if the atoms are the
same up to variable renaming).

Throughout this paper we restrict our attention to normal programs, and to queries
that are simply atoms. A normal program is a set of normal rules. We also assume a
fixed strategy for selecting literals in a clause: without loss of generality we assume
the selection strategy is left-to-right. In accordance with this strategy, a normal rule
has the form

r=H<«+ Ay,...,Ap,not A1, ..., not A, (1)

where Aq,..., A, are atoms. We say that a predicate symbol p occurs positively (neg-
atively) in r if p is the predicate symbol of an atom that occurs positively (negatively)
in 7. As notation, literals(r) denotes the set of literals in the body of r» and head(r)
denotes the head H. A rule r is safe if each variable in r occurs in a positive literal
in the body of r, and a program is safe if all its rules are safe. For example, the rule
p(X,Y,Z) « q(Y),notr(Z). is not safe, because X does not appear in the body and Z
appears only in a negative literal.

Given a program P, Ground(P) denotes the grounding of P; Facts(P) denotes the
set of rules with an empty body in P and Heads(P) is the set of atoms in the head of
some rule in P.

A two-valued interpretation It is a subset of Bp. Z7 is the set of true atoms. A three-
valued interpretation T is a pair (Z7; Zr) where Zr and Zr are subsets of 5p and repre-
sent respectively the set of true and false atoms. Alternatively, a three-valued interpre-
tation can be represented with a set of literals*. The union of two three-valued inter-
pretations (Zr,Zr) and (Jr, Jr) is defined as (Zy,Zr) U (T, Tr) = (Zr U Jr, Zr U JTr).
A three-valued interpretation 7 is a subset of a three-valued interpretation 7 iff Z C 7
where 7 and 7 are represented as sets of literals.

To give a semantics to normal logic programs, we need to identify one or more inter-
pretations as the “intended models” of the program, i.e., as the interpretations giving
its meaning. Many semantics have been proposed for normal programs. Among these,
the well-founded semantics [van Gelder et al. 1991] and the stable model semantics
[Gelfond and Lifschitz 1988] are the most prominent.

2.1. Well-Founded Semantics

The well-founded semantics (WFS) assigns a three-valued model to a program, i.e., it
identifies a three-valued interpretation as the meaning of the program. The WFS was
given in [van Gelder et al. 1991] in terms of the least fixed point of an operator that is
composed by two sub-operators, one computing consequences and the other computing
unfounded sets. We give here the alternative definition of the WF'S of [Przymusinski
1989] that is based on a different iterated fixed point.

Definition 2.1. For a normal program P, sets Tr and Fa of ground atoms, and a
3-valued interpretation Z we define

OpTruef (Tr) =. {A|A is not true in Z; and there is a clause B « Ly,...,L, in P, a
grounding substitution 6 such that A = B6 and for every 1 < i < n either L;0 is true
inZ,or L;§ € Tr};

4Note that this definition, which uses sets of true and false atoms, differs from the canonical finite models
of Section 1 which uses sets of true and undefined atoms. The definition using true and false atoms will be
used as a basis for the definition of the well-founded semantics in Section 2.1. Alternately, the definition of
canonical finite models will be used for to characterize termination results in Sections 2.4 and 4.4.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A5

OpFalsef (Fa) =. {A|A is not false in Z; and for every clause B + Li,...,L, in P
and grounding substitution 6 such that A = B there is some i (1 < i < n) such that
L;#isfalseinZ or L;0 € Fa}.

Przymusinski [1989] shows that OpTruef and OpFalsef are both monotonic, and de-
fines 7/ as the least fixed point of OpTruel (0) and FF as the greatest fixed point
of OpFalsef (Bp)°. In words, the operator 77 extends the interpretation Z to add the
new atomic facts that can be derived from P knowing Z; while 77 adds the new nega-
tions of atomic facts that can be shown false in P by knowing Z (via the uncovering
of unfounded sets). An iterated fixed point operator builds up dynamic strata by con-
structing successive partial interpretations as follows.

Definition 2.2 (Iterated Fixed Point and Dynamic Strata). For a normal program P
let

WFMy = (0;0);
WFEMay1 = WFMoU(Twrm,; Fwrm,);
WFM, = U5<a W F Mg, for limit ordinal «.

Let WFM?T denote the fixed point interpretation W FMj;, where § is the smallest
(countable) ordinal such that both sets 7y py, and Fiwras, are empty. We refer to §
as the depth of P. The stratum of atom A is the least ordinal g such that A € WF My
(where A may be either in the true or false component of W F Mp).

Przymusinski [1989] shows that the iterated fixed point W EM? is in fact the well-
founded model, and that undefined atoms of the well-founded model do not belong to
any stratum — i.e. they are not added to W F'M; for any ordinal . He called a program
dynamically stratified if every atom belongs to a stratum. He also showed that a pro-
gram has a two-valued well-founded model iff it is dynamically stratified, so that it is
the weakest notion of stratification that is consistent with the well-founded semantics.

Example 2.3. Let us consider the program P,
a(l).

a(2) + not p(1,2).

H(f(X)) = a(X),not ¢(X).

q(g(1))-

q(X) = t(f(X)),p(Y, X),nota(3).
p(X,Y) < q(9(X)), t(f(Y)), a(X).

t
p(2,3) <+ notp(2,1).
inspired by Example 1 of [Calimeri et al. 2008]. Its iterated fix point is

WFM, = (00);

WEM, = ({a(1),q(g(1))}; Bp, \ {a(1),a(2),t(f(1)),t(f(2)),q(g9(1)),p(1,1),p(1,2),
q(1),4(2),p(2,3)});

WFM; = ({a(1),q(g9(1)),p(2,3)}; Bp, \ {a(1),a(2),t(f(1)),t(f(2)),q(g(1)),p(1,1),
p(1,2),4(1),4(2),p(2,3)});

WEM; = WFM,

Thus the depth of P; is 3 and, for example, the stratum of p(2, 3) is 2. The well-founded
model of P; can be represented as W F M, or as

true(WFMT™) = {a(1),q(g(1)),p(2,3)}

5Below, we will sometimes omit the program P in these operators when the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A6 F. Riguzzi and T. Swift

undef (WFMP) = {a(2),4(f(1)),4(£(2)),p(1,1),p(1,2),4(1),¢(2)}
So WFM" is three-valued and P; is not dynamically stratified.

Given a normal program P, the atom dependency graph of P is used to bound the
search space of a derivation of a query Q under the WFS.

Definition 2.4 (Atom Dependency Graph). Let P be a normal program. Then the
atom dependency graph of P is a graph (V, E) such that V = Bp and an edge (vy,v3) € E
iff there is a grounding r of a clause in P such that v; = head(r) and vy or notvy €
literals(r)

2.2. Stable Model Semantics

The stable model semantics [Gelfond and Lifschitz 1988] is the main alternative to the
WFS. The stable models semantics associates zero, one or more two-valued models to
a normal program.

Definition 2.5 (Reduction). Given a normal program P and an interpretation Z, the
reduction % of P relative to Z is obtained from ground(P) by deleting

(1) each rule that has a negative literal not A such that A € 7

(2) all negative literals in the body of the remaining rules.

Thus if 7 is a full two-valued interpretation, then g is a program without negation as
failure and has a unique least Herbrand model (hm(Z).

Definition 2.6 (Stable Model). A two-valued interpretation 7 is a stable model or an
answer set of a program P if T = [hm(Z).

The relationships between the WFS and the stable models semantics is given by the
following two theorems [van Gelder et al. 1991].

THEOREM 2.7. If P has a well-founded total model, then that model is the unique
stable model.

THEOREM 2.8. The well-founded model of P is a subset of every stable model of P
seen as a three-valued interpretation.

The approach of solving problems by computing the answer sets of a logic program is
called Answer Set Programming (ASP).

2.3. Bounded term-size Programs
Given the definitions of dynamic stratification, we are now in a position to define
bounded term-size programs.

2.3.1. Norms of Terms and Atoms. Our definition of bounded term-size programs extends
that of [Riguzzi and Swift 2013] to use arbitrary norms 6. The same concept of a norm
will later be used in the definition of SLGsa and in the proofs of its properties.

Definition 2.9. Anorm N(-)is a (total) function from terms to non-negative integers
such that

(1) N(t) = 0iff ¢t is a variable.
(2) t subsumes ¢’ implies N (t) < N(t)

6The use of the term bounded in bounded term-size is independent of other usages in the literature of
termination of logic programs: [Pedreschi et al. 2002; Greco et al. 2013].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A7

A norm is finitary iff for any finite non-negative integer &, the cardinality of the set
{t|t € He A N(t) < k} is finite. A norm may be defined on an atom by considering that
atom as a term.

Definition 2.9 is quite general and differs from many definitions of norms that are
used in the literature of termination analysis: in particular it relies on the use of sub-
sumption. This use of subsumption is motivated by the use of norms to define term
abstractions in Section 4 7.

Example 2.10. The trivial norm, which sets N(¢) = 0 for any term ¢, satisfies Def-
inition 2.9 but is not finitary. A finitary norm has the additional property that it can
be used to define finite subsets of 7, (or B.). For instance, depth(-), a norm based
on the maximal depth of any subterm of a given term ¢ (defined formally in Defini-
tion 4.10) is finitary, since for any non-negative integer n, the set of terms in #, for
which depth(-) < n is finite. Similarly, the size norm, size(-), based on the total num-
ber of constant and function symbols in a term, is also finitary. More complex finitary
norms may also be defined, for instance weighing list functors differently than other
functors.

Definition 2.11 (Bounded Term-size Programs). Let P be a normal program,
norm(-) a finitary norm, 7 a 3-valued interpretation and 7r C Bp. Then an application
of OpTruek (Tr) (Definition 2.1) has the bounded term-size property if there is an in-
teger N such that norm(A) (= norm(B6) of Definition 2.1) is less than N for all 4 in
OpTrueZ (Tr). P itself has the bounded term-size property if there is some N for which
every application of OpTruel used to construct WF M (P) has the bounded term-size
property.

Example 2.12. P;,; from Example 1.1 does not have the bounded term-size property.
To see this, note that having the bounded term-size property would mean that there
is a bound N and a finitary norm, normg, (A) such that for every atom A in the range

of every application of OpTrue?"f, normfi,(A) < N. As there are an infinite number
of atoms in true(WFP(Py¢)) this is impossible. On the other hand P, and P; from
Example 2.3 do have the bounded term-size prpoperty.

While determining whether a program P is bounded term-size is clearly undecidable
in general, T§;, shows that ground(P) need not be finite if P is bounded term-size.

2.3.2. Bounded Term-size Queries. Although bounded term-size programs have appeal-
ing properties, there are many interesting programs that are not bounded term-size.
For instance, a program containing the Prolog predicate member/2 would not be
bounded term-size, although as any Prolog programmer knows, a query to member /2
will terminate whenever the second argument of the query is ground. We capture this
intuition with bounded term-size queries.

Definition 2.13 (Bounded Term-size Queries). Let P be a normal program, and @
an atomic query to P (not necessarily ground). Then the atomic search space of @
consists of the union of all ground instantiations of) in Bp together with all atoms
reachable in the atom dependency graph of P from any ground instantiation of Q). Let
Py = {r|r is a grounding of a rule of P and head(r) is in the atomic search space of Q)}.
The query @ is bounded term-size if Py is a bounded term-size program.

"Term abstractions are used to parameterize the NEW SUBGOAL operation of SLGga to capture both a new
form of SLG that is complete for canonical finite well-founded models, and also previous versions of SLG
described in the literature.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 F. Riguzzi and T. Swift

p q Cip.ay
- +
+ —
a t +
, Clay Ciyy
(a) Predicate depen-
dency graph of P;. (b) Component graph of P;.

Fig. 1. Graphs for P;.

2.4. Finitely Ground Programs

Finitely ground programs were introduced in [Calimeri et al. 2008] as a class of logic
programs with function symbols for which the set of ground instances of those rules
that influence the computation of answer sets is finite.

The definition of finitely ground programs relies on the notion of intelligent instanti-
ation, which is a method to obtain a ground program from a program with variables so
that no grounding of rules that matters for the computation of answer sets is excluded.

Intelligent instantiations and finitely ground programs were defined in [Calimeri
et al. 2008] with respect to disjunctive normal programs. Here we restrict these defini-
tions to the case of non-disjunctive normal programs. Moreover, we do not distinguish
between extensional and intensional predicates.

We first restate definitions from [Calimeri et al. 2008] that define dependency graphs
for predicates and their components.

Definition 2.14. The predicate dependency graph G(P) of a program P is a directed
graph whose nodes are the predicates of P. There is an edge (p2,p1) in G(P) if a rule for
p1 contains a positive literal for p; in its body?®.

Example 2.15. Program P; of Example 2.3 has the predicate dependency graph
shown in Figure 1(a).

Definition 2.16. Given a program P and its predicate dependency graph G(P), the
component graph of P, G (P), is a directed labeled graph having a node for each maxi-
mal strongly connected component (SCC) of G(P). G¢(P) is obtained by collapsing the
predicate dependency graph on its SCC, i.e., G (P) has an edge (Cs, C}) iff C; # C, and
there is a rule for some p; € C; such that ps occurs in its body. If p, occurs positively,
the edge is labeled “+” and if p, occurs negatively, the edge is labeled *-’ unless (Cs, C1)
can be labeled as +.

An ordering can be defined over the component graph.

Definition 2.17. A path in GY(P) is strong if all its edges are labeled +, and is weak
otherwise. A component ordering C = (Cy, ..., C,) for P is a total ordering of the nodes
in GY(P) such that for any C;, C; with i < j then 1) there are no strong paths from C;
to C; and 2) if there is a weak path from C; to C;, then there is a weak path from C; to
C;.

Example 2.18. Program P; of Example 2.3 has three SCCs: C{,), containing only
predicate a, Cy;y, containing only predicate ¢, and Cy, ,;, containing predicates p and

q.

8Note that this definition, unlike that of Definition 2.4, only creates edges for positive dependencies.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:9

The component graph for P; is shown in Figure 1(b). There are strong paths between
C{ay and Cyyy, Cyqy and Cy,, o3, Cpyy and Cy,, 3 and weak paths between any couple of
components. Thus the only component ordering is C = (C{,}, Cy3, Cip.q1), 80 Co = Cyay,
C1=Cpy, Ca = Cpp gy

The set of components can be seen as a partition on the predicates of P. Moreover,
each component C; corresponds to a module P(C;), a subprogram of P containing all
the rules with a predicate of C; in the head.

We now turn to definitions regarding program and rule instantiations. Supposing 7
is a set of atoms that are potentially true, we define a 7-restricted instance of a rule
as one that is supported by T.

Definition 2.19. Let r be arule and 7 a set of ground atoms. A T -restricted instance
r’ of r is a ground instance of r such that if an atom a occurs positively in the body of r
then a € 7. The set of all T-restricted instances of a program P is denoted as Instp(7T).

Example 2.20. Given the program module P;(Cy,;) of program P; of Example 2.3,
then

Instp, ¢, ({a(1), a(2)}) = {t(f(1)) « a(1),not q(1)., t(f(2)) < a(2),not q(2).}
Instp,(cy,) ({a(1),a(2),t(f(1)),(f(2)),q(¢(1))}) = {a(9(1)).,
p(L,1) = q(g(1)),t(f(1)),a(1)., p(1,2) < q(g(1)),t(f(2)), a(2).,
p(2,3) « not p(2,1).}
Instp, oy,) ({a(1),a(2), 1(f(1)), 1(f(2)),a(9(1)), p(1, 1), p(1,2)}) = {a(g(1)).,
p(L,1) < q(g(1)),t(f (1)), a(1)., p(1,2) <= q(g(1)),t(f(2)),a(2).,
q(1) < t(f(1)), p(1,1),not a(3)., q(2) < t(f(2)),p(1,2),not a(3).,
p(2,3) < notp(2,1).}

Assuming the program is evaluated from the bottom up using a component ordering,
we can identify rule groundings that do not matter for the computation of answer sets
and we can simplify the bodies of some others.

Definition 2.21. Given a program P and a component ordering (Cy,...,C,) for P, a
set S; of ground rules for component C; and a set of ground rules R for the components
preceding C;, the simplification of S; with respect to R, Simpl(S;,R), is obtained from
Sj by

(1) deleting each rule whose body contains some negative literal not a such that a €
Facts(R).

(2) eliminating from the remaining rules in S; each literal [such that
(a) 1 is positive and | € Facts(R); or
(b) I =nota, pred(a) € C;,i < j, and a ¢ Heads(R).

Example 2.22. Given program P; of Example 2.3, then
Simpl({a(1)., a(2) + notp(1,2).},0) =

{a(1).,a(2) + notp(1,2).}

Simpl({t(f(1)) < a(1),not q(1)., t(f(2)) < a(2),not q(2).},
{a(1).,a(2) + notp(1,2).}) =

 {H(f(1) = notq(1)., t(f(2)) < a(2),notq(2).}

Simpl({p(1,1) < q(g(1)),t(f(1)),a(1)., p(1,2) + q(g(1)),t(f(2)),a(2).,
p(2, 3) < p(27 1)'}5
{a(1)., a(2) <= notp(1,2)., t(f(1)) <= notq(1)., ¢t(f(2)) < a(2),not q(2).} =
{p(1,1) < q(g(1)),t(f(1))., p(1,2) < q(g(1)),t(f(2)),a(2).,
p(2,3) < p(2,1).}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 F. Riguzzi and T. Swift

(£(2)),p(1,2),n0t a(3).},
2)

The operator ¢ defined below is used to select and simplify ground rules from a module
P(Cj) on the basis of a set of ground rules for preceding modules.

Definition 2.23. Let P be a program with component ordering C = (Cy,...,C,), a
component C, a set X; of ground rules of P(C};), and a set R of ground rules of modules
of components C; with i < 7, let

bc; =(X;j) = Simpl(Instpc,)(Heads(R U X)), R)

Since Simpl(S;, R) is monotonic in its first argument, ¢c, =, is monotonic as well and
has a least fixed point ifp(¢c;.s,_,(0)). We can consider Ifp(¢c; s, ,(?)) as an operator
to be applied to components in order to drop many rules that do not influence answer
set computation.

Definition 2.24. Let P be a program and C = (Cy,...,C),) a component ordering for
P. The intelligent instantiation PC of P for C is the last element S,, of the sequence

So = lfp(dcy,0(0)); S = Sj—1 Ulfp(éc; s, (0))
Example 2.25. Given program P; of Example 2.3, then

¢¢,0(0) ={a(1)., a(2) <= notp(1,2).}
d’ém@(@) = ¢é~07@(®))
So = Ufp(9c,.0(0)) = {a(1)., a(2) < notp(1,2).}

06, .5,(0) = {t(f(1)) < notq(1)., t(f(2)) « a(2),not q(2).}
Pe,.5,0) = 0¢, 5,(0))
S1= SO U lfp(¢cl,50 (@)) = {(1(1), a(2) A nOtp(la 2)3
t(f(1)) < notq(1)., t(f(2)) < a(2),not q(2).}

bé, .5, (0) = {a(9(1)).,p(2,3) + p(2,1).}

O, (0) = {a(9(1)).,p(1,1) < t(f(1))., p(1,2) < t(£(2)),a(2).,p(2,3) < p(2,1).}

8.5 (0) = {q(g(1))., p(1,1) < t(f(1))., p(1,2) < t(f(2)),a(2).,
q(1) < t(f(1)),p(1,1)., q(2) < t(f(1)),p(1,2).,p(2,3) < p(2,1).}

&5, (0) = 02, 5, ()

S =81 Ulfp(pcy,s, (0)) = {a(1)., a(2) « not p(1,2).,

t(f(1)) = notq(1)., t(f(2)) + a(2),not q(2).,
q(g(1))., p(1,1) < t(f(1))., p(1,2) < t(f(2)),a(2).,
q(1) « t(f(1)),p(1,1)., q(2) < t(f(1)),p(1,2).,p(2,3) < p(2,1).}

We are now ready to define finitely ground programs.

Definition 2.26. A program P is finitely ground if its intelligent instantiation PC is
finite for all component orderings C.

Example 2.27. Program P; of Example 2.3 is finitely ground as its intelligent in-
stantiation is finite for the only component ordering.

Finitely ground programs enjoy the following three properties [Calimeri et al. 2008].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:11

THEOREM 2.28. Let P be a finitely ground program and let PC be its intelligent
instantiation for a component ordering C. Then P and PC have the same answer sets.

COROLLARY 2.29. A finitely ground program has finitely many answer sets, and
each of them is finite.

THEOREM 2.30. Recognizing whether a program is finitely ground is semi-
decidable.

The well-founded model enjoys the following property.

PROPOSITION 2.31. If P is a finitely ground program then true(WFM?Y) and
undef (W FM?T) are finite.

PROOF. It is clear that the size of the set of true(WFM?T) U undef (W FM?) has as
an upper bound the number of clauses in the intelligent instantiation, P¢, of P, which
is finite. O

3. STRONGLY BOUNDED TERM-SIZE PROGRAMS AND QUERIES
A program that is bounded term-size may have an infinite number of undefined atoms.
We define here strongly bounded term-size programs and queries.

Definition 3.1. A normal program P is strongly bounded term-size iff it is bounded
term-size, and in addition, undef (W FM?) is finite.

In [Riguzzi and Swift 2013] it was shown that for a normal program P, P is bounded
term-size iff W FM?" has a finite number of true atoms. The following statement holds
as a simple extension:

COROLLARY 3.2. Let P be a safe normal program. Then WFM? is a canonical
finite well-founded model iff P is strongly bounded term-size.

We now consider the relationship between strongly bounded term-size and finitely
ground programs.

Example 3.3. The following program is strongly bounded term-size (in fact,
bounded term-size) but is not finitely ground.

p(0) +— notq.
(f(X)) « p(X).

+ not p(1).
< p(1).

Qg

Its well-founded models is ({¢}, B \ {¢}). Its components are C, = {p} and C; = {q},
it has a strong path from {p} to {¢} and weak paths from {p} to {¢} and vice-versa.
Accordingly, its only component ordering is (Cy, C;) and its intelligent instantiation is

p(0) + notq.
p(£(0)) <+ p(0).
(f(f(O))) (f(O))-

q.

q +— notp(1).

q = p(1).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 F. Riguzzi and T. Swift

If a normal program P is finitely ground then it is strongly bounded term-size as an
immediate consequence of Proposition 2.31 and Corollary 3.2. Programs like that of
Example 3.3 show that the inclusion is proper.

COROLLARY 3.4. The class of programs that are strongly bounded term-size strictly
includes the class of normal programs that are finitely ground.

Strongly bounded term-size programs are undecidable just as are finitely ground pro-
grams.

THEOREM 3.5. Recognizing whether a program is strongly bounded term-size is
semi-decidable.

PROOF. Since strongly bounded term-size includes the class of finitely ground pro-
grams, then recognizing strongly bounded term-size program is undecidable by Theo-
rem 2.30. Semi-decidability follows by asking the query Py, ounding to the program built
as in Section 4.5. If SLGsp evaluation (Section 4.3) is used and answer “yes” is returned
if the evaluation terminates in finite time, then the program is strongly bounded term-
size. O

Strongly bounded term-size queries are defined analogously to bounded term-size
queries.

Definition 3.6 (Strongly Bounded Term-size Queries). Let P be a normal program,
and () an atomic query to P (not necessarily ground). Then Q is strongly bounded
term-size if Py is a strongly bounded term-size program.

Despite the undecidability of strongly bounded term-size programs, the class is im-
portant because it declaratively characterizes not only canonical finite models, but also
the programs for which tabled SLG resolution with subgoal abstraction terminates cor-
rectly: a topic to which we now turn.

4. TABLED EVALUATION OF STRONGLY BOUNDED TERM-SIZE PROGRAMS

In this section we present a tabled evaluation method that correctly evaluates strongly
bounded term-size programs. Our approach is based on SLG evaluation [Chen and
Warren 1996] which models well-founded computation for logic programs at an op-
erational level, ensuring goal-directedness, termination and optimal complexity for a
large class of programs. In this section we first present the main aspects of SLG infor-
mally through an example, and then briefly recall the definitions of SLG. Afterwards,
we present our extension, SLGsa, along with its properties.

4.1. An Informal Review of SLG

In the forest-of-trees model of SLG [Swift 1999], an evaluation is a possibly transfinite
sequence of forests (sets) of trees corresponding to subgoals that have been encoun-
tered in an evaluation. The nodes in each tree contains sets of literals divided into
those literals that have not been examined, and others that have been examined, but
their resolution delayed (cf. Definition 4.2). The need to delay some literals arises for
the following reason. Modern Prolog engines rely on a fixed order for selecting liter-
als in a rule, e.g., always left-to-right. However, well-founded computations cannot be
performed using a fixed-order literal selection function. Hence in SLG, the DELAY oper-
ation may postpone evaluation of some literals that may be later resolved through an
operation called SIMPLIFICATION. In addition to supporting the operational behavior
of Prolog, the use of delay and simplification supports the termination and complexity
results discussed later in this section.

Example 4.1. Consider the following program

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:13

r1: p(b).

ro: p(c) + not p(a).

r3: p(X) — (XY, Z),not p(Y),not p(Z).
rq: p(a) + p(b),p(a).

r5: t(a,a,b).

re : t(a,b,a)

and query p(c) (clauses are annotated with names for the purposes of explanation).
The SLG forest at the end of this evaluation is shown in Figure 2 where each node is
labeled with a number indicating the order in which it was created.

Nodes consist either of the symbol fail; or of a head representing the bindings made
to an atomic subgoal along with a body containing a set of delayed literals Delays,
followed by the | symbol, followed by a sequence of literals Goals that are still to be
examined. The evaluation begins by creating a tree for the initial query with root
p(c) + |p(c) in node 1. Children of root nodes are created via the operation PROGRAM
CLAUSE RESOLUTION just as in the SLD resolution of Prolog. Accordingly, the eval-
uation uses rule ry to create node 2. The (only possible) literal not p(a) in node 2 is

1. p(c) <— | p(c)
2. p(c)<— | not p(a) 17. p(c)<- It(¢,X,Y),not p(X),not p(Y)
24. complete
18. p(c)‘<— not p(a)l
23.p(c) <— 1|
3. p(a) <— I p(a)
4. p(a)<~ It(a,X,Y),not p(X),not p(Y) 15. p(a)<- Ip(b),p(a).
22. complete ‘
9. p(a)<- Im‘)t p(a),not p(b) 10. p(b)<- Inor p(b),not p(a) 16. p(a)‘<— Ip(a).
19. p(a)<— no‘t p(a)lnot p(b) 14. fail 21. fail
20. fail
8. complete W/’X’wa’w 13. complete 11 P(T) <~ Ip(b)
6. t(a,a.b) <— | 7. t(a,b,a) <~ | 12. p(b) <- 1

Fig. 2. Final forest for the query p(c) to P;.

selected. This literal has an underlying subgoal p(a) that does not correspond to the
root of any tree in the forest so far. Thus, the SLG operation NEW SUBGOAL creates a
new tree for p(a) (node 3), whose child, node 4, is created by PROGRAM CLAUSE RESO-
LUTION using rule r3. The NEW SUBGOAL operation is again used to create a new tree
for the selected literal ¢(a, X,Y) (node 5), and children nodes 6 and 7 are created by
PROGRAM CLAUSE RESOLUTION from rules r5 and r¢. These latter nodes have empty
Goals and are termed answers; moreover, since they also have empty Delays, they are

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 F. Riguzzi and T. Swift

unconditional answers.? Any atom in the ground instantiation of an unconditional an-
swer is true in the well-founded model of the program, cf. Theorem 4.15. In a case like
that of the tree for t(a, X,Y’), when it can be determined that no more answers can be
produced for the subgoal, the tree is marked as complete (step 8). The SLG operation
POSITIVE RETURN is used to resolve the first of answer to ¢(a, X,Y) against the se-
lected literal of node 4, producing node 9. The selected literal of this latter node has
p(a) as its underlying subgoal, but there is already a tree for p(a) in the forest and
there are no answers for p(a) to return. Since there is another unconditional answer
for ¢(a, X,Y) (node 7), POSITIVE RETURN can be used to produce node 10. The un-
derlying subgoal p(b) is selected, the tree for p(b) is created by NEW SUBGOAL (node
11), and it is eventually determined that the subgoal p(b) has an unconditional answer
(node 12); accordingly, using the NEGATION FAILURE operation, the failure node, node
14, is created. Then the computation, via PROGRAM CLAUSE RESOLUTION and rule
r4, produces another child for p(a), node 15, and resolves away p(b) creating node 16.
An application of PROGRAM CLAUSE RESOLUTION to node 1 using clause r3 produces
node 17, which cannot be further resolved. At this stage (up to node 17) the subgoal
p(a) is neither true, as no unconditional answers have been derived for it, nor false as
one of its possible derivations, node 9, effectively has a loop through negation. How-
ever, it is possible to apply the DELAYING operation to a node such as node 2 that has
not p(a) as its selected negative literal. This operation moves not p(a) from the Goals to
the right of the | symbol into the Delays to the left of the | symbol, producing node 18,
which is termed a conditional answer as it has empty Goals but non-empty Delays'®.
DELAYING also produces node 19 whose new selected literal not p(b) now fails (given
the unconditional answer in node 12), producing the failure node 20. At this stage,
all possible operations for non-answer nodes in p(a) and the trees it depends on have
been performed so that the tree for p(a) may be marked as complete (step 22). The
completed subgoal p(a) has no answers, and so is termed failed and is false in the well-
founded model. This failed literal can be removed from the Delays of node 18 through
the SIMPLIFICATION operation producing the unconditional answer node 23.

4.2. SLG Evaluation

SLG does not especially differ from other Prolog-like tabling formalisms in the case
of programs that do not use default negation. However, as indicated in Example 4.1,
for negation it introduces the concept of delaying literals in order to be able to find
witnesses of failure anywhere in a rule, along with the concept of simplifying these
delayed literals whenever their truth value becomes known.

An SLG evaluation proceeds by constructing a sequence of forests according to the
set of SLG operations. Such forests, along with the trees and nodes it contains, are
defined as follows:

Definition 4.2. A node has the form
AnswerTemplate «+ Delays|Goals or fail.

In the first form, AnswerTemplate is an atom, while Delays and Goals are sequences
of literals. The second form is called a failure node. An SLG tree T has a root of the
form S «+ |S for some atom S: we call S the root node for T' and T the tree for S. An
SLG forest F is a set of SLG trees. A node N is an answer when it is a leaf node for

9In a practical program, a predicate defined by simple facts would not be evaluated using tabling, but rather
would use SLD resolution as in Prolog.

10Choosing DELAYING in this order is not optimal and is made for purposes of illustrating the operations of
SLG. This does not affect the result of the query itself since SLG is confluent [Chen and Warren 1996].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:15

which Goals is empty. If the Delays sequence of an answer is empty, it is termed an
unconditional answer; otherwise, it is a conditional answer. A tree T' may be marked
with the symbol complete.

The underlying subgoal of a literal L is L if L is a positive literal; otherwise it is S if
L=not§S.

An SLG evaluation £ of an atomic query @ to a program P is a sequence of forests.
£ starts with an initial forest containing the single node @ «+ |Q and creates the n'"
forest in the sequence by applying an SLG operation if n is a successor ordinal, or by
taking the union of forests in previous sequences if n is a limit ordinal. If no further
operation is applicable, then the final forest for the evaluation of () has been reached.
If there are selected non-ground negative literals in F then the evaluation is termed
floundered. We introduce SLG operations incrementally, in Definitions 4.4, 4.6, and
4.9. Before we present the first set of operations, we introduce the definition of answer
resolution, which differs from resolution in SLD in order to take account of Delays in
conditional answers.

Definition 4.3 (SLG Resolvent). Let N be anode A + D|Ly,..., L,, where n > 0. Let
Ans = A’ < D’| be an answer whose variables are disjoint from N. N is SLG resolvable
with Ansif 3i, 1 <4 < n, such that L; and A’ are unifiable with a most general unifier
0. The SLG resolvent of N and Ans on L; has the form:

(A — D‘Ll, ceny Lifl, Li+17 ey Ln)ﬁ
if D’ is empty; otherwise the SLG resolvent has the form:
(A<« D, Li|L1, ... Li—1, Lit1, .oy Ly,)0

SLG resolution delays L; rather than propagating the answer’s Delays, D’, which
means that L; in the Delays of the resolvent is only resolved once all of the delay liter-
als of D’ have become true or false. This is necessary, as shown in [Chen and Warren
1996], to ensure polynomial data complexity.!!

Definition 4.4 (SLG Operations: 1). Let P be a program and assume that a leftmost
selection function is used to select a literal from the Goals in a node. Given a forest F,,
of an SLG evaluation of P, F,, 11 may be produced by one of the following operations.

(1) NEW SUBGOAL: Let F,, contain a tree with non-root node
N = Ans < Delays|G, Goals

where S is the underlying subgoal of GG, while F,, contains no tree with root S. Then
add the tree S < |S to F,,.

(2) PROGRAM CLAUSE RESOLUTION: Let F,, contain a tree with root node N = S «
|S, C'be arule Head + Body such that Head unifies with S with mgu 6, and assume
N does not have a child N4 = (S + |Body)f. Then add N.p;q as a child of N.

(3) POSITIVE RETURN: Let F,, contain a tree with non-root node

N = Ans < Delays|S, Goals

whose selected literal S is positive. Let Ans be an answer for S in F,, and N4 be
the SLG resolvent of N and Ans on S. Assume that in F,,, N does not have a child
Nenita- Then add N4 as a child of V.

As illustrated in Example 4.1, NEW SUBGOAL creates a new tree in the forest F for a
selected literal in the Goals of some (non-root) node in a tree in F. Once a root node N

11If Delays were propagated directly, then the Delays could effectively contain all derivations which could
be exponentially many in the worst case.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 F. Riguzzi and T. Swift

is created, the PROGRAM CLAUSE RESOLUTION operation can create children for N,
given the rules in the program. POSITIVE RETURN resolves positive literals in nodes
with answers already in the forest, using SLG resolution according to Definition 4.3.

If a sequence of SLG operations yields a (possibly intermediate) forest containing
an unconditional answer, then this answer is considered to be true. Likewise, if no
more operations are applicable to a set of trees (i.e., the set of subgoals associated to
these trees is completely evaluated, Definition 4.7), and if in addition none of the trees
contains an unconditional answer, then we can interpret all these subgoals as false.
Extending this correspondence, we associate an SLG forest with a partial interpreta-
tion. For a final forest, this interpretation is proved to correspond to the well-founded
model. (cf. Theorem 4.15 below).

Definition 4.5. Let F be an SLG forest. Then the interpretation induced by F, Ir,
is the smallest set of literals such that:

— An atom A € Zx iff A is in the ground instantiation of some unconditional answer
Ans < |in F.

— A literal not A € Zx iff A is in the ground instantiation of an atom whose tree in F
is marked as complete, and A is not in the ground instantiation of any answer in a
tree in F.

An atom S is successful (resp. failed) in F if S’ (resp. not S’) is in Z for every S’ in the
ground instantiation of S. A literal not S is successful (resp. failed) in F if not S’ (resp.
S’)is in Zr for every S’ in the ground instantiation of S.

Given a three-valued interpretation J and forest F, the restriction of J to F, J|r, is
the interpretation such that true(J|r) (false(J|r)) consists of those atoms in ¢rue(J)
(false(J)) that are in the ground instantiation of some subgoal whose tree is in F.

Whenever an atom A is successful, we can fail its default negation not A. If an atom
A is failed, then we can simplify away not A. Ground default negated literals that are
neither failed nor successful may be delayed and later simplified. More precisely:

Definition 4.6 (SLG Operations: 2). Let P be program and assume a selection func-
tion as in Definition 4.4. Given a forest F,, of an SLG evaluation of P, 7,1 may be
produced by one of the following operations.

(4) NEGATIVE RETURN: Let F,, contain a tree with a leaf node whose selected literal
not S is ground

N = Ans < Delays|not S, Goals.

(a) NEGATION SUCCESS: If S is failed in F,,, then create a child for NV of the form
Ans < Delays|Goals.
(b) NEGATION FAILURE: If S succeeds in F,,, then create a child for N of the form
fail.
(5) DELAYING: Let F,, contain a tree with leaf node of the form
N = Ans < Delays|not S, Goals

whose selected literal not S is ground, but S is neither successful nor failed in F,.
Then create a child for N of the form Ans < Delays, not S|Goals.
(6) SIMPLIFICATION: Let F,, contain a tree with leaf node of the form
N = Ans < Delays|
and let L € Delays
(a) If L is failed in F, then create a child of the form fail for N.
(b) If L is successful in F, then create a child of the form Ans + Delays’| for N,
where Delays’ = Delays\ {L}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:17

SLG also includes an operation that marks a set of trees as complete if the correspond-
ing set of subgoals is completely evaluated.

Definition 4.7. A set S of subgoals in a forest F is completely evaluated if at least
one of the following conditions holds for each S € S :

(1) The tree for S contains an answer S < |; or
(2) For each node N in the tree for S:
(a) The underlying subgoal of the selected literal of N is marked as complete; or
(b) The underlying subgoal of the selected literal of N is in S and there are no ap-
plicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE RETURN
(Definition 4.4), NEGATIVE RETURN or DELAYING (Definition 4.6) operations
for N.

Intuitively, a set of subgoals is completely evaluated if no further SLG operations will
add information about these subgoals. If condition 1 holds, the COMPLETION opera-
tion can be applied, as any atom in the ground instantiation of S has already been
determined to be true. Otherwise, condition 2(b) of the above definition prevents the
COMPLETION operation from being applied to a tree from a set if certain other oper-
ations are applicable to the trees in the set. This notion of completion is incremental
in the sense that once a set S of mutually dependent subgoals is fully evaluated, the
derivation need not be concerned with the trees for S apart from any answers they
contain. In an actual implementation, resources for such trees are reclaimed.

In certain cases the propagation of delayed literals through SLG resolution (Defi-
nition 4.3) can lead to a set of unsupported answers — conditional answers that are
false in the well-founded model!2. Intuitively, these answers, which have positive mu-
tual dependencies through delay literals, correspond to an unfounded set, but their
technical definition is based on the form of conditional answers.

Definition 4.8. Let F be an SLG forest and A be an atom that occurs in the head of
some answer in a tree with root S. Then A is supported in F if and only if:

(1) S is not completely evaluated; or
(2) there exists an answer node A’ + Delays| in S such that A’ subsumes A and for
every positive literal L € Delays, L is supported in F.

We are now able to characterize the last two SLG operations: one allows the comple-
tion of trees, and the other removes unsupported answers.

Definition 4.9 (SLG Operations: 3). Let P be a program. Given a forest F,, of an
SLG evaluation of P, F,,,1 may also be produced by one of the following operations.

(8) COMPLETION: Given a completely evaluated set S of subgoals (Definition 4.7),
mark the trees for all subgoals in S as complete.

(9) ANSWER COMPLETION: Given a set of unsupported atoms U/ A, create a failure
node as a child for each answer whose head is in U/ A.

Each of the operations (1)—(9), in Definitions 4.4, 4.6 and 4.9, can be seen as a function
that associates a forest with a new forest by adding a new tree, adding a new node to
an existing tree, or marking a set of trees as complete.

12As an aside, we note that unsupported answers appear to be uncommon in evaluation strategies that
minimize the use of delay, such as those used by XSB [Swift and Warren 2012].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 F. Riguzzi and T. Swift

4.3. Extending SLG with Subgoal Abstractions

An abstraction of a term ¢, denoted abs(t), may replace subterms of ¢ by position vari-
ables: formally, abs(t) is a term such that if abs(t)|, € (FUV), then abs(t)|r = t|.. For in-
stance p(f(g(X1.1.1), X1.2), X2) is an abstraction of p(f(g(a), X), X). It is easy to see that
abs(t) subsumes ¢. An abstraction abs(-) is finitary if the cardinality of {abs(t)|t € H.}
is finite!3. As with norms, abstractions may be applied to atoms by taking those atoms
as terms.

Definition 4.10. A depth norm, denoted depth(-), is a norm that maps a term ¢ to
the maximal depth of any position in ¢, where

—depth(A) is 0 if ¢|A is a position variable, and is 1 otherwise;
— depth(w.i) is depth(mw)+1if t|, ; is a not a position variable, and is depth () otherwise.

For a non-negative integer k, a depth-k abstraction of t maps t|r to itself if depth(w) < k,
and maps t|r to X, if depth(n) = k + 1.

Example 4.11. Within the atom A = p(a, f(b,g(c))) the depth of ¢ is 4. The
depth 3 abstraction of A is p(a, f(b,g(X2.21))), and the depth 2 abstraction of A is
p(a, f(X2.1,X522)). Both the depth norm and the family of depth-k abstractions are fini-
tary for any non-negative integer k. As a convention, we consider the identity function
as a depth-w abstraction.

The following simple lemma is immediate from the definition and will be used for
the proof of the complexity of SLGsa.

LEMMA 4.12. If k is a non-negative integer, the depth-k abstraction of t is unique.

PROOF. Immediate given that any term rooted in a position with depth £ + 1 is
replaced by a position variable that is determined by the position. O

Depth-k abstractions are simple to understand and to implement. However, the
number of terms whose depth is less than k£ may grow exponentially in many lan-
guages. Thus, other abstractions can be practically useful: such as those based on the
size of a term, or those that weigh the occurrence of certain types of function symbols
over others (e.g., weighing list symbols less than other function symbols). Finally, note
that the identity function on terms is an abstraction function, but is not finitary (as it
maps infinite Herbrand bases to infinite sets).

The single extension to basic SLG needed to ensure finite evaluations for strongly
bounded term-size programs is the addition of the use of an abstraction function to the
NEW SUBGOAL operation.

Definition 4.13. NEW SUBGOAL: Let F,, contain a tree with non-root node
N = Ans < Delays|G, Goals

where S is the underlying subgoal of G, while F,, contains no tree with root abs(S5).
Then add the tree abs(S) < |abs(S) to F,,.

We denote this extended version as SLGsa to distinguish it from previous versions in
the literature. Note that since the identity function is an abstraction function, SLGsa
includes SLG as a subcase.

Example 4.14. Consider the goal p(1) to the program Py, from Example 1.1. If this
goal is evaluated with basic SLG, an infinite number of goals will be created: p(1),

13Since abstractions replace terms by position variables, if abs(-) is finitary, the cardinality of {abs(t)|t €
H .} will be finite without needing to consider equivalences of terms, such as variance.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:19

p(f(1)), p(f(f(1))), and so on. However, if evaluated with a depth-3 abstraction func-
tion, only the first two of these goals together with p(f(f(X7.1.1))) would be created,
neither of which would have any answers. Note that the technique of “call subsump-
tion”, which is used by some tabling methods, would not help in the basic case where
subgoal abstraction is not used, as none of the goals p(1), p(f(1)), p(f(f(1))),... sub-
sume one another.

4.4. Results

The following theorem shows how SLGsa preserves the correctness of SLG, regardless
of whether it is evaluating a query to a program that is strongly bounded term-size
or not. The theorem is restricted to safe programs in order to exclude possibilities
where abstraction leads to nonground calls to negative literals. The therorem holds for
transfinite evaluations, (which have not been presented in this paper)!4.

THEOREM 4.15. Let £ be an SLGsp evaluation of a query @ to a safe program P
with final forest Fg,. Then Ir, = WFM(P)|z,,.

As stated below, SLGsa terminates on any strongly bounded term-size program.
However if subgoal abstraction is used for a goal to a rule that has non-safe nega-
tion, abstraction may introduce non-ground negative goals and hence floundered eval-
uations. For instance, given the rule p(X) < not q(X) the goal p(f(f(fla)))) will not
lead to unsafe negation, but if the goal were abstracted to p(f(f(X1.1.1))), the goal not
q(f(f(X11.1)) would be unsafe.

THEOREM 4.16. Let QQ be a query to a strongly bounded term-size program P. Then
any SLGsa evaluation £ of QQ that uses a finitary abstraction operation reaches a final
forest Fp, after a finite number of steps. If P is safe, then Fg,, will not be floundered.

4.5. SLGsa and Intelligent Instantiation
SLGsa and intelligent instantiation both terminate on finitely ground programs, so it
is natural to compare the two approaches.

Example 4.17. Consider the program:

p(X.)Y) «¢(X,Y,Z),notp(Y, Z).
t(a,b,c).

The intelligent instantiation of this program is the set of clauses

{t(a,b,c), p(a,b) < notp(b,c)}.

Note that because p(b, c¢) and p(a,b) are in the same component, not p(b, ¢) cannot be
removed from the body of the second clause. However, because SLG evaluates negation
based on dynamic dependencies, the interpretation of the final forest for the top-level
goal p(X,Y) will assign p(a, b) as true, and all other instantiations of p(X,Y) as false.

In order to compare SLGsp to intelligent instantiation more precisely, we need a
framework to compare their results. First, since intelligent instantiation grounds an
entire program while SLGsp is query-oriented, we introduce the notion of a grounding
predicate to ensure that an entire program is grounded. Let P be a safe normal pro-
gram for which every predicate is tabled. Then the grounding predicate Py ounding 18

14The proof for this theorem, as well as other longer proofs, is given in the appendix.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 F. Riguzzi and T. Swift

defined by the set of rules:

Pgraunding <~ pT8d1 ()5_})
Pgrounding <~ Predn(Xn).

—

where for each predicate pred; occurring in P, pred;(X;) is an atom of pred, whose
arguments consist solely of position variables.

Next, we specify a way to compare two ground instantiations of the same program.
Let ry = Head < Body, and ro = Head < Body, be ground clauses: r| is at least as
reduced as ry, denoted ry >,..q 72, iff literals(Body,) C literals(Bodys). Similarly, for
ground programs P, P, Pi >,.q P iff for every rule r; in P; there is a rule 75 in P,
such that r; >,.q ro. Finally as notation, if 7 is an SLGsa forest, then answers(F) is
the set of answers in F taken as program clauses.

The following theorem indicates that, for finitely ground programs, SLGsx is at least
as effective a grounder as intelligent instantiation. Its proof essentially follows from
the correctness of SLG (and SLGsa) with respect to the stable model semantics, com-
bined with Theorem 2.29.

THEOREM 4.18. Let P be a safe, finitely ground program P. Let £ be an SLGsa
evaluation of a grounding predicate of P whose final forest is Fgyn, and Pigpled =
answers(Ffp).

(1) ground(Piapicq) is equal to %}1&?-

(2) Let Py; be the intelligent instantiation of P. Then ground(Piapied) >red Pii-

4.6. Complexity of SLGsa

While the abstract complexity of query evaluation has been studied for SLG and its
extensions (e.g., [Chen and Warren 1996; Alferes et al. 2013]), the results obtained are
typically that evaluation of a ground query has polynomial complexity in the size of a
given function-free program. Since SLGsp differs only from SLG in its NEW SUBGOAL
operation, a similar result can be shown for SLGsa, assuming proper conditions for
abs(-). However, such a result does not provide any insight into the behavior of SLGsa
on strongly bounded term-size programs that contain function symbols: the very type
of programs it is designed to address.

In previous approaches to complexity (e.g., [van Gelder 1989]), P is a (finite) ground
program without function symbols. Define size(r) for a rule r as one plus the number
of body literals in r; size(P) for a program P is the sum of the size of each rule. Next,
let atoms(P) indicate the set of atoms appearing in P. Then the best currently known
bound on worst-case complexity for computing the well-founded semantics of an unre-
stricted ground normal program P is size(P) X |atoms(P)| [van Gelder 1989], and is
shown by induction on the alternating fixed point computation of P.

In order to determine the complexity of SLGsa on strongly bounded term-size pro-
grams that contain function symbols, a new cost model C¢ypction is needed, as neither P
nor Py (Definition 3.6) need be finite. Accordingly, let P be a ground strongly bounded
term-size program with function symbols, and @ a ground query. In the cost model
Cfunction, the size of a rule r is defined as above: that is, one plus the number of body
literals in r. Therefore size(-) does not consider the number of symbols or the depth of
terms within an atom or literal.

Next, assume that P is a ground strongly bounded term-size program and @ a
ground query. Since P may not be finite, we need to devise a finite parameter for
Crunction to stand in for P. By Theorem 4.16, an SLGsa evaluation £ of) against P
that uses a finitary abstraction function will produce a final forest Fp, after a finite
number of steps, and Fp, will itself be finite. Since P is ground, then given £, we can

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:21

construct the set of ground rules that were used in some PROGRAM CLAUSE RESO-
LUTION operation and denote this set as the program P(€). Since & is finite, Py(E)
must always be finite. Further, as Py is constructed from the atom dependency graph
rather than from a dynamic computation, it is evident that Py(€) C Pgy. Next, define
atoms(Fpyn) as the set of atoms A such that that A occurs as the head of some node in
Ffin: in other words, atoms(Fp,) captures the set of atoms that were evaluated by &.
It is evident that atoms(Fp,) is finite, although atoms(Pg) may not be'®. Nonetheless
in the worst case, if atoms(Pg) is finite then atoms(Fp,) may contain every atom in
Py plus those roots of trees that have been abstracted via a non-trivial application of
the depth-% abstraction function. Thus |atoms(Fp,)| is bounded by 2 x |atoms(Pg)| if
atoms(Pg) is finite. We state these observations formally.

LEMMA 4.19. Let P be a ground strongly bounded term-size program and Q a
ground query. Let £ be an SLGsa evaluation of @) against Py that uses a finitary
abstraction function, and let the final forest of £ be Fp,. Then Py(E) is finite and
Py(E) C Py. In addition, atoms(Fpy,) is finite and if atoms(Pg) is also finite then
|atoms(Fpn)| < 2 x |(atoms(Pg)|.

Since size(Pg(&)) x |atoms(Fpy,)| is finite, and at most 2 x size(P) x |atoms(P)|, showing
that an SLGsa evaluation has complexity of at most size(Pg(£)) x |atoms(Fpy,)| will
ensure that it has the optimal known complexity for evaluating a query according to
WF'S. Towards this end, the following lemma bounds the number of nodes in the final
forest of an evaluation. Its proof depends on showing that a ground program clause is
used to produce a node in exactly one tree in a computation. This property holds under
Cfunction for depth-k abstractions, although it remains open for arbitrary abstractions.

LEMMA 4.20. Let P be a ground program, Q a ground query, and £ a terminating
SLGsa evaluation of Q against P that uses depth-k abstraction. Then the number of
nodes in the final forest Fpy, is at most O(size(Pg(E))).

As a next step in defining Ctynction, We consider the cost of each SLGsa operation.
First, since the scope of an abstraction function is an atom, the cost of applying an
abstraction function is constant in C functionm. Note that the NEW SUBGOAL opera-
tion creates a root node for a given atomic subgoal, and thus may be considered a
constant-time operation. Similarly the POSITIVE RETURN, NEGATIVE RETURN, DE-
LAYING, and SIMPLIFICATION operations each affect one goal or delay literal and may
also be considered constant-time. The PROGRAM CLAUSE RESOLUTION, however, has
a cost proportional to the size of the rule it applies. The COMPLETION operation applies
to a set of subgoals S in a forest F so that its cost is proportional to the cardinality of
S:in the worst case this is |atoms(F)|. Similarly, the ANSWER COMPLETION operation
must determine an unsupported set of answers and its worst-case cost is size(Pg(E)).

The cost model Cyynetion thus consists of

— The definition of the size of a program that contains function symbols based on those
parts of a program dynamically traversed by an SLGsa evaluation: Py (€);

— The number of its atoms in the evaluation to which operations might be applied:
atoms(Fpy); and

15Note, that there is a maximum number ngym of symbols for any atom in a given set atoms(Fp;,) since
atoms(Ffy,) is finite. This consideration helps motivate the choice that size(-) does not consider the number
of symbols within particular atoms, as size(-) can be parameterized by nsym.

16Tn a practical implementation of SLGsa, atoms need to be traversed to determine whether operations
are applicable. Although any abstraction function is constant in Cynction, @ practical abstraction function
should have a low cost as a function of the actual size of an atom to which it is applied (i.e., as a function of
the total number of positions in an atom).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 F. Riguzzi and T. Swift

— The costs for each individual SLGsa operation.

Under this cost model, it is shown in the appendix that the following theorem holds.
The proof makes use of the way in which the definitions of SLGsa operations prevent
their redundant application, and effectively “amortizes” the cost of the non-constant-
time operations.

THEOREM 4.21. Let P be a ground program, Q a ground query, and £ a terminating
SLGsa evaluation of Q against P that uses depth-k abstraction, and with final forest
Ffin. Then under the cost model Cyynction, the cost of £ is O(|atoms(Fpy,)| X size(Pg(£))).

5. IMPLEMENTATION OF SUBGOAL ABSTRACTION

Depth-£ subgoal abstraction is built into the XSB engine and supported in Versions
3.3.8 and higher of XSB (xsb.sourceforge.net). Subgoal abstraction can be invoked in
various ways, the most flexible of which is to set it on a per-predicate basis by the
directive:

:- table <predspec> as subgoal_depth(<n>),...

For the predicate(s) in predspec, this directive ensures depth-k abstraction, setting
subgoal_depth(<n>) as a table property that can be combined with other properties
such as incremental, thread-private, thread-shared, and so on'’. In order to avoid the
creation of floundering subgoals, XSB only abstracts positive literals; however, this
limitation does not affect termination for strongly bounded term-size programs that
are safe, as the binding of each variable in a negative goal must have been produced
as part of an answer to a positive subgoal. Within XSB, abstraction is permitted on
subgoals with attributed variables (which support constraint-based reasoning) as de-
scribed below.

At a high level, the implementation of subgoal abstraction can be seen as a dynami-
cally performed rewriting of a subgoal:

,GO,...= ... abs(GO),abs(GO) = G, ... @)

i.e., the goal G is replaced by the depth-%k abstraction abs(G¢) and abs(G6) is called,;
any answers returned for abs(G6) are unified with the original goal G# — a step we
term post-unification'8.

Example 5.1. As a concrete example, suppose the goal p(1) was made to the pro-
gram Psbts

X) < p(f(X)).
f

(f(X))) + a(X).
0).
1).

-]

(
(
(
(

in an evaluation where depth-3 abstraction is used. The tabled subgoal p(1) pro-
duces the subgoal p(f(1)) by PROGRAM CLAUSE RESOLUTION against the clause
p(X) + p(f(X)), and then the subgoal p(f(f(1))) is produced by resolution against
the same clause. Setting G0 = p(f(f(1))), then its depth-3 abstraction, abs(G6), is
p(f(f(X1.11))) and by Formula (2), the subgoal p(f(f(X;.1.1))) would be called. This

17See the XSB manual for the current list of properties with which depth-k abstraction is compatible.
18 As an aside, we note that the proof of correctness of SLGsa (Theorem 4.15) is based on just such a trans-
formation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:23

subgoal is completely evaluated producing the answers p(f(f(0))) and p(f(f(1))). Af-
terwards, both solutions to p(f(f(X1.1.1))) would be post-unified with p(f(f(1))) but
would succeed only for p(f(f(1))), which allows X; 1 ; to unify with 1.

5.1. Implementation within the SLG-WAM

Our description of engine-level details of subgoal abstraction assumes some knowledge
of the SLG-WAM engine, as presented in [Sagonas and Swift 1998; Ramakrishnan
et al. 1999] and other papers. Let G6 be a tabled subgoal and assume that a maximum
depth, k, has been set for the underlying predicate, Gp, of G6 and that the action
is set to abstract. The abstraction is performed during the tabletry instruction (the
SLG-WAM instruction corresponding to the NEW SUBGOAL operation). Within this
instruction, a single-pass check-insert traversal of the subgoal G6 checks whether a
variant of G0 has already been encountered during an evaluation, and creates a table
for the subgoal if not. During this traversal, a depth counter is initialized by checking
a cell in the table information frame for the predicate Gp; if the depth k is reached at
position ;, a pointer to the subterm rooted at 7; (G0|,) is added to an abstraction stack
together with the (heap) address of 7;; then a free (position) variable X, is created at
position 7;, and trailed with a pre-assignment cell in its trail frame, as used for mutable
variables in XSB and other Prolog systems. Such a cell contains information about
the value of a variable before a binding, and so supports backtrackable “destructive”
assignment within a Prolog engine. After the abstraction and trailing, X, is copied
into the table in the normal manner (as part of the abstracted goal abs(G#)). If G0 is
part of a set of mutually dependent subgoals, the SLG-WAM may need to repeatedly
suspend and resume computation of abs(G6) as answers for other subgoals are derived
and used for resolution. In general, the trail for the SLG-WAM supports suspending
and resuming environments with a value cell: that is, it trails the value of the binding
to a variable along with the variable itself. However, abstractions may also need to be
undone and re-applied during environment switching; because pre-assignment trailing
is used, the abstracted variables are reset to their prior (non-abstracted) terms when
backtracking above the call to G6, then reset to their abstracted value via the value
cell. To summarize, trail frames for abstracted variables require 1) the pre-assignment
cell (in this case, pointing to G|,); 2) the value cell (in this case, pointing to X,); and
3) the variable address cell, just as in the WAM (in this case, the address of X,).
Trailing for non-abstracted variables does not require the pre-assignment cell'®.

During the same check-insert traversal of the subgoal G6, the SLG-WAM creates a
substitution factor: a vector that corresponds to the set of variables in G6. Substitution
factors are maintained in the heap, and are not part of permanent table storage. The
use of substitution factors allows the SLG-WAM to represent answers in a table as
substitutions to the variables in a subgoal, which is more compact than representing
answers as atoms that are instantiations of the subgoal [Ramakrishnan et al. 1999].
Using the substitution factor, when an answer is derived for a generator of G6 or re-
turned to a consumer of G0, the engine need only copy bindings into or out of the table
by traversing the substitution factor, rather than having to re-traverse the entire sub-
goal and answer. When subgoal abstraction is used for G, the abstraction code ensures
that the frames of the abstraction stack are also added to the substitution factor. The
abstraction frames are then used for post-unification: the subterm in each abstracted
position of the answer (abs(G0)n|,) is unified with the original subterm at that position
(GO|,). Only if all such unifications succeed is the answer return successful.

19As noted in [Sagonas and Swift 1998] since the SLG-WAM trail represents a tree rather than a stack,
frames also contain a cell that points to their previous trail frame. Such a cell is required regardless of
whether a trailed variable has been abstracted.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 F. Riguzzi and T. Swift

Example 5.2. Continuing from Example 5.1, for the abstracted subgoal
p(f(f(X1.11))), the substitution factor would consist of the variable X;;;. When
evaluating p(f(f(X1.1.1))) the use of the substitution factor allows the engine to tra-
verse only the bindings (0 and 1) to X; ;.1 when copying answers into the table, and to
store only these bindings: as indicated in [Ramakrishnan et al. 1999], no retraversal
or storage of ancestor positions is necessary. As mentioned above, support for SLGsa
requires augmenting the substitution factor with a series of abstraction frames, here
a single frame containing X;;; and 1. When copying answers out of the table the
variable X 1, of the substitution factor is bound, and once this is accomplished, the
post-unifications of the abstraction stack are performed: here unifying the bound
value of X7 1.1 with 1, so that only the binding X; ;.1 = 1 succeeds.

If a tabled subgoal contains attributed variables, the attributed variables are han-
dled as follows. XSB tables subgoals with attributed variables by copying variable at-
tributes into the table as specially designated terms. Suppose subgoal abstraction re-
places a term ¢ rooted in position 7 with a free variable X . If ¢ contains an attributed
variable as a subterm, then the post-unification of the attributed variable may call a
unification hook, just as any unification would, so that the abstraction code need not
treat such abstracted variables in a special manner. However, if the depth bound is ex-
ceeded while traversing a variable attribute, abstraction is disabled until the attribute
has been traversed. The reason for this is that abstracting midway through a variable
attribute would break the unification hooks for many classes of attributes.

To summarize, the engine-level implementation of subgoal abstraction essentially
involves the ability to dynamically implement the rewriting of Formula (2). First of
all, rewriting G0 into abs(G0) requires the ability to calculate the norm of a goal, and
to apply an abstraction function. In the case of depth-% abstraction, calculation of the
norm and abstraction application can be done without an additional term traversal be-
yond that needed for tabling. Once the abstraction is performed, the abstraction vector
is used to perform the post-unification: abs(G) = G6. Because tabling requires not just
backtracking, but suspension and resumption of subgoals, the trail must be extended
to undo the abstraction on backtracking caused by suspension, as well as to redo the
abstraction when a tabled subgoal is resumed. The implementation of each of these
operations requires care, as they interact with some of the lowest-level functionality
of a tabling engine. At the same time, these operations affect only a few parts of an
engine in very specific ways. As a result, the implementation of the depth check and
abstraction, of abstraction vectors, and of the post-unification of abstracted answers
with the original goal required a total of about 300-400 lines of code in XSB.

5.2. Tests for Performance Overhead of Subgoal Abstraction

Subgoal abstraction obviously improves performance by ensuring termination when
the atom dependency graph of a program contains an infinite path (as in Pf,, of Ex-
ample 1.1). Additionally, if an abstraction allows different subgoals to share the same
table that otherwise would not, it can benefit performance in a manner similar to call
subsumption. Because of these obvious benefits, its is natural to ask if there are cases
when subgoal abstraction should not be used, a question we address here by measuring
the performance overhead of subgoal abstraction.

To investigate the overhead of subgoal abstraction, a series of tests were executed on
a Macintosh laptop with a 2.43 GHz Intel Core i5 processor and 4 GBytes of memory,
running OS X 10.6.8. Timings on this platform show a variance of up to 6% for the
same executable and program.

As a preliminary step, various cases of linear recursion were tested, comparing a
version of XSB with subgoal abstraction implemented but not turned on, against the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:25

p-1(X, F) < q-1(X). p-U(X, F) + succlmil(X,Z),p1(Z, F).
p2(X,FY) «+ q2(X,Y). p2(X,FY) + succlmil(X,Z),p2(Z,F,Y).
Fig. 3. Poyer: A program for benchmarking the overhead of subgoal abstraction.

previous version without subgoal abstraction. These timings (not shown) indicated
no significant difference in times. This is not surprising: if subgoal abstraction is not
invoked, the only overhead is the maintenance of the depth counter during the check-
insert step for tabled subgoals (cf. Section 5.1).

The next two series of timings test the overhead of subgoal abstraction when it is
turned on, but does not provide an advantage in sharing tables for different subgoals.
These tests use the programs p_1/2 and p-2/3 in Figure 3 with results displayed in
Table I. In these series, each benchmark makes use of the predicate succlmil/2, the
successor function for integers less than 1 million.

The first series of benchmarks was constructed as follows.

—p1/2: no answer: In these tests, the base predicate ¢_1/1 was set so that it never
succeeded. Under this setting, the goal p_1(0, F') creates 1 million variant subgoals,
but no answers for any of these subgoals.

— p1/2: unique answer: In these tests, the fact ¢_1(1000000) was added so that each of
the million goals for p_1/2 contained a single answer.

—p1/2: redundant answers: In these tests, 4 or 16 facts of the form p_1(_,) were also
added. In these tests each subgoal had one answer that was redundantly rederived
4 or 16 times.

The second series of benchmarks was similar, but here the base predicate, ¢-2/2,
was adjusted so that 1, 4, or 8 answers were derived for each of 1 million subgoals.
Specifically, facts of the form ¢(1000000, (1)) were added with (I) ranging from 1 to 1, 4
or 8. In this second series, no redundant answers were derived.

Both benchmark series had two additional parameters. For each set of benchmarks,
the depth limit for subgoal abstraction was either turned off or set to 6. In addition,
the top-level goals were p_1(0, F') or p_2(0, F',_) — where in each case F' was bound to
terms of the form f"(1) for n equal to 0, 2, 4, 8, 16 and 32 (i.e., f°(1) = 1, f(1) = (1),
F2(1) = f(f(1)), etc.). Note that the different values of F' do not affect the number of
answers derived for any of these benchmark programs, but when F' was set to f™(1)
for n = 8, 16, and 32 the subgoals are (non-trivially) abstracted if the depth-limit is set.

We consider the first series, based on p_1/2. When no answers are derived, the tim-
ings for p_1/2 (Table I) show that subgoal abstraction reduces runtime up to 98% in
the case of f32(1) compared to the runtime when subgoal abstraction is not used (cf.
the first two lines of Table I). In this case, if subgoal abstraction is not used, each goal
needs to be fully traversed and copied into the table, but when subgoal abstraction is
used, subterms with depth greater than i do not need to be traversed: instead a pointer
to the subterm is simply added to the abstraction stack, leading to efficiency for sub-
goal abstraction. As a contravening factor, if abstraction is not used, the F argument is
ground, while if abstraction is used the abstracted variable is added to the substitution
factor, and must be traversed when copying an answer into or out of the table. Accord-
ingly, when p_1/2 derives a single answer per goal, subgoal abstraction only shows
improvements above the noise level for f1°(1) and f32(1). Indeed, as further redun-
dant answers are derived, the cost of traversing the binding to the redundant answer
for the abstracted goal outweighs the savings made for the abstracted call, by up to
217% when 16 redundant answers are derived per goal. Although adding redundant

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 F. Riguzzi and T. Swift

Table I. Benchmark results for tests of subgoal abstraction overhead (times in seconds)

Program 1 fly 2 Ao fe f191) £#2(1)
First series

p-1/2 (no answers) no abstr 0.424 0.471 0.517 0.693 0.96 1.214 1.702
p-1/2 (no answers) abstr 0.431 0.489 0.533 0.72 0.864 0.862 0.864
p-1/2 (1 answer) no abstr 0.524 0.576 0.62 0.808 1.071 1.324 1.841
p-1/2 (1 answer) abstr 0.529 0.579 0.621 0.809 1.009 1.008 1.01
p-1/2 (1 answer + 4 redund) no abstr 0.534 0.583 0.623 0.809 1.072 1.332 1.839
p-1/2 (1 answer + 4 redund) abstr 0.524 0.578 0.623 0.81 1.375 1.376 1.377
p-1/2 (1 answer + 16 redund) no abstr 0.529 0.582 0.623 0.809 1.069 1.32 1.831
p-1/2 (1 answer + 16 redund) abstr 0.525 0.58 0.625 0.809 2.336 2.341 2.352
Second series

p-2/3 (1 answer) no abstr 0.633 0.676 0.765 0.928 1.147 1.398 1.917
p-2/3 (1 answer) abstr 0.625 0.664 0.769 0.938 1.135 1.14 1.136
p-2/3 (4 answers) no abstr 1.042 1.079 1.187 1351 1.553 1.812 2.316
p-2/3 (4 answers) abstr 1.024 1.067 1.168 1334 1.651 1.658 1.649
p-2/3 (8 answers) no abstr 1485 1535 1.625 1.795 2.016 2256 2.768
p-2/3 (8 answers) abstr 1489 1529 1.623 1.797 2.199 2209 2.202

answers leads to a performance cost for subgoal abstraction due to the added cost for
answer checks, the post-unification step was used only once: the first answer added to
the table.

On the other hand for the second series, no answers for p_2/2 are redundant, so that
in addition to the cost of answer check/insert, the cost of post-unification of each answer
is also measured. Timings for p_2/3 overall show less savings than those for p_1/2 for
abstraction compared to non-abstraction; however the second series still shows savings
for f16(1) and f3%(1).

These timings show that subgoal abstraction can be implemented so that its over-
head is negligible if it is not used. If the number of answers per subgoal is relatively low
and the subgoals are large, subgoal abstraction provides performance improvement by
traversing the subgoal in almost a “lazy” manner. However, the cost for this is that the
bindings for answers to abstracted goals will be larger than for non-abstracted goals,
and traversing these answers to check for redundancy or to perform post-unification
can lead to performance degradation, particularly when there are numerous answers
per subgoal.

5.3. A Benchmark in the Style of Knowledge Representation

To test out the use of subgoal abstraction in a somewhat more realistic situation, a sim-
ple program, Py,.., was created that abstractly represents personal preferences (Fig-
ure 4). Despite its simplicity, P, captures certain aspects of reasoning over knowl-
edge bases such as the use of default and explicit negation. More to our purposes, Py,
uses logical functions to represent existential information in a manner similar to some
description logics. For instance, the parent of a given human being, p;, can be denoted
as parent_of(p1), which might or might not correspond to a given atomic constant in
Py Equality among terms is represented by the predicate equals/2. In Figure 4, the
first rule for this predicate states that equals/2 is symmetric, and the second and third
that it is reflexive. In addition, parent_of(X) is equal to a term Y such that the re-
lation parent_of(X,Y) holds. Thus, parent_of(p;) may be shown equal to, say po, if
parent_of(p2, p1) holds; if equality cannot be proved, it is treated as an existential fact.

Parenthood is used to prove that a given object is a human: this can be shown either
by an explicit statement that the object is a person or by default, if it cannot be shown
that an object is not non-human. An object is non-human if it is known to be a dog, or if
the object’s parent is non-human. The loves/2 relation makes use of existential knowl-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:27

: —table human/1, neg-human/1 as subgoal_abstract(3).

human(X) + person(X).

human(X) + human(parent_of (X)), not neg-human(parent_of(X)).
neg-human(X) + dog(X).

neg_human(X) < neg_human(parent_of(X)).

: —table equals/2 as subsumptive.

equals(X,Y) + equals(Y, X).

equals(X, X) < human(X).

equals(X, X) « neg_human(X).

equals(parent_of(X),Y) < parent_of(X,Y).

equals(parent_of (parent_of (X)), parent-of (Z)) < parentof(X, Z).
equals(parent_of (parent-of(X)),Y) < equals(parent_of(X), Z),parentof(Z,Y).

: —table loves/2,neg-loves/2.
loves(X,Y) «+ loves(Y, X).

loves(X,Y) < friend(X,Y), human(X), human(Y), not negloves(X,Y).
loves(X,Y) « has_pet(X,Y), human(X),neg-human(Y’).

loves(X,Y) + equals(parent_of(X),Y).

loves(X,Y) « grandparent_of(X,Y).

negloves(X,Y) < works_for(X,Y), human(X), human(Y), not loves(X,Y).
grandparent_of(X,Y) < equals(parent_of(prent-of(X)),Y).

/ * Base predicates : friend/2, has_pet/2, works_for /2, parent_of /2,dog/1, person/1 * /

Fig. 4. Py,.,.: A program abstracting aspects of personal preferences.

edge and equality, default and explicit negation, along with various base predicates:
friend/2, has_pet/2, works_for/2, parent_of /2,dog/1, person/1.

To test out performance and scalability, extensions were randomly generated for the
base predicates, creating extensional databases (EDBs) of from 3.7 million to 14.8 mil-
lion facts. These facts were loaded into XSB along with the program in Figure 4, and
the query loves(Person,Object) was queried for 10 and 20 randomly chosen instantia-
tions of Person. Results for these queries are shown in Table I12°. Table II reports query
time as measured by XSB and total time as measured by the GNU time program; it
also reports the maximum amount of memory as returned by GNU time, the amount
of memory used by XSB for table space and the number of tabled subgoals.

As the EDB size increases, load time increases linearly, and the query time increases
slightly more than linearly; both maximum memory and the total size for table space
also increase linearly. Within a given EDB, increasing the number of queries increases
the time and table space less than linearly, indicating a reuse of tables. Although XSB
scales well on these benchmarks, it is worthwhile noting that the resources used by
XSB proved highly sensitive to the way the equals/2 predicate was written?!. Query
evaluation time was slowed down 4-5 times when the the last rule for equals/2 was
translated into the semantically equivalent right-recursive form:

equals(parent_of (parent-of (X)),Y) < parent-of (X, Z), equals(parent_of (Z),Y).

20The tests were performed on a Linux server with two Intel Xeon X5690 CPU at 3.47GHz and 188
GB RAM. Details of the tests, including the code used to generate the datasets, are available at
sites.unife.it/ai/termination.

2lequals/2 was implemented with call subsumption rather than subgoal abstraction as the subgoals to
equals /2 tended to vary in their instantiations, but — because of the use of subgoal abstraction in human /1
— these instantiations already had a bounded size.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 F. Riguzzi and T. Swift

Table Il. XSB benchmark results for queries to Py,.,.. Times are in seconds, Maximum Memory and Table
Space are in GB.

EDB/Queries Query Time Total Time Maximum Memory Table Space Tabled Subgoals

3.7TM /10 10.78 17.37 3.67 0.45 47
3.7TM /20 13.36 19.98 3.67 0.45 87
7.4M/ 10 22.38 36.53 7.28 0.91 47
7.4M /20 29.58 43.52 7.28 0.91 87
14.8M/ 10 50.03 78.79 14.55 1.82 47
14.8M/ 20 66.12 94.53 14.55 1.82 87

Although P, is a finitely ground program, it is not stratified for some EDBs as it con-
tains a loop through negation between loves/2 and neg_loves/2; however the queries
used for the benchmark did not have conditional answers (i.e., they were not undefined
in the well-founded model of the program). Despite its semantic simplicity, Py,.. realis-
tically represents certain issues that arise in evaluating queries in languages such as
Flora-2 [Yang et al. 2013] and its commercial extensions Silk (silk.semwebcentral.org)
and Fidji (coherentknowledge.com). The results from these experiments indicate that
subgoal abstraction can be an important tool to implement scalable knowledge repre-
sentation systems.

5.4. Comparisons with DLV

While XSB is an ISO-Prolog that supports tabling, DLV [Leone et al. 2002; Calimeri
et al. 2008; Alviano et al. 2010] is an ASP system that has been extended to sup-
port function symbols. Despite their differences, the functionality of the two systems
overlaps when computing queries to stratified programs, or grounding non-stratified
programs. Repeated independent comparisons of DLV, XSB and other systems have
been made in 2009, 2010 and 2011 by [OpenRuleBench 2011] and in 2011 in the Third
Open Answer Set Competition [Calimeri et al. 2012]. While the comparisons as a whole
illustrate general performance differences between the two systems, here we discuss
the benchmarks of Figure 3 and Figure 4.

We first tested the performance overhead tests of Section 5.2, converting P,,., (Fig-
ure 3) into an equivalent safe program that could be handled by DLV. We measured
the execution time and the maximum memory using GNU time on the Linux server
used in Section 5.3. For the first series of overhead tests, on p_1/2 with no answers, we
could not get a result after several hours with the default DLV options. By disabling
the magic set optimization, DLV could answer each query in a few seconds. On p_1/2
with 1 answer, we could not get an answer after several hours even with magic sets dis-
abled. By recursing p_I1/2 100000 times rather than 1000000 times, DLV terminated
in 20-30 minutes for each query 22.

While XSB performs better on the overhead tests, this is not surprising as the main
purpose of these benchmarks was to test tradeoffs within the XSB engine. The re-
sults on P, are potentially more significant, and were repeated for DLV on the same
machine and with the same methodology as for XSB, using both the left- and the right-
recursive forms of equals/2. For the default DLV options, the best total time and max-
imum memory ranged from over 100 seconds and 12 GB for 3.7M / 10 queries to over
600 seconds and 52 GB for 14.8M / 20 queries. DLV performs better than on the p_1/2
experiments, possibly because the bottom-up method of intelligent instantiation works
better for queries where there are relatively few answers as in Py, as opposed to those
where there are many answers as with P,,.,. In general while XSB performed well in
our experiments, the results should not be regarded as conclusive, as the DLV bench-
marks were not conducted by members of the DLV team. However the experiments

22While the XSB timings of Table I do not include the loading time, this is usually of the order of 1-2 seconds.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:29

do show that both systems are robust and scalable enough to handle complex queries
involving functions over large EDBs.

6. DISCUSSION

In this paper, we have examined the class of programs with canonical finite models
and shown that it coincides with the class of strongly bounded term-size programs
(Corollary 3.2), whose definition is adapted from a well-known iterated fixed point def-
inition of WFS [Przymusinski 1989]. Strongly bounded term-size programs, in their
turn, strictly include normal finitely ground programs (Theorem 3.4), a class moti-
vated by termination properties of grounders. Queries to strongly bounded term-size
programs terminate correctly under SLGsa using a finitary abstraction operation (The-
orems 4.15 and 4.16). Further, SLGsa has optimal complexity when using depth-% ab-
stractions (Theorem 4.21), and may produce a smaller program than other grounders
(Theorem 4.18). Finally, subgoal abstraction has been implemented at the engine level
of XSB with good performance results in terms of overhead, query optimization, scala-
bility, and comparison with other systems. Because the code changes are local within a
tabling engine, subgoal abstraction should be implementable without undue effort by
other tabled Prologs, at least for definite programs.

After presenting a brief overview of termination analysis for logic programming and
related disciplines, we discuss the applicability of these results in terms of recent and
current work.

Related Work in Termination Analysis and its Applicability. Although a full survey
of related work on termination analysis is beyond the scope of this paper, we briefly
discuss recent work in termination analysis of Prolog programs, sets of database con-
straints evaluated using chase algorithms, and logic programs under the stable model
semantics.

There has been a large body of work analyzing termination conditions in logic pro-
grams that use SLD resolution. [De Schreye and Decorte 1994] presents a survery
of early work, while more recent work includes [Decorte et al. 1999; Serebrenik and
De Schreye 2004; Codish et al. 2005; Serebrenik and De Schreye 2005; Nguyen and
De Schreye 2005; Bruynooghe et al. 2007; Nguyen et al. 2007; Nishida and Vidal 2010;
Schneider-Kamp et al. 2010; Voets and De Schreye 2011]. To the extent that they study
pure logic programs, the approaches developed in these works are directly applicable
to showing termination of queries under SLGsa resolution. However the properties
of SLD resolution, which does not terminate even for function-free definite programs,
means that these techniques are sometimes more restrictive than needed for tabled
resolution. More closely related is [Verbaeten et al. 2001] which considers termina-
tion for evaluations that mix SLD resolution with tabling, a different focus than in
this paper. Overall, work in termination for Prolog and its extensions provides valu-
able tools for developing static analyses of when normal logic programs have canonical
well-founded models.

Another related topic is that of termination for the chase algorithm as used in
databases [Fagin et al. 2005; Deutsch et al. 2008; Marnette 2009; Meier et al. 2009;
Greco and Spezzano 2010; Greco et al. 2011]. While relevant to the evaluation of canon-
ical well-founded models, there are important differences. First, chase algorithms con-
sider sets of database constraints that may have non-Herbrand models in which null
values may be equated to constants; in that sense their semantics is more general than
that of normal logic programs. However, these database constraints do not admit the
general use of function symbols that is possible in normal logic programs. In addition,
the papers cited above do not consider non-stratified negation. As with the termination
analysis of Prolog programs, work on chase termiation may prove relevant to decidable

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 F. Riguzzi and T. Swift

methods for determining when normal logic programs have canonical well-founded
models.

The literature on whether a given program has a set of finite set of stable models is
the most directly applicable to the results in this paper, and in fact proved the start-
ing point for several of the results presented here. While strongly bounded term-size
programs are semi-decidable (as are finitely ground programs), the various decidable
subclasses of finitely ground programs that have been identified in the literature can
be used for static analysis of termination of strongly bounded term-size programs as
well (e.g., [Syrjanen 2001; Gebser et al. 2007; Lierler and Lifshitz 2009; Alviano et al.
2010; Greco et al. 2012; Greco et al. 2013]). The results shown in this paper indicate
that these classes, restricted when necessary from disjunctive to normal programs, can
be used for analysis of tabling systems with subgoal abstraction, in addition to analyz-
ing ASP systems. Accordingly, the query-orientation of SLGsa makes it comparable to
evaluation techniques such as presented in [Baselice and Bonatti 2010; Calimeri et al.
2011] on finitely recursive programs for which given queries may be strongly bounded

term-size, but that may not have models representable as finite sets of ground atoms?3.

Indeed, syntactic restrictions of finitely recursive programs, such as [Eiter and Simkus
2009] will ensure ground query termination under SLGsp for WFS.

To summarize, extending the termination analysis literature mentioned above is an
important topic for tabling. As discussed in Section 2.3.2, adding a predicate such as
member /2 prevents a program from having a canonical finite model, but if a subgoal
to member/2 has the second argument ground, it will terminate even if the first ar-
gument is non-ground. Analysis methods that extend finitely ground programs and
their static subclasses with (not necessarily ground) queries would be able to prove
termination for many practical tabling programs.

Dynamic Detection of Non-Termination. In addition to analysis of termination,
some very recent work addresses detection and prevention of non-termination, based
on SLGsa. Liang and Kifer [2013] discuss Terminyzer, a tool for detection of non-
termination in Flora-2 programs [Yang et al. 2013]. These Flora-2 programs are imple-
mented using XSB, and the algorithms of Terminyzer were written to exploit SLGsa.
Specifically, Terminyzer analyzes a program trace, available in XSB, of an interrupted
computation that is suspected to be non-terminating. By performing call-sequence
analysis, Terminyzer can pinpoint the sequence either of subgoals or of Flora-2 rules
leading to non-terminating behavior. By performing answer flow analysis, Terminyzer
can pinpoint those subgoals within a mutually recursive component that are causing
non-termination?4. Terminyzer has been used commercially in the knowledge repre-
sentation and reasoning systems Silk and Fidji (cf. Section 5.3).

An alternate approach to detecting termination under SLGsa queries is that of ra-
dial restraint [Grosof and Swift 2013]. Radial restraint performs abstraction of an-
swers when their norm is greater than a given bound, specified on a per-predicate
basis. When answers are abstracted, their truth value is set to unknown so that com-
putations using SLGsa always terminate soundly, but in doing so may sacrifice com-
pleteness. Once an evaluation has terminated, users may examine which answers were
subject to restraint (abstraction), and investigate the dependencies of the subgoals giv-
ing rise to the restrained answers.

23In [Riguzzi and Swift 2013] it was shown that finitely recursive and bounded term-size programs are
incompatible, but finitely recursive programs are a proper subclass of those programs for which all ground
atomic queries are bounded term-size.

24Trace-based analysis was chosen for Terminyzer in part because Flora-2 programs are substantially dif-
ferent than e.g,, normal logic programs, and support features such as Hilog, frame-style inheritance and
defeasibility theories that substantially complicate static analysis.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:31

Implementation of Grounders. As mentioned above, the results of this paper indicate
that tabling with subgoal abstraction may be useful for grounding ASP or other sys-
tems. On-going work on the IDP3 system uses tabling in XSB as part of a grounding
pass, after which a program is sent to a model generator [Jansen et al. 2013]. This
recent work does not make use of subgoal abstraction, although it can directly benefit
from it. Even so, results indicate that the time for grounding using tabling in XSB is
comparable to that used in Clingo or DLV, although at present slightly slower.

Current Implementational Work. Current work is focussed on enhancing the utility
of subgoal abstraction within the Fidji system, mentioned above. Note that there are
cases where subgoal abstraction should not be used, as it can undo bindings needed
for a bounded term-size query to terminate (e.g., making the second argument of mem-
ber /2 non-ground). Current experiments using XSB involve an interrupt mechanism
for long-running computations in which an interrupt handler inspects table structures
or a log to determine whether or not subgoal abstraction, restraint, or other tabling fea-
tures should be used on a given predicate. Since many tabling attributes are adjustable
dynamically, this approach allows termination behavior for tabled computation to be
dynamically adaptive based on self-inspection.

Acknowledgements

This work was partially supported by FCT Project ERRO PTDC/
EIACCO/121823/2010. The authors would like to thank the anonymous review-
ers and Thomas Stroder for their comments, and Francesco Calimeri for his advice in
optimizing DLV performance.

REFERENCES
J.d. Alferes, M. Knorr, and T. Swift. 2013. Query-driven Procedures for Hybrid MKNF Knowledge Bases.
ACM Transactions on Computational Logic 14, 2 (2013).

M. Alviano, W. Faber, and N. Leone. 2010. Disjunctive ASP with Functions: Decidable Queries and Effective
Computation. Theory and Practicce of Logic Programming 10, 4-6 (2010), 497-512.

S. Baselice and P. Bonatti. 2010. A decidable subclass of finitary programs. Theory and Practicce of Logic
Programming 10, 4-6 (2010), 481-496.

S. Baselice, P. Bonatti, and G. Criscuolo. 2009. On finitely recursive programs. Theory and Practice of Logic
Programming 9, 2 (2009), 213-238.

M. Bruynooghe, M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof. 2007. Termination Analysis of Logic
Programs through Combination of Type-Based Norms. ACM Transactions on Programming Languages
and Systems 29, 2 (2007).

F. Calimeri, S. Cozza, G. Ianni, and N. Leone. 2008. Computable Functions in ASP: Theory and Implemen-
tation. In International Conference on Logic Programming (LNCS), Vol. 5366. Springer, 407—-424.

Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. 2011. Finitely recursive pro-
grams: Decidability and bottom-up computation. AI Commun. 24, 4 (2011), 311-334.

Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. 2012. The third open Answer Set Program-
ming competition. CoRR abs/1206.3111 (2012).

W. Chen and D. S. Warren. 1996. Tabled Evaluation with Delaying for General Logic Programs. Journal of
the Association for Computing Machinery 43, 1 (1996), 20-74.

M. Codish, V. Lagoon, and P. Stuckey. 2005. Testing for Termination with Monotonicity Constraints. In
International Conference on Logic Programming. 326—340.

D. De Schreye and S. Decorte. 1994. Termination of Logic Programs: The Never-Ending Story. Journal of
Logic Programming 19 (1994), 199-260.

S. Decorte, D. De Schreye, and H. Vandecasteele. 1999. Constraint-based Termination Analysis of Logic
Programs. ACM Transactions on Programming Languages and Systems 21 (1999), 1137-1195.

A. Deutsch, A. Nash, and J. Remmel. 2008. The Chase Revisited. In ACM Conference on Principles of
Database Systems.

T Eiter and M. Simkus. 2009. FDNC: Decidable Nonmontonic Disjunctive Logic Progrmas with Function
Symbols. ACM Transactions on Computational Logic 9, 9 (2009), 1-45.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 F. Riguzzi and T. Swift

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: semantics and query answering.
Theoretical Computer Science 336, 1 (2005), 89—-124.

M. Gebser, T. Schaub, and S. Thiele. 2007. GrinGo: A New Grounder for Answer Set Programs. In Logic
Programming and Non-Monotonic Reasoning. 267-280.

M. Gelfond and V. Lifschitz. 1988. The Stable Model Semantics for Logic Programming. In International
Conference and Symposium on Logic Programming. 1070-1080.

S. Greco, C. Molinaro, and I. Trubitsyna. 2013. Bounded Programs: A New Decidable Class of Logic Pro-
grams with Function Symbols. In Internation Joint Conference on Artificial Intelligence. 926-932.

S. Greco and F. Spezzano. 2010. Chase Termination: A Constraints Rewriting Approach. In Conference on
Very Large Databases. 93-104.

S. Greco, F. Spezzano, and I. Trubitsyna. 2011. Stratification Criteria and Rewriting Techniques for Check-
ing Chase Termination. In Conference on Very Large Databases. 1158-1168.

S. Greco, F. Spezzano, and I. Trubitsyna. 2012. On the termination of logic programs with function symbols.
In International Conference on Logic Programming. 323-333. Technical Communications.

B. Grosof, M. Dean, and M. Kifer. 2012. Semantic Web Rules: Fundamentals, Applications, and Standards.
(2012). Tutorial, 11th International Semantic Web Conference.

B. Grosof and T. Swift. 2013. Radial Restraint: A Semantically Clean Approach to Bounded Rationality for
Logic Programs. In Conference of the American Association of Artificial Intelligence.

dJ. Jansen, A. Jorissen, and G. Janssens. 2013. Compiling Input* FO(-) Inductive Definitions into Tabled
Prolog Rules for IDP3. Theory and Practicce of Logic Programming 13, 4-5 (2013), 601-704.

N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter, G. Gottlob, G. Ianni, G. Ielpa, K. Koch, S.
Perri, and A. Polleres. 2002. The DLV system. In JELIA. 537-540.

S. Liang and M. Kifer. 2013. A Practical Analysis of Non-Termination in Large Logic Programs. Theory and
Practicce of Logic Programming 13, 4-5 (2013), 705-719.

Y. Lierler and V. Lifshitz. 2009. One more decidable class of finitely ground progrmas. In International
Conference on Logic Programming.

d. W. Lloyd. 1987. Foundations of Logic Programming (2nd extended ed.). Springer-Verlag.

B. Marnette. 2009. Generalized schema-mappings: from termination to tractability. In ACM Conference on
Principles of Database Systems. 13—-22.

M. Meier, M. Schmidt, and G. Lausen. 2009. On Chase Termination Beyond Stratification. In Conference on
Very Large Databases. 970-981.

M. Nguyen and D De Schreye. 2005. Polynomial Interpretations as a Basis for Termination Analysis of Logic
Programs. In International Conference on Logic Programming. 311-325.

M. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. 2007. Termination Analysis of Logic Programs
based on Dependency Graphs. In LOPSTR. 8-22.

N. Nishida and G. Vidal. 2010. Termination of narrowing via termination of rewriting. Applicable Algebra
in Engineering, Communication and Computing 21, 3 (2010), 177-225.

OpenRuleBench. 2009-2011. OpenRuleBench: Benchmarks for Semantic Web Rule Engines. (2009-2011).
\sfrulebench.projects.semwebcentral.org

D. Pedreschi, S. Ruggieri, and J.G. Smaus. 2002. Classes of Terminating Logic Programs. Theory and Prac-
ticce of Logic Programming 2, 3 (2002), 369-418.

T. Przymusinski. 1989. Every Logic Program has a Natural Stratification and an Iterated Least Fixed Point
Model. In ACM Symposium on Principles of Database Systems. 11-21.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. 1999. Efficient Access Mechanisms for
Tabled Logic Programs. Journal of Logic Programming 38, 1 (1999), 31-55.

F. Riguzzi and T. Swift. 2013. Well-Definedness and Efficient Inference for Probabilistic Logic Programming
under the Distribution Semantics. Theory and Practicce of Logic Programming 13, 2 (2013), 279-302.

K. Sagonas and T. Swift. 1998. An Abstract Machine for Tabled Execution of Fixed-Order Stratified Logic
Programs. ACM Transactions on Programming Languages and Systems 20, 3 (May 1998), 586 — 635.

P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. 2010. Automated Termination Proofs for Logic
Programs by Term Rewriting. ACM Transactions on Computational Logic (2010).

A. Serebrenik and D. De Schreye. 2004. Inference of Termination Conditions for Numerical Loops in Prolog.
Theory and Practicce of Logic Programming 4, 5-6 (2004), 719-751.

A. Serebrenik and D. De Schreye. 2005. Termination of Floating Point Computations. Journal of Automated
Reasoning 34, 2 (2005), 141-177.

T. Swift. 1999. A New Formulation of Tabled Resolution with Delay. In Recent Advances in Artifiial Intelli-
gence (LNAI), Vol. 1695. Springer, 163-177.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:33

T. Swift and D.S. Warren. 2012. XSB: Extending the Power of Prolog using Tabling. Theory and Practicce of
Logic Programming 12, 1-2 (2012), 157-187.

T. Syrjanen. 2001. Omega-Restricted Logic Programs. In Logic Programming and Non-Monotonic Reason-
ing. 267-280.

H. Tamaki and T. Sato. 1986. OLDT Resolution with Tabulation. In International Conference on Logic Pro-
gramming (LNCS), Vol. 225. Springer, 84-98.

A. van Gelder. 1989. The Alternating Fixpoint of Logic Programs with Negation. In ACM Symposium on
Principles of Database Systems. 1-10.

A. van Gelder, K. A. Ross, and J. S. Schlipf. 1991. The Well-founded Semantics for General Logic Programs.
Journal of the Association for Computing Machinery 38, 3 (1991), 620-650.

S. Verbaeten, D. De Schreye, and K. Sagonas. 2001. Termination proofs for logic programs with tabling.
ACM Transactions on Computational Logic 2, 1 (2001), 57-92.

D. Voets and D. De Schreye. 2011. Non-termination analysis of logic programs with integer arithmetics.
Theory and Practicce of Logic Programming 11, 4-5 (2011), 521-536.

G. Yang, M. Kifer, H. Wan, and C. Zhao. 2013. FLORA-2: User’s Manual Version 0.99.3.
http:/flora.sourceforge.net.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 F. Riguzzi and T. Swift

A. LONGER PROOFS
A.1. Proofs for Results of Section 4.4 (Correctness and Termination of SLGs,)

THEOREM 4.15 Let £ be an SLGsa evaluation of a query @ to a safe program P with
final forest Ff,. Then Iy, =WFM?" |z, .

PrOOF. Note that the only difference between SLGsa and the version of SLG from
Section 4.2 is that in SLGsa the root subgoals of some trees in a forest 7 € £ may have
been abstracted. We consider the two cases in which an abstraction operation may
be used and show that the action of the abstraction function is the same as a simple
rewriting of a rule that preserves logical equivalence, but can be evaluated by SLG
without an abstraction function. The theorem then holds by the correctness of SLG (cf.
[Chen and Warren 1996], and [Swift 1999] for the forest of trees model).

— Positive selected literals. Let N = (G + Delays|Goals)f be a node with selected
positive literal S. Note that N must have an ancestor in the tree for G' that was
created by a program clause

TZH(—Al,...,A,...,Ln

and assume that S corresponds to the selected literal A so that S = Af. Suppose
that a NEW SUBGOAL operation creates a tree with root subgoal A’ = abs(A40). We
have that A6 = A’y for some 7, as A’ subsumes A6.

Let

v = (H « Ay, ...,abs(A, A'), A, A' = A,...,L,)

The predicate abs/2 simply sets A" = abs(A) (its implementation is outside of the
semantics of the SLG evaluation £). A’ is then called, and if it succeeds, A’ is unified
with A. Note that r’ is logically equivalent to r: A’ subsumes A so that every solution
to A will also be a solution to A’, and the unification A’ = A in ' ensures that only
those solutions that also unify with A will succeed.

— Negative selected literals. The argument is essentially the same, but the transfor-
mation is instead:

r' = (H + Ay,...,abs(A, A"),not exists_ans(A’, A),..., Ly)
where
exists_ans(A'; A) «+ A", A=A

By assumption, P is safe, so that A’ is ground when the literal A’ = A is called. Note
that not exists_ans(A’, A) succeeds iff there is no (ground) answer to the goal A’ that
unifies with the ground A. As above, the program r’ is logically equivalent to 7.

The program P’ is constructed from P by the transformations of the various rules
(sometimes replacing a rule by a series of transformations), and adding abs/2 and ex-
ists_ans/2. Note that the transformation is completely local to a rule, so that replacing
all rules in P by forms equivalent to 7’ makes P’ a conservative extension of P. O

THEOREM 4.16 Let Q be a query to a strongly bounded term-size program P. Then any
SLGsa evaluation £ of Q that uses a finitary abstraction operation reaches a final forest
Frn after a finite number of steps. If P is safe, then Fpr, will not be floundered.

PROOF. We first prove the statement that any SLG evaluation £ of (Q that uses a
finitary abstraction operation reaches a final forest 7, after a finite number of steps.
The proof is given by induction on the maximal dynamic stratum of any answer in £.

— For the base case, assume the maximal stratum is 1 (Definition 2.2). Because Q is in
stratum 1, the only applicable SLG operations in £ are NEW SUBGOAL, PROGRAM

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:35

CLAUSE RESOLUTION, POSITIVE RETURN, and COMPLETION. Note that each of

these operations is applicable only once to a given node or set of subgoals.

— NEW SUBGOAL: The use of a finitary abstraction operation means that there may
only be a finite number of NEW SUBGOAL operations in £, and hence a finite
number of trees in any forest of £.

— PROGRAM CLAUSE RESOLUTION: Since there are a finite number of trees, and a
finite number of program clauses resolvable against the root subgoal of any tree,
£ contains only a finite number of PROGRAM CLAUSE RESOLUTION operations,
and the root of any tree has only a finite number of immediate children.

— POSITIVE RETURN: Next, since P is strongly bounded term-size, true(W FM?)
is finite, and since the maximal stratum of £ is 1, any answer returned will be
unconditional. Accordingly there are a finite number of answers that can be re-
solved against any selected subgoal. Because interior nodes of SLG trees can only
be extended by POSITIVE RETURN operations, any non-root node in any tree may
have only a finite number of children. In addition, the depth of any tree in £ is
bounded by the maximal number of body literals in any rule in P, which is finite.
Thus the subtrees of any tree in £ have a finite depth and a finite branching fac-
tor, and so are finite. There can thus be only a finite number of POSITIVE RETURN
operations.

— COMPLETION: Finally, since there are a finite number of trees in any forest, there
can be only a finite number of COMPLETION operations.

Since the number of occurrences of each type of operation in £ is finite, £ itself must

be finite.

— For the inductive case, assume that the statement is true for all atoms whose (finite)
stratum is less than n in order to prove it true for those atoms whose stratum is n.
— NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION and COMPLETION are argued

in the same manner as for the base case.

— POSITIVE RETURN: Because P is strongly bounded term-size there are only a
finite number of undefined atoms. Since each literal in the Delays of a node must
come from delaying or SLG resolution of a literal in the body of a rule, and the
maximum number of literals in the body of a rule is finite, there are only a finite
number of conditional answers. The statement that there are only a finite number
of POSITIVE RETURN operations follows as for the base case.

— NEGATIVE RETURN: First, consider that a NEGATIVE RETURN operation can be
applied at most once to any node N. As a result of this operation, any node N
to which a NEGATIVE RETURN operation is applied can have only a single child:
either a failure node in the case of NEGATION FAILURE, or a single child with the
selected literal removed from the Goals of N in the case of NEGATION SUCCESS.
In the case of NEGATION FAILURE this is enough to show that the finiteness of
£ is not affected, as a failure node cannot be further expanded. In the case of
NEGATION SUCCESS, the fact that the selected literal is removed from Goals,
means that the child of N will have a smaller Goals sequence. Since Goals is
finite, any path from N may have only a finite number of NEGATIVE RETURN
operations.

— DELAYING: Considerations analogous to the NEGATION SUCCESS case show that
DELAYING will not affect the finiteness of £.

— ANSWER COMPLETION: Next, note that ANSWER COMPLETION will produce a
single failure node as a child of each answer node to which it is applied, and
a failure node cannot be further expanded. So ANSWER COMPLETION does not
affect the finiteness of any forest, no matter how many times it is applied.

— In the case of SIMPLIFICATION, an application of the SIMPLIFICATION operation
that produces a failure node does not affect the finiteness of any forest (Defini-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 F. Riguzzi and T. Swift

tion 4.6, 6a) as a failure node cannot be further expanded.. On the other hand, if
an application of a SIMPLIFICATION operation to a node N produces a non-failure
child (Definition 4.6, 6b), note that similar to the case of NEGATION SUCCESS,
the child of N will have a smaller Delays. Since Delays is finite, any path from N
to its descendents may have only a finite number of SIMPLIFICATION operations.
Since each operation can be applied only a finite number of times, £ must be finite.

Note that the proof of the previous statement shows that £ is finite, but F5, may
be floundered: i.e., a node in Fg,, may have a selected non-ground negative literal. We
next show that if P is safe, then Fp,, will not be floundered. It is straightforward to
show that if P is safe, any answer in any forest in £ will be ground. Then, let r be a
rule in a safe program P, and L; a given negative literal in . Because of the safety of
P, the action of PROGRAM CLAUSE RESOLUTION and POSITIVE RETURN operations
on previously selected subgoals to the left of L, in will ensure that L; is ground by
the time it becomes a selected subgoal. O

A.2. Proofs for Results of Section 4.5 (Comparison with Intelligent Instantiation)

THEOREM 4.18

Let P be a safe, finitely ground program P. Let £ be a SLGsa evaluation of a grounding
predicate of P whose final forest is 7, and Piapeq = answers(Fpy,).

(1) Piupieq is equal to %Jijf(f).

(2) Let P;; be the intelligent instantiation of P. Then P;ypicq >req Pii-
PROOF.

(1) (Sketch) We consider first the case of SLG (i.e., where no abstraction operation is
used). By the correctness of SLG, the use of the grounding predicate ensures that
Tr,, = WFM?P. The safety of P ensures that all answers are ground, regardless of
whether they are conditional. In such a case, the correctness of SLG with respect
to the stable model semantics (cf. [Chen and Warren 1996]), ensures that if there
is rule » with a non-empty body in %’ﬁ?, then » must be a conditional answer
in .Ffm
For SLGsa, Theorem 4.15 ensures that P4 is also equal to %ﬁg). Note that
the final forest of an SLG and an SLGsp evaluation will both have the same trees
for subgoals immediatedly called by the grounding predicate (which we call here
the grounding subgoals), and the answers in each of these trees will be the same.
For other trees, suppose that the SLGsa Esa evaluation differed from the SLG eval-
uation £ in that £sa created a tree for an abstracted subgoal, while £ did not. Both
of these subgoals are more specific than the grounding subgoals, and the (ground)
answers of both are contained in the set of ground answers for the grounding sub-
goals.

(2) By the definition of intelligent instantiation, the facts in P;; are a subset of
true(WFMP 2)’ while Bp minus the set of all head atoms in P;; is a subset of
false(WFM*). The statement then holds by part 1 of this theorem.

O

A.3. Proofs for Complexity Results of Section 4.6

LEMMA 4.20. Let P be a ground program, QQ a ground query, and £ a terminating
SLGsa evaluation of (Q against P that uses depth-k abstraction. Then the number of
nodes in the final forest Fp,, is at most O(size(Pg(E))).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:37

PRrROOF. First note that since no step of an SLGsa evaluation ever removes a node

or tree from a forest, showing the upper bound for F5, carries over to all forests in €.
We consider first the special case in which @ (finitely) terminates using the identity
function as an abstraction function (i.e., depth-w abstraction), before considering the
case of general abstraction functions.

1

(2

abs(+) is the identity function. Within this case, we consider first the subcase where

P is definite, and then consider the case where P is any normal program.

— P is definite. First, since P is ground, no two trees in any forest of £ may have
root subgoals that unify. Because of this fact, each rule in Py may be used for
resolution in at most one tree in Fp,,. Continuing, consider a rule r of Py that
creates a node n, in some tree in F,. The number of descendants of n, is at most
the number of literals in the body of . To see this, first note that the selected
literal of any node is ground and thus may have at most once descendant. Next,
since each POSITIVE RETURN answer operation removes a body literal from the
Goals of a node when creating a new node, the number of descendants of n is
limited to the number of body literals in n,. Thus there are at most size(Pg)
non-root nodes in Fg,, and O(size(Pg(£))) nodes overall.

— P is a normal program. If P is not definite, then a node n, as above may have
at most 2 x size(r) descendents, as each body literal first may be delayed and
then either simplified or failed via an ANSWER COMPLETION operation. So in
this case there are still O(size(Pg(€))) nodes overall.

abs(-) is a depth-k abstraction function for positive integer k. To show this result,we

first show a subsidiary statement.

Consider two subgoals abs(S1) and abs(S2) at the root of two distinct trees in Fp,

generated from the application of NEW SUBGOAL to S; and S;. We show that

abs(S1) cannot unify with abs(S:). Recall that abs(S;) and abs(S2) cannot be identi-
cal (up to variance), since they would not correspond to distinct trees in that case.

There are three cases to consider.

(a) abs(S1) = S1 and abs(S2) = Ss. Since P is ground, this means that S; and S,
are ground, so abs(S1) does not unify with abs(S-).

(b) abs(S1) = S1 but abs(S3) # S,. In this case, there must be a position 7 in Sy
in which a constant or function symbol was replaced by a position variable.
However, S; is ground since P is ground, but S; does not have a position of
depth & as abs(S;) = S;. Accordingly there must be some position 7’ that is a
constant in abs(S;), but is a non-constant function symbol in abs(S2), so that
abs(S7) and abs(S2) do not unify.

(c) abs(S1) # S and abs(S2) # Si. In this case, one of the following situations
arises:

i. There is some position 7 in one of the subgoals, say abs(S;), that is a con-
stant or function symbol, while abs(S2) has a position variable at 7. For this
subcase the argument is identical to case 2(b) above.

ii. Otherwise assume that abs(S;) and abs(S2) contain position variables in ex-
actly the same positions. Recall that abs(S1) and abs(S2) cannot be variants
of each other by the definition of the NEW SUBGOAL operation. So there must
be some position 7 in which abs(.S1) differs from abs(S:) and neither abs(S1)|»
nor abs(Sz)|, is a position variable. Since P is ground, abs(S1)|. cannot unify
with abs(S2)|x

Since no two subgoals for trees in any forest F of £ may unify and since P is ground,

each program clause of Py can appear in at most one tree in . Given this fact the

argument of case 1 can be applied when depth-k abstraction is performed for some

integer £ > 0.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 F. Riguzzi and T. Swift

O

THEOREM 4.21. Let P be a ground program, Q) a ground query, and £ a terminating
SLGsa evaluation of Q against P that uses depth-k abstraction, and with final forest
Ffin. Then under the cost model Cyynction, the cost of £ is O(|atoms(Fpy)| x size(Pg(£))).

PROOF. From Lemma 4.20 there are O(size(Pg(€))) nodes in Fg,. First note that
each SLGsa operation either produces a distinct node or nodes in F5,, or marks a set
of trees in Fp,, as complete. Thus, the cost of £ can be broken down by analyzing the
costs of creating distinct set of nodes.

— NEW SUBGOAL, POSITIVE RETURN, NEGATIVE RETURN, DELAYING, SIMPLIFICA-
TION. Since each of these operations is constant-time in Ctynction, they produce a
node in Fp, and there can be at most O(size(Pg(€))) such operations, the combined
cost of these operations is O(size(Pg(£))).

— PROGRAM CLAUSE RESOLUTION. The cost of the PROGRAM CLAUSE RESOLUTION
operation is non-constant, but is proportional to the size of the rule that it applies
to a subgoal. However, each rule in P;(€) can only be applied once. This is because
no two trees in Fp, have roots that unify with each other, due to the fact that P
is ground and a depth-k abstraction function is used (cf. the proof of Lemma 4.20).
Because each rule can only be applied once, the combined cost of the PROGRAM
CLAUSE RESOLUTION operations is at most size(Pg(&)).

— COMPLETION. The cost of the COMPLETION operation is non-constant; rather, its
cost is the number of trees it marks as complete. Since each tree is marked as
completed only once, the combined cost of the COMPLETION operations is at most
|atoms(Fpn)|.

— ANSWER COMPLETION. The cost of the ANSWER COMPLETION operation is
again non-constant. The cost of an ANSWER COMPLETION operation is at most
size(Pg(£)), however each ANSWER COMPLETION operation must produce failure
nodes for all answers whose head is some unsupported atom A. Afterwards, A will
no longer be subject to an ANSWER COMPLETION operation. Since P is ground, A
corresponds to an element of atoms(Fp,,). Thus there are thus at most |atoms(Fpy,)|
ANSWER COMPLETION operations.

The total worst-case cost of £ is thus the cost of the constant time operations
O(size(Pg(€))), plus the cost of the PROGRAM CLAUSE RESOLUTION operations
O(size(Pg(€))), plus the cost of the COMPLETION operations O(|atoms(Fpy)|), plus the
cost of the ANSWER COMPLETION operations O(|atoms(Ffy)| x size(Pg(€))) so that the
total cost of € is O(|atoms(Fpy)| x size(Pg(£))). O

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

