Incremental answer completion in the SLG-WAM

Terrance Swift, Alexandre Miguel Pinto, and Luis Moniz Rexé

Centro de Inteligéncia Artificial, Universidade Nova delids

Abstract. The SLG-WAM of XSB Prolog soundly implements the Well-Foadd
Semantics (WFS) for logic programs, but in a few patholdgieses its engine
treats atoms as undefined that are true or false in WFS. Tendar this is
that the XSB does not implement the SLGIsWER COMPLETION operation in
its engine, the SLG-WAM - rather ¥swerR COMPLETION must be performed
by post-processing the table. This engine-level omissamrot proven signifi-
cant for applications so far, but the need fangweR COMPLETIONIS becoming
important as XSB is more often used to produce well-foun@sdiues of highly
non-stratified programs. However, due to its complexitye caust be taken when
adding ANSwWeR COMPLETIONtO an engine. In the worst case, the cost of each
ANSWER COMPLETION operation is proportional to the size of a progrdm
so that the operation must be invoked as rarely as possitewaen invoked
the operation must traverse as small a fragment as posdilike W/e examine
the complexity of AASWERCOMPLETION; and then describe its implementation
and performance in XSB’s SLG-WAM such that the invocatiohthe operation
are restricted, and which is limited in scope to Strongly @arted Components
within a tabled evaluation’s Subgoal Dependency Graph.

Designers of logic programming engines must weigh the Uise$s of operations
against the burden of complexity they require. Perhaps #& known example is
the occurs checkn unification. Prologs derived from the WAM do not perform-oc
curs check between two terms, since its cost may be expahémtihe size of the
terms. Rather, the occurs check must be explicitly invokedugh the 1ISO predicate
uni fy wi th_occurs_check/ 2 or a similar mechanism. For evaluating normal
programs using tabling, checking for certain positive kaprolves similar consider-
ations. While most positive loops can be efficiently checlgsbitive subloops within
larger negative loops are more difficult to detect, and actdéar the complexity of
evaluating a progran® according to WFS, which istoms(P) x size(P), where
atoms(P) is the number of atoms dP andsize(P) is the number of rules aP.

As implemented in XSB, the SLG-WAM detects positive loopsieen tabled sub-
goals so that answers are not added to a table unless theyayrertare involved in a
loop through negation and so are undefined at the time of &ldelition (termedondi-
tional answerys As shown in Theorem 1 below, this sort of evaluation can dxeedn
time linear insize(P). However, a situation can arise where certain conditiongihers
are later determined to be true or false. This determinatiap break a negative loop,
which uncovers a positive loop and makes the answers falghinBLG, this situa-
tion is addressed by theMswER COMPLETION operation, which is not implemented
within the currently available version of the SLG-WAM. Sa,fthe lack of ANSWER

*tswift@s. sunysb. edu, anp@li . fct.unl.pt, | np@li.fct.unl.pt

COMPLETION has not proven a problem for most programs. However, the BIAGA
is increasingly being used to produce well-founded residoe highly non-stratified
programs for applications involving intelligent agentsg(g2]), where the need for
ANSWERCOMPLETION is greater.

This paper examines issues involved in addings&VER COMPLETIONto the SLG-
WAM. We illustrate the situation of a positive loop begin omered when a negative
loop is resolved through a concrete example, and then weédeavformal result on the
contribution ANSWER COMPLETION makes to the complexity of computing WFS. We
introduce an algorithm for efficiently performingysWeRCOMPLETION (subject to its
complexity), and discuss performance results obtainedipjamenting it in the SLG-
WAM. Due to space requirements, we must assume knowledgbled evaluation of
WES through SLG resolution [1] as well as certain data stmestof the SLG-WAM [3].

Example 1.The following program is soundly, but not completely, ewkd by the
SLG-WAM, wheret not / 1 indicates that tabled negation is used:

:- table p/1,r/0,s/0.

P(X):- tnot(s). P(X):- p(X).
s:- tnot(r). s:- p(X). r:- tnot(s),r.

The well founded model for this program has true atdrisand false atomér, p(X)}.
Recall that literals that do not have a proof and that arelugebin loops over default
negation are considereshdefinedn WFS. Unproved literals involved only in positive
loops, i.e., without negations, as@supportecand, hencefalsein WFS. Accordingly,
p(X) , whose second clause failsfalse however, a query tp(X) in XSB indicates
thatp(X) isundefinedThe reason is that during evaluation the engine detectsmgy
connected component (SCC) of mutually dependent goalaiomg p(X), » ands,
along with negative dependencies, and no answers for afgsétgoals. In such a situ-
ation, the SLG-WAM delays negative literals and continuescation. Here, the literal
tnot (s) inthe rulep(X): - tnot(s) is delayed, producing an answef X) : -
tnot (s) |, indicating thatp(X) is conditional on alelay list heret not (s) . That
answer is returned to the goa{ X) in the clausg(X): - p(X) and a conditional
answemp(X) : - p(X)| isderived. Later, a positive loop is detectedifeicausing its
truth value to becoméalse The failure ofr causes to becomerue, and SMPLIFI-
CATION removes the answex(X) : - tnot (s)| . At this stage, however, no further
simplification is possible fop(X) :- p(X) |, which is now unsupported.

The ANSWER COMPLETION operation addresses such cases by detecting positive
loops in dependencies among conditional answers. MorésgfgcANSWER COMPLE-
TION marksfalse sets of answers that are matpportedi.e. conditional answers for
completed subgoals that contain only positive, and no negdependencies in their
delay lists. The creation of unsupported answers are un@mnimthe SLG-WAM be-
cause its evaluation telay minimal- that is, the engine performs no unnecessagy D
LAYING operations [4]. Delay minimality reduces the need for sifigation of depen-
dencies among answers, and thereby the chances of unaypesitive loops among
answers, as with the answef X) : - p(X) | above.

1. Complexity

We begin by showing that queries to programs that do not neexiV R COMPLETION

can be evaluated i@ (size(P)). Such programs include stratified ones, and also non-
stratified programs that contain no positive loops withigateve SCCs in their dynamic
dependency grapHs

Theorem 1. Let@ be a query to a finite ground normal prografh Under a cost model
with constant time access to all subgoals, nodes, and dé&ayents of each SLG forest
in an evaluation, and constant time access to each clauBe &partial SLG evaluation
that does not perforrANSWER COMPLETION can be constructed that is linear in the
size ofP.

The algorithm TERATE ANSWER COMPLETION below iteratively applies ASWER
COMPLETION operations, callingCheck Supported Answers() to perform a check
for positive loops.Check Supported Answers() is an adaptation of Tarjan’s algo-
rithm for SCC detection (cthtt p: // en. wi ki pedi a. org/wi ki / Tarjan’ s_
strongl y_connect ed_conponent s_al gori t hm,whichis linearinsize(P).
Note that in the worst case,NSWER COMPLETION operations iteratively need to be
applied, and that each time it is applied, a single atom wbalfbundfalse In that case,
program evaluation would have a cost proportionaltens(P) x size(P), which is
equivalent to the known complexity for WFS.

2. Implementation of ANSWER COMPLETION

Within an SLG evaluation, a tabled subgoal can be markedrapletewhich indicates
that all possible answers have been produced for the subejtt@dugh SVPLIFICA-
TION and ANSWER COMPLETION operations may remain to simplify or delete con-
ditional answers. Completed subgoals do not require eketstack space, but only
table space, so that completing subgoals as early as po&sitritical step for engine
efficiency. Accordingly the SLG-WAM performisicremental completionia a com-
pletion instruction, which maintains information about mutualgpéndent sets of sub-
goals (SCCs), and completes each SCC when all applicabtatapes have been per-
formed. In addition to marking each subg&ain an SCC as complete, # failed (has
no answers) theompletion instruction may initiate 8/PLIFICATION for conditional
answers that depend negatively$nn terms of ANSWERCOMPLETION, observe that
any positive loop among the delayed literals of conditiaredwers must be contained
within the SCC being completed, as each delayed literal weslexcted literal before
it was delayed. This incremental approach has several b&neérforming AISWER
COMPLETION operation within thecompletion instruction restricts the space that any
such operation needs to search. In addition, performingWeR COMPLETION af-
ter all other SMPLIFICATION operations have been performed on answers within the
SCC similarly reduces search space. As a final optimizaoswWER COMPLETION

is not required unless delaying has been performed witld@rStBC, a fact that is easily
maintained using data structures in the SLG-WAM8smpletion Stackwhich main-
tains information about SCCs. The pseudo codeltienate Answer Completion(),
which traverses all subgoals in the SCC using@uenpletion Stackand checks each

! The proof of Theorem 1 is contained in an appendix of a fulsion of this paper available
on request.

answer for support, deleting unsupported answers fronmatble and invoking 8/pLI-
FICATION operations, is presented in Figure IMBLIFICATION may remove further
negative loops, and uncover new unsupported other answeaassale-effect. In such
case, the Aswer COMPLETION procedure should be executed once more, and this is
guaranteed by the use of theuched_fixed_point flag. A fixed-point is reached when

all answers within the scope of the SCC are known to be supgport

Algorithm Iterate Answer Completion(CompletionStack)

reached_fired_point = FALSE;
while not reached_fized_point
reached_fixed_point = TRUE;
foreach subgoal S in the Completion Stack
foreach answer A for subgoal S

if not Check_Supported_Answer(A) /* Ais unsupported */
reached_firved_point = FALSE;
delete A;

propagate A’s deletion’s simplifications;

Fig. 1. Algorithm ITERATE ANSWER COMPLETION.

Check Supported Answer This procedure (Figure 2) does the actual check of
whether a (positive) answer is unsupported. It detectstipesoops whenever it en-
counters an answer that has already been visited and whiiclhie SCC. In this case,
the algorithm terminates returnifigA LS E to indicate the answer is unsupported. On
the other hand, if the answer has been visited but is not panedSCC, it means such
answer has been produced during some other branch of gokigegand was there-
fore, rightfully supported and stored in the table: the alhon terminates returning
TRU E. Checking a non-visited answer consists of 1) marking itised; 2) adding
it to the state of the search (stored in thempletion Stack); and then 3) traversing
all the Delay Elements (literals) of the Delay Lists for thesaer recursively checking
each in turn for supportedness. Whenever an answer is datgino be unsupported,
all Delay Lists containing (Delay Elements that refereric@ye deleted, which may
cause further simplification and iterations oNAWER COMPLETION.

The above algorithm has been implemented withincin@pletion instruction of XSB.

Full performance analysis is still underway. Preliminaggults indicate advantages of
our heuristics: traditional benchmarks like n/ 1 either do not use IBIPLIFICATION

or use it seldom so that there is no overhead forsiwveR COMPLETION. A stress
test that performs a large number of repetitions of Exampéddws an overhead of
at most 18%. Example 1 is actually representative of thecgfsituation where A-
SWER COMPLETION is needed. This is so because it contains (at least) two foites
some literal (in this casg(X)) where the first one depends on a loop through nega-
tion (renderingp(X') undefinedland the second one depend on a positive loop, which
is unsupported. The “undefinedness” coming from the firaisgas passed on to the
p(X) in the body of the second one. OnlyNAwER COMPLETION can then be used to
clean away the delay list with(X') from the answer coming from the second clause
for p(X). The “pathological” nature of this example follows from thiatil now, XSB’s

Algorithm Check Supported Answer(Answer)

if Answer has already been visited
if Answer is in the SupportCheckStack return FALSE;
else return TRUE;
else
mark Answer as visited;
push Answer onto the SupportCheckStack;
mark Answer as supported_unknown,;
foreach Delay List DL for Answer
if Answer is supported_true exit loop;
mark DL as supported_true;
foreach Delay Element DFE in the Delay List DL
if DL is not supported_true exit loop;
if DE is positive and it is in the SupportCheckStack
recursively call Check Supported Answer(Answer of DE)
if Answer of DE is not supported_true
mark DL as supported_false;
if DL is supported_false
remove DL from Answer’s DLs list
if Answer’'s DLs list is now empty
delete Answer node;
simplify away unsupported positives of Answer;
else mark Answer as supported_true;
if the Answer node was deleted return TRUE;;
else return FALSE;

Fig. 2. Algorithm CHECK SUPPORTEDANSWER.

SLG-WAM inability to rightfully detect and simplify away wupported literals such as
p(X).

3. Conclusions

WEFS is used in an increasing number of applications, froedligent agents, to inher-
itance in object logics, to supply-chain analysis. Howetlee abstract complexity of
WES is a concern when embedding into the semantic core ofgrgaroning language
like Prolog. Theorem 1 shows that the non-linearity of WFBloaseparated from other
parts of an engine for WFS; and the optimizations of the dligor presented here, to-
gether with the preliminary performance results, undeestiee suitability of WFS for
general-purpose programming.

References

1. W. Chen and D. S. Warren. Tabled Evaluation with DelayimgGeneral Logic Programs.
JACM, 43:20-74, 1996.

2. L. M. Pereira and G Lopes. Prospective logic agentERM, volume 4874 oL NAI, pages
73-86, 2007.

3. K. Sagonas and T. Swift. An abstract machine for tabledi@n of fixed-order stratified
logic programs. TOPLAS 20(3):586 — 635, 1998.

4. K. Sagonas, T. Swift, and D. S. Warren. The limits of fixedes computation.Theoretical
Computer Science54(1-2):465-499, 2000.

Appendix: Proof of Theorem 1

To help the reviewers assess the technical accuracy of €hedwe include a detailed
sketch of its proof, along with relevent definitions of SL&leation.

Theorem 1 and its proof rely on several of the definitions oGStvalution?. In
order to make the appendix self-contained, we restate aedefinitions of SLG, sim-
plified at times for ground programs and finite evaluations.

Definition 1 (SLG Trees and Forest).An SLG forest consists of a set of SLG trees.
Nodes of SLG trees have the forms:

Answer_Template :- DelayList|Goal List

or simplyfail. In the first form, thednswer_Template is an atom,Delay List is a set
of literals andGoal List is a sequence of literals. The second form is callddilre
node

A nodeN is ananswerwhen it is a leaf node for whictsoallListis empty. If the
DelayList of an answer is empty it is termed anconditional answentherwise, it is
a conditional answer

Definition 2 (Answer Resolution).Let N be a nodeA :- D|Lq, ..., L,,, wheren > 0,
and Ans = A’ :- D'| an answerN is SLG resolvablavith Ans if 3i, 1 < i < n, such
that L, is identical toA’. TheSLG resolvenbf N and Ans on L; is:

(A - D|L17 ey L1, Li+la ey Ln)
if D’ is empty; otherwise the resolvent has the form:
(A= D,Li|Ly,...;Li—1, Liy1, ..., L)

Definition 3 (Completely Evaluated).A setS of subgoals in a forest is completely
evaluatedf no S € S is completed and if at least one of the following conditioaklh
foreachS € S

1. The tree forS contains an answes :- |; or
2. For each nodéV in the tree fors:
(a) The underlying subgoal of the selected literal\bfs completed; or
(b) There are no applicablslEw SUBGOAL, PROGRAM CLAUSE RESOLUTION,
ANSWER RETURN, NEGATION RETURN or DELAYING operations (Defini-
tion 6) for V.

Definition 4 (Supported Answer). Let F be an SLG forestS a subgoal inF, and
Ans = A :- DelayList| an answer in the tree fof. ThenAns is supported bys in F
if and only if:

1. Sis not completely evaluated; or

2 The formulation here follows T. Swift. “A New Formulation ®&bled Resolution with Delay",
Recent Advances in Atrtifiial Intelligengep. 163-177, LNAI 1695, 1999.

2. there exists an answer node:- DelayList’| of S such that every positive delay
literal D is supported.

Definition 5. LetF be an SLG forest. An atosis successful inF if some tree inF
has an unconditional answef. S is failed in F if S is completed and the tree foi
contains no answers. A negative delay litemat D is successful (failed) in a foregt
if D is failed (successful) itF.

Definition 6 (SLG Operations).Given a forestF,, of an.SLG evaluation of program
P F,+1 may be produced by one of the following operations.

1. NEwW SUBGOAL: Let F,, contain a non-root node
N = Ans - DelayList|G, Goal List

whered is the selected literab or not S. AssumeF,, contains no tree with root
subgoalS. Then add the tre§ :- |S to F,,.

2. PROGRAM CLAUSE RESOLUTION: Let F,, contain a root nodeV = S :- |S and
C be a program clausé :- Body. Assume that i/, N does not have a child
Nenita = (S :- |Body). Then addV,,;4 as a child ofN.

3. ANSWERRETURN: Let F,, contain a non-root node

N = A:- DelayList|S, Goal List

whose selected literad is positive. LetAns be an answer node fof in F,, and
Ne.niia be the answer resolvent 8f and Ans on S. Assume that itF,,, N does not
have a childV,.;;;4. Then addV,;,;;4 as a child of V.

4. NEGATION RETURN: Let F,, contain a leaf node

N = Ans - DelayList|not S, Goal List.

with selected literahot S.

(&) NEGATION Success If S is failed in F,,, then create a child fotV of the
form: Ans :- DelayList|Goal List.

(b) NEGATION FAILURE: If S succeeds i, then create a child fotV of the
formfail.

5. DELAYING: Let F,, contain a leaf nodéV = Ans :- DelayList|not S, Goal List,
such thatS is ground, inF,,, but .S is neither successful nor failed i,,. Then
create a child forNV of the formAns :- DelayList, not S|Goal List.

6. SIMPLIFICATION: Let F,, contain a leaf nodéV = Ans :- DelayList|, and let
L € DelayList
(a) If Lis failed inF then create a childail for N.

(b) If L is successful iFF, then create a childdns :- DelayList’| for N, where
DelayList’ = DelayList — L.

7. COMPLETION: Given a completely evaluated stof subgoals (Definition 3), for
eachS € S, setMark(T, complete), whereT is the tree forS.

8. ANSWERCOMPLETION: Given a set of unsupported answeéfsl, create a failure
node as a child for each answéms € U A.

Definition 7 (SLG Evaluation). Given a programP and goalG, an SLG evaluation
£ is a sequence of SLG forests, F,. .. ,Fg, such that:

— Fy is the forest containing a single trég :- | G
— For each successor ordinal,+1 < 3, F,,11 is obtained froni,, by an application
of an SLG operation from Definition 6.

If no operation is applicable t&, F is called thefinal forestof £.

Theorem 2. LetG,,,;; be an atomic goal to a finite ground normal progrdf Under
a cost model with constant time access to all subgoals, netelsdelay literals of each
SLG forest and constant time access to each claust then a partial SLG evaluation
£ that does not perforrMNSWER COMPLETION can be constructed that is linear in
the size ofP.

(Sketch) It follows from the basic properties of SLG as shamvthe literature that
£ is finite, so that a cost function is meaningful. We consitierdost of€ where incre-
mental completion is not used. The structure of the proof is

1. To indicate how the SLG operations are modified to supppetrticular complete
scheduling strategy faf;

2. To show that the length & is linear insize(P)

3. To show that each operation can be performed in constaat ti

Part I: Defining the scheduling strateg@onsider an SLG evaluation which is aug-
mented by a queu@o of applicable operations, and a g€t of non-completed sub-
goals that do not have a (conditional or unconditional) arsw

SLG operations are modified in the following ways to interaith H» andQo.

1. When a new SLG tree for subgdal),.., is created, the set ofF'®GRAM CLAUSE
RESOLUTION operations applicable t@,,.., is added taQo, andG,,.., is added
to Hp.

2. When an SLG operation creates a new naglg that is neither the root of an SLG
tree nor an answer, lgt be the selected literal a¥;,,;, andG,; the underlying
atom of L.

(a) if G is new to the evaluation, aBNv SUBGOAL operation is added 1@
(b) if G4 is not new to the evaluation,

i. If G is positive, an ASWER RETURN operation applicable faf ¢; is
added taYo (if an unconditional answer faF ., is available in the current
forest it is scheduled, otherwise an arbitrary conditi@meswer forG ; is
scheduled).

ii. If G isnegative
A. If G, is successful or failed in the current forest @ \ATION RE-

TURN operation forG,; is added taQo
B. Otherwise, a BLAYING operation forG ., is added ta)o

3. When an SLG operation creates a new answWgy, for a subgoals, S is removed

from Hp if it is present there, and

(a) If Ny,.s is unconditional, and there are no other unconditional @ns¥or.S in
the current foresir if N, is conditional and there are no other answersSfor
in the current forest, ASWER RETURN operations are added €@, for each
node havingS as a selected positive literal

(b) In addition, if N, is unconditional and ther are no other unconditional an-
swers forS in the current forest, IPLIFICATION operations are added for
each node that hasor not S in its delay list.

4. When a failure node is added to a naglelf S is now failed (i.e. because all
of its leaf nodes are failure nodeg,is added toHr (if it is not there), and a
COMPLETION operation forS is added taQo

5. When a subgod is completed, ifS is failed, SMPLIFICATION operations forS
are added t@) o, andS is removed fromH z if it is present there.

Based on these modified operations, the initial SLG forestfoonsists of a tree for
Ginit, and with@Qo consisting of ROGRAM CLAUSE RESOLUTION operations appli-
cable toG;,::. £ proceeds by executing the operation§inin FIFO order (actually the
order does not matter). Whe&p, becomes empty, a completion operation is placed on
Qo for each subgoal it/ . If there are no such subgoatsierminates. Since each op-
eration inserts int@) all operations that it makes applicable, the schedulingesked
here is complete.

Part 2 £ has a number of operations that is lineardixe(P). We start by showing
that the size of any SLG foresk, is linear insize(P). Consider first that the number
of trees inF is bounded by the number of underlying subgoals of literalB i which
is linear insize(P). Also, the total number of children of the root node of soree in
P is limited by the number of program clausedin- again linear irsize(P). Next, let
Node be node produced byR@GRAM CLAUSE RESOLUTION, with Lits g literals
in its goal list. Each such literal can in principle eitherbsolved or delayed, leading to
at mos2™e=1i(P) children for N wheremaa;it(P) is the maximal number of literals
in any clause inP. Accordingly,size(F) is linear insize(P)

Next, consider that operations are scheduled only whenengiede is created or
a given tree is completed, each of which situations can ooelyronce inf. We thus
consider the number of operations scheduled for the creafieach type of node.

— The number of operations scheduled when creating a newdreesubgoab (i.e.
a NEw SUBGOAL operation) is the numbérof clauses with head. Note that the
total number of all W SUBGOAL operations is at mostze(P).

— The number of operations scheduled upon creation of arigntawde with selected
literal G4 is 1, since it will schedule at most oneEM SUBGOAL, ANSWER RE-
TURN, NEGATION RETURN or DELAYING operation

— The number of operations scheduled upon creation of an amswde for a subgoal
S'is at mostk wherek is the number of nodes i with S or not S as its selected
literal or in its delay list. Note that the total cost for alich operations is linear in
the size ofP, since each literal on a clause Biwill be resolved or simplified away
at most once.

— The number of operations scheduled upon creation of a é&ilade is constant,
since at most one @UPLETION operation will be scheduled.

— The number of operations scheduled upon completion of a odeat mostk
wherek is the number of nodes i with S or not S in its delay list, ornot S as
its selected literal. Note that the total cost of all suchrafies is linear in the size
of P, since each literal in a clause Bfwill be simplified away at most once.

Since the total number of operations scheduled upon cgeadioh types of node in
the forest and the total number of operations scheduled siplogoal completion are all
linear insize(P), the second part is shown.

Part 11l: that each operation can be performed in constantéi

Since access t@/; is assumed to be constant-time, we do not mention it in the
subcases below.

— NEw SUBGOAL: Given constant-time indexing to subgoalsZnthe NEw SuB-
GOAL operation, which checks whether or not a particular subigaalF requires
constant time to perform the check, and given constant-tiaexing of clauses in
P, the cost of scheduling eaclRBGRAM CLAUSE RESOLUTION operation will
also require constant time.

— PROGRAM CLAUSE RESOLUTION:

o If the operation creates an interior nodlg then, given constant-time index-
ing to answers iF, a ROGRAM CLAUSE RESOLUTION operation requires
a constant time to schedule eacN$wWER RETURN, NEGATION RETURN, or
DELAYING oparation forV.

e Otherwise, if the operation creates an answer node for aosilSg constant
time access to answers @f allows the operation to schedule arngwER
RETURN or NEGATION RETURN operation, if needed, for each leaf nodefin
whose selected literal hasas its underlying atom. Given constant-time access
to elements of delay lists i, each SMPLIFICATION operation scheduled will
also require constant time.

— The constant time cost of scheduling each operation RgWER RETURN, DE-
LAYING, NEGATION RETURN, SIMPLIFICATION and GOMPLETION operations
follows from the same argument as foR®GRAM CLAUSE RESOLUTION.

Thus the application of SLG operations and their schedwwerhead requires a
cost linear insize(P), In addition, by using? r, the scheduling of GMPLETION oper-
ations at each stage whénr, becomes empty is proportional to the number of subgoals
in Hr, Given constant-time access to subgoalsithe cost scheduling these opera-
tions is linear in the size off . Given a subgoal is added 16z only once, when it is
created the total cost of all scheduling ob@PLETION operations fromH i, will be
linear insize(P). Thus, the cost of all SLG operations and scheduling stepé fe
constant insize(P).

