
Incremental answer completion in the SLG-WAM

Terrance Swift, Alexandre Miguel Pinto, and Luís Moniz Pereira ⋆

Centro de Inteligência Artificial, Universidade Nova de Lisboa

Abstract. The SLG-WAM of XSB Prolog soundly implements the Well-Founded
Semantics (WFS) for logic programs, but in a few pathological cases its engine
treats atoms as undefined that are true or false in WFS. The reason for this is
that the XSB does not implement the SLG ANSWER COMPLETION operation in
its engine, the SLG-WAM – rather ANSWER COMPLETION must be performed
by post-processing the table. This engine-level omission has not proven signifi-
cant for applications so far, but the need for ANSWERCOMPLETION is becoming
important as XSB is more often used to produce well-founded residues of highly
non-stratified programs. However, due to its complexity, care must be taken when
adding ANSWER COMPLETION to an engine. In the worst case, the cost of each
ANSWER COMPLETION operation is proportional to the size of a programP ,
so that the operation must be invoked as rarely as possible, and when invoked
the operation must traverse as small a fragment as possible of P . We examine
the complexity of ANSWERCOMPLETION; and then describe its implementation
and performance in XSB’s SLG-WAM such that the invocations of the operation
are restricted, and which is limited in scope to Strongly Connected Components
within a tabled evaluation’s Subgoal Dependency Graph.

Designers of logic programming engines must weigh the usefulness of operations
against the burden of complexity they require. Perhaps the best known example is
the occurs checkin unification. Prologs derived from the WAM do not perform oc-
curs check between two terms, since its cost may be exponential in the size of the
terms. Rather, the occurs check must be explicitly invoked through the ISO predicate
unify_with_occurs_check/2 or a similar mechanism. For evaluating normal
programs using tabling, checking for certain positive loops involves similar consider-
ations. While most positive loops can be efficiently checked, positive subloops within
larger negative loops are more difficult to detect, and account for the complexity of
evaluating a programP according to WFS, which isatoms(P ) × size(P ), where
atoms(P ) is the number of atoms ofP andsize(P ) is the number of rules ofP .

As implemented in XSB, the SLG-WAM detects positive loops between tabled sub-
goals so that answers are not added to a table unless they are true, or are involved in a
loop through negation and so are undefined at the time of theiraddition (termedcondi-
tional answers). As shown in Theorem 1 below, this sort of evaluation can be done in
time linear insize(P ). However, a situation can arise where certain conditional answers
are later determined to be true or false. This determinationmay break a negative loop,
which uncovers a positive loop and makes the answers false. Within SLG, this situa-
tion is addressed by the ANSWER COMPLETION operation, which is not implemented
within the currently available version of the SLG-WAM. So far, the lack of ANSWER

⋆ tswift@cs.sunysb.edu, amp@di.fct.unl.pt, lmp@di.fct.unl.pt



COMPLETION has not proven a problem for most programs. However, the SLG-WAM
is increasingly being used to produce well-founded residues for highly non-stratified
programs for applications involving intelligent agents (e.g. [2]), where the need for
ANSWERCOMPLETION is greater.

This paper examines issues involved in adding ANSWERCOMPLETION to the SLG-
WAM. We illustrate the situation of a positive loop begin uncovered when a negative
loop is resolved through a concrete example, and then we provide a formal result on the
contribution ANSWERCOMPLETION makes to the complexity of computing WFS. We
introduce an algorithm for efficiently performing ANSWERCOMPLETION (subject to its
complexity), and discuss performance results obtained by implementing it in the SLG-
WAM. Due to space requirements, we must assume knowledge of tabled evaluation of
WFS through SLG resolution [1] as well as certain data structures of the SLG-WAM [3].

Example 1.The following program is soundly, but not completely, evaluated by the
SLG-WAM, wheretnot/1 indicates that tabled negation is used:

:- table p/1,r/0,s/0.
p(X):- tnot(s). p(X):- p(X).

s:- tnot(r). s:- p(X). r:- tnot(s),r.

The well founded model for this program has true atoms{s} and false atoms{r, p(X)}.
Recall that literals that do not have a proof and that are involved in loops over default
negation are consideredundefinedin WFS. Unproved literals involved only in positive
loops, i.e., without negations, areunsupportedand, hence,falsein WFS. Accordingly,
p(X), whose second clause fails, isfalse; however, a query top(X) in XSB indicates
thatp(X) is undefined. The reason is that during evaluation the engine detects a strongly
connected component (SCC) of mutually dependent goals containingp(X), r ands,
along with negative dependencies, and no answers for any of these goals. In such a situ-
ation, the SLG-WAM delays negative literals and continues execution. Here, the literal
tnot(s) in the rulep(X):- tnot(s) is delayed, producing an answerp(X):-
tnot(s)|, indicating thatp(X) is conditional on adelay list, heretnot(s). That
answer is returned to the goalp(X) in the clausep(X):- p(X) and a conditional
answerp(X):- p(X)| is derived. Later, a positive loop is detected forr, causing its
truth value to becomefalse. The failure ofr causess to becometrue, and SIMPLIFI -
CATION removes the answerp(X):- tnot(s)|. At this stage, however, no further
simplification is possible forp(X) :- p(X)|, which is now unsupported.

The ANSWER COMPLETION operation addresses such cases by detecting positive
loops in dependencies among conditional answers. More precisely, ANSWERCOMPLE-
TION marksfalsesets of answers that are notsupported: i.e. conditional answers for
completed subgoals that contain only positive, and no negative dependencies in their
delay lists. The creation of unsupported answers are uncommon in the SLG-WAM be-
cause its evaluation isdelay minimal– that is, the engine performs no unnecessary DE-
LAYING operations [4]. Delay minimality reduces the need for simplification of depen-
dencies among answers, and thereby the chances of uncovering positive loops among
answers, as with the answerp(X):- p(X)| above.

1. Complexity



We begin by showing that queries to programs that do not need ANSWERCOMPLETION

can be evaluated inO(size(P )). Such programs include stratified ones, and also non-
stratified programs that contain no positive loops within negative SCCs in their dynamic
dependency graphs1.

Theorem 1. LetQ be a query to a finite ground normal programP . Under a cost model
with constant time access to all subgoals, nodes, and delay elements of each SLG forest
in an evaluation, and constant time access to each clause inP , a partial SLG evaluation
that does not performANSWER COMPLETION can be constructed that is linear in the
size ofP .

The algorithm ITERATE ANSWER COMPLETION below iteratively applies ANSWER

COMPLETION operations, callingCheck Supported Answers() to perform a check
for positive loops.Check Supported Answers() is an adaptation of Tarjan’s algo-
rithm for SCC detection (cf.http://en.wikipedia.org/wiki/Tarjan’s_
strongly_connected_components_algorithm),which is linear insize(P ).
Note that in the worst case, ANSWER COMPLETION operations iteratively need to be
applied, and that each time it is applied, a single atom wouldbe foundfalse. In that case,
program evaluation would have a cost proportional toatoms(P ) × size(P ), which is
equivalent to the known complexity for WFS.

2. Implementation of ANSWER COMPLETION
Within an SLG evaluation, a tabled subgoal can be marked ascomplete, which indicates
that all possible answers have been produced for the subgoal, although SIMPLIFICA -
TION and ANSWER COMPLETION operations may remain to simplify or delete con-
ditional answers. Completed subgoals do not require execution stack space, but only
table space, so that completing subgoals as early as possible is a critical step for engine
efficiency. Accordingly the SLG-WAM performsincremental completionvia a com-
pletion instruction, which maintains information about mutually dependent sets of sub-
goals (SCCs), and completes each SCC when all applicable operations have been per-
formed. In addition to marking each subgoalS in an SCC as complete, ifS failed (has
no answers) thecompletion instruction may initiate SIMPLIFICATION for conditional
answers that depend negatively onS. In terms of ANSWERCOMPLETION, observe that
any positive loop among the delayed literals of conditionalanswers must be contained
within the SCC being completed, as each delayed literal was aselected literal before
it was delayed. This incremental approach has several benefits. Performing ANSWER

COMPLETION operation within thecompletion instruction restricts the space that any
such operation needs to search. In addition, performing ANSWER COMPLETION af-
ter all other SIMPLIFICATION operations have been performed on answers within the
SCC similarly reduces search space. As a final optimization,ANSWER COMPLETION

is not required unless delaying has been performed within the SCC, a fact that is easily
maintained using data structures in the SLG-WAM’sCompletion Stack, which main-
tains information about SCCs. The pseudo code forIterate Answer Completion(),
which traverses all subgoals in the SCC using theCompletion Stack, and checks each

1 The proof of Theorem 1 is contained in an appendix of a fuller version of this paper available
on request.



answer for support, deleting unsupported answers from the table and invoking SIMPLI -
FICATION operations, is presented in Figure 1. SIMPLIFICATION may remove further
negative loops, and uncover new unsupported other answers as a side-effect. In such
case, the ANSWERCOMPLETION procedure should be executed once more, and this is
guaranteed by the use of thereached_fixed_point flag. A fixed-point is reached when
all answers within the scope of the SCC are known to be supported.

Algorithm Iterate Answer Completion(CompletionStack)

reached_fixed_point = FALSE;
while not reached_fixed_point

reached_fixed_point = TRUE;
foreach subgoal S in the Completion Stack

foreach answer A for subgoal S
if not Check_Supported_Answer(A) /* A is unsupported */

reached_fixed_point = FALSE;
delete A;
propagate A’s deletion’s simplifications;

Fig. 1. Algorithm ITERATE ANSWERCOMPLETION.

Check Supported AnswerThis procedure (Figure 2) does the actual check of
whether a (positive) answer is unsupported. It detects positive loops whenever it en-
counters an answer that has already been visited and which isin the SCC. In this case,
the algorithm terminates returningFALSE to indicate the answer is unsupported. On
the other hand, if the answer has been visited but is not part of the SCC, it means such
answer has been produced during some other branch of query-solving and was there-
fore, rightfully supported and stored in the table: the algorithm terminates returning
TRUE. Checking a non-visited answer consists of 1) marking it as visited; 2) adding
it to the state of the search (stored in theCompletion Stack); and then 3) traversing
all the Delay Elements (literals) of the Delay Lists for the answer recursively checking
each in turn for supportedness. Whenever an answer is determined to be unsupported,
all Delay Lists containing (Delay Elements that reference)it are deleted, which may
cause further simplification and iterations of ANSWERCOMPLETION.

The above algorithm has been implemented within thecompletion instruction of XSB.
Full performance analysis is still underway. Preliminary results indicate advantages of
our heuristics: traditional benchmarks likewin/1 either do not use SIMPLIFICATION

or use it seldom so that there is no overhead for ANSWER COMPLETION. A stress
test that performs a large number of repetitions of Example 1shows an overhead of
at most 18%. Example 1 is actually representative of the typical situation where AN-
SWER COMPLETION is needed. This is so because it contains (at least) two rulesfor
some literal (in this casep(X)) where the first one depends on a loop through nega-
tion (renderingp(X) undefined) and the second one depend on a positive loop, which
is unsupported. The “undefinedness” coming from the first clause is passed on to the
p(X) in the body of the second one. Only ANSWERCOMPLETION can then be used to
clean away the delay list withp(X) from the answer coming from the second clause
for p(X). The “pathological” nature of this example follows from the, until now, XSB’s



Algorithm Check Supported Answer(Answer)

if Answer has already been visited
if Answer is in the SupportCheckStack return FALSE;
else return TRUE;

else
mark Answer as visited;
push Answer onto the SupportCheckStack;
mark Answer as supported_unknown;
foreach Delay List DL for Answer

if Answer is supported_true exit loop;
mark DL as supported_true;
foreach Delay Element DE in the Delay List DL

if DL is not supported_true exit loop;
if DE is positive and it is in the SupportCheckStack

recursively call Check Supported Answer(Answer of DE)
if Answer of DE is not supported_true

mark DL as supported_false;
if DL is supported_false

remove DL from Answer’s DLs list
if Answer’s DLs list is now empty

delete Answer node;
simplify away unsupported positives of Answer;

else mark Answer as supported_true;
if the Answer node was deleted return TRUE;
else return FALSE;

Fig. 2. Algorithm CHECK SUPPORTEDANSWER.

SLG-WAM inability to rightfully detect and simplify away unsupported literals such as
p(X).

3. Conclusions
WFS is used in an increasing number of applications, from intelligent agents, to inher-
itance in object logics, to supply-chain analysis. However, the abstract complexity of
WFS is a concern when embedding into the semantic core of a programming language
like Prolog. Theorem 1 shows that the non-linearity of WFS can be separated from other
parts of an engine for WFS; and the optimizations of the algorithm presented here, to-
gether with the preliminary performance results, underscore the suitability of WFS for
general-purpose programming.

References

1. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
JACM, 43:20–74, 1996.

2. L. M. Pereira and G Lopes. Prospective logic agents. InEPIA, volume 4874 ofLNAI, pages
73–86, 2007.

3. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
logic programs.TOPLAS, 20(3):586 – 635, 1998.

4. K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation.Theoretical
Computer Science, 254(1-2):465–499, 2000.



Appendix: Proof of Theorem 1

To help the reviewers assess the technical accuracy of Theorem 1 we include a detailed
sketch of its proof, along with relevent definitions of SLG evaluation.

Theorem 1 and its proof rely on several of the definitions of SLG evalution2. In
order to make the appendix self-contained, we restate several definitions of SLG, sim-
plified at times for ground programs and finite evaluations.

Definition 1 (SLG Trees and Forest).An SLG forest consists of a set of SLG trees.
Nodes of SLG trees have the forms:

Answer_Template :- DelayList|GoalList

or simplyfail. In the first form, theAnswer_Template is an atom,DelayList is a set
of literals andGoalList is a sequence of literals. The second form is called afailure
node.

A nodeN is an answerwhen it is a leaf node for whichGoalList is empty. If the
DelayList of an answer is empty it is termed anunconditional answer, otherwise, it is
a conditional answer.

Definition 2 (Answer Resolution).LetN be a nodeA :- D|L1, ..., Ln, wheren > 0,
andAns = A′ :- D′| an answer.N is SLG resolvablewith Ans if ∃i, 1 ≤ i ≤ n, such
thatLi is identical toA′. TheSLG resolventof N andAns onLi is:

(A :- D|L1, ..., Li−1, Li+1, ..., Ln)

if D′ is empty; otherwise the resolvent has the form:

(A :- D, Li|L1, ..., Li−1, Li+1, ..., Ln)

Definition 3 (Completely Evaluated).A setS of subgoals in a forestF is completely
evaluatedif no S ∈ S is completed and if at least one of the following conditions holds
for eachS ∈ S

1. The tree forS contains an answerS :- |; or
2. For each nodeN in the tree forS:

(a) The underlying subgoal of the selected literal ofN is completed; or
(b) There are no applicableNEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,

ANSWER RETURN, NEGATION RETURN or DELAYING operations (Defini-
tion 6) forN .

Definition 4 (Supported Answer). Let F be an SLG forest,S a subgoal inF , and
Ans = A :- DelayList| an answer in the tree forS. ThenAns is supported byS in F
if and only if:

1. S is not completely evaluated; or

2 The formulation here follows T. Swift. “A New Formulation ofTabled Resolution with Delay",
Recent Advances in Artifiial Intelligence, pp. 163-177, LNAI 1695, 1999.



2. there exists an answer nodeA :- DelayList′| of S such that every positive delay
literal D is supported.

Definition 5. LetF be an SLG forest. An atomS is successful inF if some tree inF
has an unconditional answerS. S is failed inF if S is completed and the tree forS
contains no answers. A negative delay literalnot D is successful (failed) in a forestF
if D is failed (successful) inF .

Definition 6 (SLG Operations).Given a forestFn of anSLG evaluation of program
P Fn+1 may be produced by one of the following operations.

1. NEW SUBGOAL: Let Fn contain a non-root node

N = Ans :- DelayList|G, GoalList

whereG is the selected literalS or not S. AssumeFn contains no tree with root
subgoalS. Then add the treeS :- |S toFn.

2. PROGRAM CLAUSE RESOLUTION: Let Fn contain a root nodeN = S :- |S and
C be a program clauseS :- Body. Assume that inFn, N does not have a child
Nchild = (S :- |Body). Then addNchild as a child ofN .

3. ANSWERRETURN: Let Fn contain a non-root node

N = A :- DelayList|S, GoalList

whose selected literalS is positive. LetAns be an answer node forS in Fn and
Nchild be the answer resolvent ofN andAns onS. Assume that inFn, N does not
have a childNchild. Then addNchild as a child ofN .

4. NEGATION RETURN: Let Fn contain a leaf node

N = Ans :- DelayList|not S, GoalList.

with selected literalnot S.
(a) NEGATION SUCCESS: If S is failed inFn, then create a child forN of the

form: Ans :- DelayList|GoalList.

(b) NEGATION FAILURE: If S succeeds inFn, then create a child forN of the
form fail.

5. DELAYING : LetFn contain a leaf nodeN = Ans :- DelayList|not S, GoalList,
such thatS is ground, inFn, but S is neither successful nor failed inFn. Then
create a child forN of the formAns :- DelayList, not S|GoalList.

6. SIMPLIFICATION : Let Fn contain a leaf nodeN = Ans :- DelayList|, and let
L ∈ DelayList

(a) If L is failed inF then create a childfail for N .
(b) If L is successful inF , then create a childAns :- DelayList′| for N , where

DelayList′ = DelayList− L.
7. COMPLETION: Given a completely evaluated setS of subgoals (Definition 3), for

eachS ∈ S, setMark(T, complete), whereT is the tree forS.
8. ANSWERCOMPLETION: Given a set of unsupported answersUA, create a failure

node as a child for each answerAns ∈ UA.



Definition 7 (SLG Evaluation). Given a programP and goalG, an SLG evaluation
E is a sequence of SLG forestsF0,F1,. . . ,Fβ, such that:

– F0 is the forest containing a single treeG :- | G
– For each successor ordinal,n+1 ≤ β,Fn+1 is obtained fromFn by an application

of an SLG operation from Definition 6.

If no operation is applicable toF , F is called thefinal forestof E .

Theorem 2. LetGinit be an atomic goal to a finite ground normal programP . Under
a cost model with constant time access to all subgoals, nodes, and delay literals of each
SLG forest and constant time access to each clause inP , then a partial SLG evaluation
E that does not performANSWER COMPLETION can be constructed that is linear in
the size ofP .

(Sketch) It follows from the basic properties of SLG as shownin the literature that
E is finite, so that a cost function is meaningful. We consider the cost ofE where incre-
mental completion is not used. The structure of the proof is

1. To indicate how the SLG operations are modified to support aparticular complete
scheduling strategy forE ;

2. To show that the length ofE is linear insize(P )
3. To show that each operation can be performed in constant time

Part I: Defining the scheduling strategy.Consider an SLG evaluation which is aug-
mented by a queueQO of applicable operations, and a setHF of non-completed sub-
goals that do not have a (conditional or unconditional) answer.

SLG operations are modified in the following ways to interactwith HF andQO.

1. When a new SLG tree for subgoalGnew is created, the set of PROGRAM CLAUSE

RESOLUTION operations applicable toGnew is added toQO, andGnew is added
to HF .

2. When an SLG operation creates a new nodeNint that is neither the root of an SLG
tree nor an answer, letL be the selected literal ofNint, andGsel the underlying
atom ofL.
(a) if Gsel is new to the evaluation, a NEW SUBGOAL operation is added toQO

(b) if Gsel is not new to the evaluation,
i. If Gsel is positive, an ANSWER RETURN operation applicable forGsel is

added toQO (if an unconditional answer forGsel is available in the current
forest it is scheduled, otherwise an arbitrary conditionalanswer forGsel is
scheduled).

ii. If Gsel is negative
A. If Gsel is successful or failed in the current forest a NEGATION RE-

TURN operation forGsel is added toQO

B. Otherwise, a DELAYING operation forGsel is added toQO

3. When an SLG operation creates a new answerNans for a subgoalS, S is removed
from HF if it is present there, and



(a) If Nans is unconditional, and there are no other unconditional answers forS in
the current forestor if Nans is conditional and there are no other answers forS

in the current forest, ANSWER RETURN operations are added toQO for each
node havingS as a selected positive literal

(b) In addition, ifNans is unconditional and ther are no other unconditional an-
swers forS in the current forest, SIMPLIFICATION operations are added for
each node that hasS or not S in its delay list.

4. When a failure node is added to a nodeS, If S is now failed (i.e. because all
of its leaf nodes are failure nodes),S is added toHF (if it is not there), and a
COMPLETION operation forS is added toQO

5. When a subgoalS is completed, ifS is failed, SIMPLIFICATION operations forS
are added toQO, andS is removed fromHF if it is present there.

Based on these modified operations, the initial SLG forest for E consists of a tree for
Ginit, and withQO consisting of PROGRAM CLAUSE RESOLUTION operations appli-
cable toGinit. E proceeds by executing the operations inQ0 in FIFO order (actually the
order does not matter). WhenQO becomes empty, a completion operation is placed on
Q0 for each subgoal inHF . If there are no such subgoals,E terminates. Since each op-
eration inserts intoQ all operations that it makes applicable, the scheduling sketeched
here is complete.

Part 2E has a number of operations that is linear insize(P ). We start by showing
that the size of any SLG forest,F , is linear insize(P ). Consider first that the number
of trees inF is bounded by the number of underlying subgoals of literals in P , which
is linear insize(P ). Also, the total number of children of the root node of some tree in
P is limited by the number of program clauses inP – again linear insize(P ). Next, let
Node be node produced by PROGRAM CLAUSE RESOLUTION, with LitsNode literals
in its goal list. Each such literal can in principle either beresolved or delayed, leading to
at most2maxlit(P ) children forN wheremaxlit(P ) is the maximal number of literals
in any clause inP . Accordingly,size(F) is linear insize(P )

Next, consider that operations are scheduled only when a given node is created or
a given tree is completed, each of which situations can occuronly once inE . We thus
consider the number of operations scheduled for the creation of each type of node.

– The number of operations scheduled when creating a new tree for a subgoalS (i.e.
a NEW SUBGOAL operation) is the numberk of clauses with headS. Note that the
total number of all NEW SUBGOAL operations is at mostsize(P ).

– The number of operations scheduled upon creation of an interior node with selected
literal Gsel is 1, since it will schedule at most one NEW SUBGOAL, ANSWERRE-
TURN, NEGATION RETURN or DELAYING operation

– The number of operations scheduled upon creation of an answer node for a subgoal
S is at mostk wherek is the number of nodes inF with S or not S as its selected
literal or in its delay list. Note that the total cost for all such operations is linear in
the size ofP , since each literal on a clause ofP will be resolved or simplified away
at most once.

– The number of operations scheduled upon creation of a failure node is constant,
since at most one COMPLETION operation will be scheduled.



– The number of operations scheduled upon completion of a nodeS is at mostk
wherek is the number of nodes inF with S or not S in its delay list, ornot S as
its selected literal. Note that the total cost of all such operatins is linear in the size
of P , since each literal in a clause ofP will be simplified away at most once.

Since the total number of operations scheduled upon creating each types of node in
the forest and the total number of operations scheduled uponsubgoal completion are all
linear insize(P ), the second part is shown.

Part III: that each operation can be performed in constant time.
Since access toHF is assumed to be constant-time, we do not mention it in the

subcases below.

– NEW SUBGOAL: Given constant-time indexing to subgoals inF the NEW SUB-
GOAL operation, which checks whether or not a particular subgoalis inF requires
constant time to perform the check, and given constant-timeindexing of clauses in
P , the cost of scheduling each PROGRAM CLAUSE RESOLUTION operation will
also require constant time.

– PROGRAM CLAUSE RESOLUTION:
• If the operation creates an interior nodeN , then, given constant-time index-

ing to answers inF , a PROGRAM CLAUSE RESOLUTION operation requires
a constant time to schedule each ANSWER RETURN, NEGATION RETURN, or
DELAYING oparation forN .

• Otherwise, if the operation creates an answer node for a subgoal S, constant
time access to answers ofF allows the operation to schedule an ANSWER

RETURN or NEGATION RETURN operation, if needed, for each leaf node inF
whose selected literal hasS as its underlying atom. Given constant-time access
to elements of delay lists inF , each SIMPLIFICATION operation scheduled will
also require constant time.

– The constant time cost of scheduling each operation by ANSWER RETURN, DE-
LAYING , NEGATION RETURN, SIMPLIFICATION and COMPLETION operations
follows from the same argument as for PROGRAM CLAUSE RESOLUTION.

Thus the application of SLG operations and their schedulingoverhead requires a
cost linear insize(P ), In addition, by usingHF , the scheduling of COMPLETION oper-
ations at each stage whenQO becomes empty is proportional to the number of subgoals
in HF , Given constant-time access to subgoals inF the cost scheduling these opera-
tions is linear in the size ofHF . Given a subgoal is added toHF only once, when it is
created the total cost of all scheduling of COMPLETION operations fromHF , will be
linear in size(P ). Thus, the cost of all SLG operations and scheduling steps for E is
constant insize(P ).


