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Abstract

The addition of preferences to normal logic programs is a convenient way to represent many
aspects of default reasoning. If the derivation of an atom A1 is preferred to that of an atom A2, a
preference rule can be defined so that A2 is derived only if A1 is not. Although such situations can
be modelled directly using default negation, it is often easier to define preference rules than it is
to add negation to the bodies of rules. As first noted in [6], for certain grammars, it may be easier
to disambiguate parses using preferences than by enforcing disambiguation in the grammar rules
themselves. In this paper we define a general fixed-point semantics for preference logic programs
based on an embedding into the well-founded semantics, and discuss its features and relation to
previous preference logic semantics. We then study how preference logic grammars are used in data
standardization, the commercially important process of extracting useful information from poorly
structured textual data. This process includes correcting misspellings and truncations that occur in
data, extraction of relevant information via parsing, and correcting inconsistencies in the extracted
information. The declarativity of Prolog offers natural advantages for data standardization, and a
commercial standardizer has been implemented using Prolog. However, we show that the use of
preference logic grammars allow construction of a much more powerful and declarative commercial
standardizer, and discuss in detail how the use of the non-monotonic construct of preferences leads
to improved commercial software.  2002 Published by Elsevier Science B.V.
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1. Introduction

Horn clauses have proven remarkably useful for parsing when their syntactic variant,
Definite Clause Grammars (DCGs) [9], are employed. DCGs are commonly used to
construct LL parsers in Prolog—but in Prologs that include tabling, such as XSB [19]
or YAP [14], DCGs can also implement the more powerful class of LR parsers. Even
LR parsers, however, can prove cumbersome for implementing grammars that contain
ambiguities. While LR grammars can be written to deterministically parse potential
ambiguities, the determinism comes at a cost of the conciseness of the grammar. This
problem is especially important for natural language applications where ambiguities often
occur and which may require a high degree of maintenance when a grammar written for
one corpus of text is re-applied to a new corpus.

As proposed in [6,7] a natural way to resolve grammatical ambiguities is to declare
preferences for one parse over another by adding preference clauses to DCGs. The
resulting framework is called Preference Logic Grammars (PLGs), which can be taken as a
grammatical form of Preference Logic Programs (PLPs). The following example from [7]
illustrates their use in a simple example from programming languages.

Example 1.1. An imperative programming language containing an if-then-else construct
must specify how to disambiguate “dangling-else” statements. In other words, it should
determine whether the sequence of tokens:

if cond1 then if cond2 then assign1 else assign2

should be parsed as

if cond1 then (if cond2 then assign1 else assign2)

or as

if cond1 then (if cond2 then assign1) else assign2

The following grammar fragment is ambiguous, and gives both possible parses (see,
e.g., [16] for an introduction to DCGs).

ifstmt(if(C,T)) ->

[if],cond(C),[then],stmtseq(T).

ifstmt(if(C,T,E)) ->

[if],cond(C),[then],stmtseq(T),

[else],stmtseq(E).

This grammar can be disambiguated via the following preference rule, which indicates
that the first argument of the head is preferred to the second—i.e., that the “else-statement”
is to be associated with the nearest conditional statement:

prefer(ifstmt(if(C,if(C1,T,E))),

ifstmt(if(C,if(C1,T),E))).
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When a Preference Logic Grammar is evaluated several possible parses are constructed
through its grammar rules; however only the preferred parses, as specified by clauses
of prefer/2, are retained. From a practical point of view, adding preferences to DCGs
(or Horn clauses) can have a striking benefit for an important commercial application
of natural language analysis called data standardization [18]. The problem of data
standardization is to extract meaningful, standardized information from formatted textual
strings. For instance, data standardization might seek to extract street address or telephone
information from unstructured strings contained in a relational database, EDI field or XML
page.

Example 1.2. To take a simple but concrete example of data standardization, a relational
database may contain the following (misspelled) textual string:2

TO THE ORDR OF ZZZ AUTOPARTS INC 129 WASHING

TON EL SEGUNDO

A name and address standardizer might extract the company name, address, city and
postal zip code all in a standard format, as the following record indicates:

Name: ’ZZZ AUTOPARTS’

Title: ’INC’

OrganizationFlag: yes

Street: ’129 WASHINGTON’

POBOX:

City: ’EL SEGUNDO’

State: ’CA’

Zip: ’90245’

Data standardization thus relies on parsing to extract the company name, street number
and so on from the string; on techniques to infer missing information to provide the proper
zip code for the string; on facilities to correct badly entered information to correct the street
name; and on a detailed knowledge of organization and personal names to understand
that the phrase TO THE ORDR OF is a preamble, and not part of a company name. At
the same time, data standardization does not require techniques for understanding deep
linguistic structures, and is performed over a relatively narrow semantic domain.

Since nearly any large organization must maintain data about names and addresses
(of suppliers, customers, etc), name and address standardization is of great commercial
significance. Because standardization relies on rule-based reasoning both to parse and to
infer missing data, standardization is a natural application area for logic programming.
Indeed, a sophisticated Prolog standardizer was first described in [18] and has been
extensively used in a variety of commercial applications (see Section 3 for details).

2 All examples are from commercial data, with minor changes to protect the privacy of the entities involved.
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Name and address standardization, however, can be highly ambiguous since, among other
reasons, the domain of names and addresses has many proper names, and good lexicons
are difficult to obtain for this domain. Because of these ambiguities, standardization
is a natural application for Preference Logic Grammars in particular. In a sustained
re-implementation of the Prolog standardizer mentioned above it was found that the
use of Preference Logic Grammars dramatically decreased code size, and by extension
maintenance cost.

The development of a commercial-grade standardizer using Preference Logic Gram-
mars required several steps beyond the standareizer’s re-implementation. First, an imple-
mentation of Preference Logic Grammars was required that was not only provably correct,
but that could efficiently standardize organizational databases consisting of tens of millions
of records. In addition, as Example 1.1 shows, it is convenient to allow preferences to be
atom-based rather than rule-based, as parse trees are often represented as logical atoms.
However, it is not straightforward how such a correct and efficient implementation can
be derived using the original semantics of Preference Logic Grammars as given in [6].
This semantics is based on Kripke-like structures that, as discussed below, do not easily
relate tostable model semantics or to well-founded semantics, both of which have efficient
implementations. Other preference logic formalisms in the literature also have important
differences from the semantics defined here (see Section 4).

Thus, before considering the application of Preference Logic Grammars, Section 2
discusses in detail a fixed-point semantics and implementation. The new semantics embeds
a more general form of Preference Logic Grammars, called Preference Logic Programs,
into the well-founded semantics (WFS) [20]. The new semantics offers the advantage that
Preference Logic Programs can be easily transformed so that they are directly executable
by a tabling engine. In addition, the new semantics allows preferences to be computed
dynamically and allows unrestricted use of negation in the bodies of Preference Logic
Programs. We show that even when Preference Logic Programs have no negation in
their bodies, their embedding may create a non-stratified normal program, and in fact
correspond to a subclass of normal program called monophonic. Finally, we show that
the new semantics coincides with the semantics of [6] for what we term simple Preference
Logic Programs.

Using these results on semantics and implementation, Section 3 describes the use
of Preference Logic Grammars in data standardization. We discuss the problem of data
standardization, describe in detail the Prolog-based standardizer and the Preference Logic
Grammar standardizer that replaced it, and present detailed code comparisons. Finally, in
Section 4, we review related work in preference logics and in data standardization.

1.1. Terminology

Throughout this paper, we assume the standard terminology of logic programming
as can be found in, e.g. [8], with a few extensions that we note here. A program P

is defined over a language LP of predicate symbols, function symbols, and variables.
Because Preference Logic Programs have features that resemble meta-programming, we
will sometimes equate predicate and function symbols that have the same name and arity.
HP is the Herbrand base of LP . A goal to P is simply an atom in LP . If M is a model of
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a program, we denote M restricted to atoms in a set S as M|S . A ground atom A1 depends
on a ground atom A2 if there is a path from A1 to A2 in the static atom dependency graph
of P as defined in, e.g., [10].

Definition 1.1. A Preference Grammar (PLG) [P,Pref ] is a set Pref of preference rules
(or preferences) of the form

prefer(Term1,Term2) :- Body

along with a set P of definite grammar clauses (see, e.g., [16]), such that atoms of the form
prefer/2 do not occur in the bodies of clauses in P or Pref . If prefer(Term1,Term2) is the
head of a preference rule, then an atom in L[P,Pref ] that unifies with Term1 or Term2 is a
preference atom.

If P is a set of normal rules rather than a set of definite grammar clauses, then [P,Pref ]
is called a Preference Logic Program (PLP). If P and Pref are both sets of definite rules
[P,Pref ] is a definite PLP.

Preference Logic Grammars can be straightforwardly transformed into Preference Logic
Programs in a manner similar to the way in which Definite Clause Grammars can be
transformed into Definite Programs (see [7] for a formal definition of this transformation).
Because of the ease of transformation we discuss both PLGs and PLPs in this paper
depending on the context: PLGs are used for standardization examples while their
semantics is developed using PLPs.

Both the semantics of Section 2 and its implementation are quite general, and allow
the derivation of preferences to depend on preference atoms themselves. Nonetheless, it is
sometimes useful to consider special cases of PLPs in which preferences are static.

Definition 1.2. Let [P,Pref ] be a PLP. A derived atom in [P,Pref ] is an atom that depends
on a preference atom but is not a preference atom itself. A core atom is an atom that is
neither a preference atom nor a derived atom. Accordingly, a clause whose head is a core
atom is a core clause, and the set of core clauses in [P,Pref ] is denoted PC . Derived
clauses are defined similarly, and the set of derived clauses is denoted PD .

Preferences in [P,Pref ] are static if all atoms in the bodies of rules in Pref are core
atoms, i.e., if atoms of the form prefer/2 are core atoms. If preferences are static, the
minimal model of (PC ∪ Pref ) is called the canonical sub-model of [P,Pref ].

Example 1.3. Let P1 = [P1,Pref 1] be the definite preference logic program

prefer(p(a),p(d)). prefer(p(b),p(d)):- b(1).

b(1).

p(a):- p(d). p(b). p(d).
p(e):- b(2).

d(a):- p(a).
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p(a) is a preference atom, b(1) a core atom, and d(a) a derived atom. Since all
atoms in the bodies of preference rules are core atoms, P1 has static preferences. Its
canonical sub-model has {b(1),prefer(p(a),p(d)),prefer(p(b),p(d))} true, and {b(2)}
false.

The restrictions on static preferences are not uncommon when adding preferences or
priorities to logical formalisms. See, e.g. [2], for a discussion. Because static preferences
are part of a canonical sub-model, we can define a relation <pref between atoms such
that A1 <pref A2 if A2 is transitively preferred to A1 (using the relation prefer/2 in a
canonical sub-model). We say that static preferences as captured by the relation <pref are
well-behaved if it is a strict partial order and is well-founded in the sense that there is no
infinite chain of atoms A1 <pref A2 <pref · · · .

2. A Fixed-point semantics for Preference Logic Programs

As described in [6], PLPs are based on a possible-worlds semantics. While this
semantics is described further in Appendix B, we present a short example of the possible
worlds semantics of PLPs in order to give its flavor and to motivate the fixed-point
semantics whose development is the main concern of this section.

Example 2.1. Consider the program P2:

prefer(p(1),p(2)).
prefer(p(2),p(1)).

p(1):- r.
p(2):- r.

r.

whose preference are static. r is a core atom, while p(1) and p(2) are preference atoms.
In [6] a canonical sub-model (Definition 1.2) of P2 is first obtained, which contains the
true atoms {r,prefer(p(1),p(2)),prefer(p(2),p(1))}. The canonical sub-model is then
extended to a model, which is a Kripke-like structure (M. �) in which M is a set of
(2-valued) extensions of I to preference and derived atoms. For W1,W2 ∈ M , W1 �sp W2
iff there is an atom A1 in W1 and an atom A2 in W2 such that A1 <pref A2, and a world
W is strongly optimal if there is no world W ′ different than W such that W <sp W ′ (see
Definition B.2).

The possible-worlds model for P2 contains 4 worlds, whose true atoms are:

M1 = {
prefer

(
p(1),p(2)

)
,prefer

(
p(2),p(1)

)
, r

}
,

M2 = {
prefer

(
p(1),p(2)

)
,prefer

(
p(2),p(1)

)
, r,p(1)

}
,

M3 = {
prefer

(
p(1),p(2)

)
,prefer

(
p(2),p(1)

)
, r,p(2)

}
,

M4 = {
prefer

(
p(1),p(2)

)
,prefer

(
p(2),p(1)

)
, r,p(1),p(2)

}
.
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By the description above, it can be seen that there is a single strongly optimal world: M1.

As can be seen from Example 2.1, the possible worlds semantics may not be amenable to
practical computation since all extensions may have to be taken with respect to preference
and derived atoms and these extensions compared to determine strong optimality.

In this section, we present an alternate semantics for PLPs based on an embedding into
normal programs which are then evaluated under WFS. We refer to this semantics as the
normal embedding semantics, which has the following advantages:

• Once a PLP has been transformed into a normal program, Pnorm, it can be evaluated
by a fixed-point engine for WFS such as XSB. Further, the evaluation has in the worst
case a complexity quadratic in the size of Pnorm.

• The normal embedding semantics of PLPs can be easily compared to other semantics
based on the well-founded or stable semantics. In Section 2.2 we show that definite
PLPs (Definition 1.1) correspond to the class of monophonic normal programs.
The relationship of the normal embedding semantics with other preference logic
formalisms based on stable models or the well-founded semantics is discussed in
Section 4.

• The normal embedding semantics allows somewhat more general forms of PLPs
than the possible worlds semantics. In particular, the new semantics allow dynamic
preference rules and unrestricted use of (ground) negation in the bodies of all rules.

• Finally, Appendix B shows that the normal embedding semantics coincides with the
possible-worlds semantics for the class of simple PLPs.

2.1. Embedding PLPs into well-founded normal programs

We now formally define the semantics of Preference Logic Programs via a transforma-
tion into normal logic programs. The following definition is a reformulation of an embed-
ding first introduced in [4].

Definition 2.1. Let [P,Pref ] be a PLP, and A a preference atom in [P,Pref ]. A is
potentially overridden (potentially preferred) if A unifies with some A2 (A1) such that
prefer(A1,A2) is the head of a preference rule in [P,Pref ].

Next, assume that L[P,Pref ] does not contain the predicate symbols overridden/2, pnot/2,
or trans_prefer/2. The normal embedding of [P,Pref ], [P,Pref ]norm, is the smallest
program containing

1. The rules r ′ defined as follows. Let r be a rule

H :- A1, . . . ,An,not B1, . . . ,not Bm

in P ∪ Pref .
(a) If H is potentially overridden, then

r ′ = H :- A1, . . . ,An,B
′
1, . . . ,B

′
m,not overridden(H).

(b) Otherwise,

r ′ = H :- A1, . . . ,An,B
′
1, . . . ,B

′
m.
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In either case, for 0 � i � m, B ′
i = pnot(H,Bi) if H is potentially preferred and Bi is

potentially overridden, and B ′
i = Bi otherwise.

2. The auxiliary rules

overridden(A1) :- trans_prefer(A2,A1),A2.

trans_prefer(A1,A2) :- prefer(A1,A2).

trans_prefer(A1,A2) :- trans_prefer(A1,A3),prefer(A3,A2).

pnot(A1,A2) :- trans_prefer(A1,A2).

pnot(A1,A2) :- not A2.

The well-founded model [20] of [P,Pref ]norm, WFM([P,Pref ]norm), is the normal
embedding model of [P,Pref ].

Example 2.2. Consider the following preference program which may be taken to have the
flavor of a default logic.

prefer(a,not_a).

b:- not not_b, a._
a:- not not_a.
not_a:- not a.

The preference rule prefer(a,not_a) causes a to be potentially preferred and not_a
to be potentially overridden. Accordingly rules with head not_a will have the literal
not overridden(a) added to their bodies. Likewise, since a is potentially preferred, negative
literals in the bodies of rules for a may need to be rewritten to use pnot/2. The embedded
form is:

prefer(a,not_a).

b:- not not_b, a.
a:- pnot(a,not_a).
not_a:- not a, not overridden(not_a).

along with auxiliary rules. The normal embedding model has {b, a,prefer(a,not_a)} true
and {not_a,not_b} false.

In the normal embedding preference atoms are treated as any other atoms in L[P,Pref ].
If an atom A is not unifiable with an argument in the head of a preference rule, A will be
neither potentially preferred nor potentially overridden, and rules for A will be unaffected.
As a corollary, if the set of preference rules in a PLP [P,Pref ] is empty, the normal
embedding will have no effect on P beyond adding the auxiliary rules. Definition 2.1
allows preferences to be dynamic in the sense that their truth-value may depend on the
truth value of other parts of the program, including other preference atoms. In addition,
preferences can be declared on preferences themselves.
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It is immediate from Definition 2.1 that for any atom A, if prefer(A,A) is true, then A

must be either false or undefined in WFM([P,Pref ]norm).3

The main purpose for Definition 2.1 is so that PLPs (and PLGs) can be computed
efficiently by an engine for the well-founded semantics without requiring grounding
(except to avoid floundered negation). We note in passing that while three-valued
preferences and preferences among preferences have not yet proven useful for data
standardization they can be useful for psychiatric diagnosis (see Section 4).

2.2. Definite preference logic

In a PLP, [P,Pref ], if P and Pref are both definite programs then [P,Pref ] is a definite
PLP. Note that by Definition 1.1, it is straightforward to transform a PLG into a definite
PLP. Definite PLPs can be taken as a generalization of DCGs, and are of particular interest
for grammar processing.

While Definition 2.1 provides a general semantics for PLPs, it is natural to ask whether
this semantics can be simplified for PLGs that are deemed to be “typical”. For instance,
since PLGs can be transformed into definite PLPs, if suitable restrictions of definite PLPs
are two-valued, a simpler semantics might be possible. Unfortunately, Example 2.3 shows
that this is not easily done.

Example 2.3. Consider the following PLP [P3,Pref 3]:
prefer(p(a),p(b)).

p(a):- p(b).
p(b).

which is a definite PLP whose preferences are static (Definition 1.2) and well-behaved.
Both p(a) and p(b), are undefined in WFM([P3,Pref 3]norm).

We now characterize definite PLPs by their relationship with normal programs.

Definition 2.2. Let P be a ground program. Then P is monophonic if each atom A in P is
defined by a (possibly empty) set of rules, having the form

A :- A1,1, . . . ,A1,n1,not A1, . . . ,not Ap

: :
A :- Am,1, . . . ,Am,nq ,not A1, . . . ,not Ap

where Ai , Ai,j are all atoms, m,p,q � 0, and (∀k,0 � k � q) nk � 0.

In other words, a program is monophonic if each rule defining an atom A has the same
set of negative literals as all other rules defining A. Next, we define a transformation that
embeds monophonic normal programs into preference logic programs.

3 A preprocessor implementing the normal embedding, along with several examples, can be obtained from
http://www.cs.sunysb.edu/~tswift.
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Definition 2.3. Let P be a monophonic program, in which the predicate prefer/2 is assumed
not to occur. Then the preferred embedding of P , [Pdef ,PPref ], is defined as follows:

• Let A be an atom in P defined by the rules:

A :- A1,1, . . . ,A1,n1,not B1, . . . ,not Bp

: :
A :- Am,1, . . . ,Am,nq ,not B1, . . . ,not Bp

where m> 0. Then Pdef contains the rules

A :- A1,1, . . . ,A1,n1

: :
A :- Am,1, . . . ,Am,nq

PPref contains the rules

prefer(Bi,A), 1 � i � p.

• Neither Pdef nor PPref contain any other rules.

The following result provides an equivalence between definite Preference Logic
Programs to their monophonic normal counterparts.

Theorem 2.1.

(1) Let [P1,Pref ] be a definite PLP. Then [P1,Pref ]norm is a monophonic program.
(2) Let P be a monophonic program. Then [Pdef ,PPref ] is a definite PLP, and

WFM(P ) = WFM([Pdef ,Ppref ]norm)|A
where A is the set of atoms in LP .

The proof can be found in Appendix A.
Theorem 2.1 indicates that the normal embedding model for definite PLPs (or PLGs)

need not be two-valued. This topic is pursued further in Appendix B, which shows that a
class of PLPs called simple have a two-valued normal embedding model. However, because
PLGs may not be two-valued, their complexity is not linear in the size of a grammar. More
precisely, suppose P = [P,Pref ] is a ground PLG. Then evaluation of a query to P has
worst-case complexity |Pnorm| × |size(Pnorm)|, where |Pnorm| is the number of (ground)
atoms in Pnorm and |size(Pnorm)| is the size of Pnorm. This is somewhat worse than the
complexity of traditional natural language methods, such as Earley parsing, which is linear
in |size(P )|, the size of the grammar and which, if the underlying grammar is transformed
to Chomsky Normal Form, can be made quadratic in the number of productions of the
grammar for a given input sentence |P | (see, e.g., [15] for more information).
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3. Data standardization and Preference Logic Grammars

We now present a detailed study of how Preference Logic Grammars have been used
to improve a name and address data standardizer written in Prolog. For convenience,
we refer to the Prolog standardizer that does not use preference logic grammars as the
Prolog standardizer, and to the version rewritten to include PLGs s the preference logic
standardizer. We begin by describing the architecture and functionality of the Prolog
standardizer before turning to the preference logic standardizer.

3.1. Prolog standardizer architecture

The Prolog standardizer described in this section has for several years been central to
information processing by the US Customs Service and has standardized in real-time all

manifest records for cargo shipments arriving into the US, and all customs forms filed for
imports into the US. Within these records, name and address standardization is performed
on entities of interest, such as manufacturers, importers, and consignees. On a somewhat
smaller scale, the Prolog standardizer has been used to match supplier information for the
Defense Logistics Agency against Web-based catalog information; and has been used to
correlate customer information collected by different departments of a large investment
bank. Further details on the architecture and application of this standardizer may be found
in [12,18].

As indicated in the introduction, the input of the Prolog standardizer is a textual
string, while the output is a structure consisting of standardized elements. Accordingly
the architecture of the Prolog standardizer consists of four stages:

• An initial tokenization phase which converts the free text record into a stream of
tokens.

• A bottom–up parsing phase which corrects spelling of tokens and is responsible for
grouping designated token sequences into new tokens, sometimes called supertokens.

• A frame-oriented top–down parsing phase implemented using Prolog Definite Clause
Grammars.

• A final post-processing phase which corrects badly parsed entities and handles
inconsistent or missing data.

We discuss each of the last three phases in turn.

3.1.1. The bottom–up parsing phase
The bottom–up parse is responsible for simple correction and grouping of tokens when

the correction or grouping does not depend on encountering the tokens within a particular
context. The bottom–up parse performs several functions:

• Explicit Translation. For instance, translating keywords in foreign languages such as
’AEROPORTO’ to ’AIRPORT’;

• Correcting Misspellings such as correcting ’WISCONSON’ to WISCONSIN’;
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• Supertokenization of sequences of tokens. One example of this is grouping the
sequence ’SALT’,’LAKE’,’CITY’ into ’SALT LAKE CITY’ a town in Utah.
If these tokens were not grouped, later stages of the parser might inadvertently
recognize ’LAKE CITY’, a town in Pennsylvania, as the city field.

• Correcting Line Breaks such as correcting ’WASHING’, | , ’TON’ to
’WASHINGTON’, where | denotes a line-break and/or a carriage return.

Example 3.1. Continuing from Example 1.2, after undergoing tokenization, the string

’TO THE ORDR OF ZZZ AUTOPARTS INC 129 WASHING |

TON EL SEGUNDO’

is represented internally in Prolog list syntax as

[’TO’,’THE’,’ORDR’,’OF’,’ZZZ’,’AUTOPARTS’,’INC’,

integer(’129’),’WASHING’,’|’,’TON’,’EL’,’SEGUNDO’]

After undergoing the bottom–up parse, the list would have the form

[’ORDER OF’,’ZZZ’,’AUTOPARTS’,’INC’,integer(’129’),

’WASHINGTON’,’EL SEGUNDO’]

where the token sequence ’TO’,’THE’,’ORDR’,’OF’ is transformed to ’ORDER
OF’; ’WASHING’,’|’,’TON’ to ’WASHINGTON’; and ’EL’,’SEGUNDO’ to ’EL
SEGUNDO’.

The bottom–up parser is implemented as a series of list processing routines that takes
the output of the raw tokenization, and successively applies grouping and correction steps.

The code for the bottom–up parsing phase consists of simple list processing routines,
most of which are automatically generated by declaring keywords such as cities, provinces,
and so on (see [18] for details), or by user-defined tables of transformations. Such keyword
or table specification need not be done by a Prolog programmer, and in fact the Prolog
standardizer consists of over 26,000 bottom–up parsing rules that have been written or
generated to correct misspellings, line breaks, or to perform supertokenization. Thus, the
use of a restricted bottom–up parsing phase allows the standardizer to be more cheaply
maintainable, even though the transformations themselves could also be performed in the
top–down parsing phase.

3.1.2. The top–down parsing phase
The top–down parsing phase is structured as a recursive-descent LL(K) parser and

coded using DCGs. The goal of the top–down parser is to fill up an entity frame represented
by the Prolog term:

frame(Rel_type, entity(Name,Title,Organization_flag),

address(Room,Building,Street,PoBox,City,State,Country,Zip),

Telephone,Attention_name,Other_frames)
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In addition to information about personal or organizational names and addresses,
information is extracted about telephone numbers, faxes, and specific parties in an
organization whose attention called out in the text. Textual information may contain
multiple names and addresses when one company acts on behalf of, or does business
as another. If more than one entity is designated in a string, the frames nest through the
Other_frames field; the type of relation, if any, between a nested company and its “parent”
is denoted in the Rel_type field of the nested company.

Example 3.2. Continuing from Example 3.1, the top–down parsing phase takes as input
the token sequence:

[’ORDR OF’,’ZZZ’,’AUTOPARTS’,’INC’,integer(’129’),

’WASHINGTON’,’EL SEGUNDO’]

and produces an entity frame, abstractly represented as

Name: [’ZZZ’,’AUTOPARTS’]

Title: [’INC’]

Organization Flag: yes

Street: [’129’,’WASHINGTON’,’EL SEGUNDO’]

in which empty frame elements are omitted. The top–down parsing phase correctly
identifies the organization, but over-parses the street address to improperly include the
token ’EL SEGUNDO’. This mistake will be corrected in the post-processing phase.

The Prolog standardizer contains many different rules for recognizing various forms
of organizations, personal names, and street addresses. In the example above, the name
is parsed by a rule that checks for an optional personal or organization prefix, (such as
’ORDR OF’, or ’MR’), followed by a sequence of tokens, (’ZZZ’,’AUTOPARTS’).
Consuming tokens for an organization name is ended by recognizing a token that
begins a production for organization termination (’INC’ in this case), or a token
that begins some other grammatical element, such as an integer that may begin a
street address. Similarly, in the above example the street address is parsed by a
rule that recognizes an integer followed by a sequence of tokens and street termi-
nator. A mistake occurs, however since the input string contains no street termina-
tor (e.g., ’STREET’, ’CALZADA’, ’CALLE’, and so on), nor does it contain a se-
quence of tokens that unambiguously belong to another frame element(s), such as a
city-state pair. In other words, top–down street address parsing would have worked
correctly for the sequence integer(’129’),’WASHINGTON’,’STREET’ or for
integer(’129’),’WASHINGTON’,’EL SEGUNDO’,’CA’.

Top–down parsing code is quite elaborate: there are 724 DCG rules with a total of
2082 lines of code in the Prolog standardizer. These rules are necessary in part to handle
a wide variety of address forms for different languages: for instance, abbreviations for
post office boxes are recognized for several different languages, and street addresses in
different languages require radically different grammar productions. However, many rules
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are also necessary to handle the ambiguity of underlying grammatical elements when
tokens may be misspelled or when information may be missing. While databases exist
of some of these elements such as organizations and their addresses, they are difficult to
obtain, and in any case are of limited use when input strings are corrupted. Accordingly,
many of the DCG rules make use of contextual information to decide into which part of the
frame unfamiliar tokens (such as ’ZZZ’) or ambiguous tokens (such as ’WASHINGTON’)
should be placed. This, the parser first enters a state where unfamiliar tokens are taken to
be part of an organization or personal name. Based on recognizing name terminators or
initiators or new elements, it moves into other states. In Example 3.2, when the organization
terminator is consumed, the parser enters a state, address, in which many different types
of information, such as room-number, post-office box, town, state, city, zipcode and others
can all be recognized. After consuming the integer 129, the parser switches to a state in
which unknown tokens are tentatively taken to be part of a street address. This switch of
context to a tentative street address production may not always be the best choice, since
other address elements, such as room numbers, may also begin with an integer. We call
such a choice of how to interpret default or unknown tokens within the top–down parse
a recognition heuristic. As with the improper recognition of the city ’EL SEGUNDO’ in
the street address in Example 3.2, parsing mistakes that cannot be solved using recognition
heuristics or by other top–down parsing means are fixed in the post-processing phase of
the Prolog Standardizer.

3.1.3. The post-processing phase
Post-processing has two purposes:

• To correct mistakes in parsing arising from ambiguities in the input string, such as seen
in Example 3.2, or from mistakes in the recognition heuristic.

• To add missing address elements to the entity frame when these elements can be
unambiguously inferred

Example 3.3. Given as input the frame depicted in Example 3.2, a post-processor can apply
the rule that if a frame has an empty city field, and has a street address whose last token is
a city name (as indicated by an underlying knowledge base of cities), then the token should
be moved from the street address to the city field, producing the frame:

Name : [′ZZZ′,′ AUTOPARTS′]
Title : [′INC′]
Organization Flag : yes

Street : [′129′,′ WASHINGTON′]
City : [′ELSEGUNDO′]
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More information can be added to this latter frame. According to the knowledge base of
cities, there is a single city in the United States called ’EL SEGUNDO’, and this city has
a unique 5-digit zipcode. Accordingly, the frame can be transformed to

Name: [’ZZZ’,’AUTOPARTS’]

Title: [’INC’]

Organization Flag: yes

Street: [’129’,’WASHINGTON’]

City: [’EL SEGUNDO’]

State: [’CA’]

Zip: [’90245’]

Corresponding to the frame presented in Example 1.2.

Correcting top–down parses. The post-processor consists of a series of rules that
transform parsing information in parsing frames. The rule to pull the city from the street
address has the somewhat simplified form:

post_process_name(frame(Rel_type,
entity(Name,Title,

Organization_flag),
address(Room,Building,Street,

PoBox,City,State,
Country,Zip),

Telephone,Attention_name,
Other_frames),

frame(Rel_type,
entity(Name,Title,

Organization_flag),
address(Room,Building,Street,

PoBox,New_city,State,
Country,Zip),

Telephone,Attention_name,
Other_frames) ):-

is_empty(City),
length(Street,Length),Length >= 3,
last_token(Street,New_city,New_street),
city(New_city),
\+ street_terminator(New_city).

The rule first checks whether the city field of the input parse is empty. If so, it checks to see
that the street field contains at least 3 tokens, then checks that the last token is a city, and
finally checks to see that the city name is not also a street terminator. Curiously, according
to postal records there is a town named ’STREET’ in Maryland, a ’BROADWAY’ New
Jersey, and several other towns whose names are similarly ambiguous.
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Inferring information and checking consistency. The post-processing phase is also
responsible for applying consistency checks on city, state, country and zipcode elements,
and for inferring missing data when possible. These consistency checks are based largely
on the following fact bases:

• 42,000 United States cities with their states, and 5-digit zip codes;
• The 500 largest Canadian cities with their provinces;
• 10,000 additional city–country pairs.

Depending on the knowledge base used, the post-processing phase can check the
validity of various locations. If the standardizer does not recognize a valid location it
attempts to correct the spelling of the city name using a more aggressive algorithm than
permitted in earlier stages. To take a concrete example, if the city name in the parsed
output is PITSBURG, the zipcode is 15123, and the country is US, we determine that
the city corresponding to zipcode 15123 is PITTSBURGH. To make this transformation,
the standardizer checks whether the string-edit distance is less than a predefined threshold
(which is a function of the string length) and corrects the city if so. Related algorithms are
used for non-US cities.

3.1.4. Discussion of the Prolog standardizer
The Prolog standardizer uses many different aspects of Prolog. The simple syntax of

Prolog is useful when generating bottom–up parsing rules; Prolog’s DCGs are used in
the top–down parsing phase; and the declarativity of Prolog is essential to maintaining
the many DCG and post-processing rules. Furthermore, the efficient loading and indexing
capabilities of modern Prologs are used by the knowledge base and parsing rules. As a
result, the Prolog standardizer is a successful commercial product that would have been
difficult if not impossible to produce without logic programming techniques. At the same
time, the Prolog standardizer has severe limitations. Recognition heuristics—such as when
to recognize a street address as opposed to a room number as discussed in Section 3.1.2—
may be embedded deeply in DCG or post-processing code, and these heuristics may need
to be changed when moving from one textual corpus to another. Recognition heuristics
lead to a large number of contexts in the top–down parser—i.e., where unknown tokens
are recognized as part of a name, various address elements and so on. These contexts may
depend on what has already been parsed: an unknown token may be assumed to be part of
a street name if a street name has not already been parsed; otherwise the token may be part
of, say, a city name. Similarly, a short integer may be taken tentatively to begin a street
address if no such address has been found; otherwise it may be taken to be part of a room
or suite number. This leads to a large number of contexts for the top–down parser, so that
in addition to recognition heuristics being difficult to adjust for a new corpus, they must
be adjusted in many places within the top–down parser, and in the post-processing phase,
as in Example 3.3. The result is that maintaining the Prolog standardizer needs extended
attention from a skilled Prolog programmer, making it too expensive for many commercial
applications.
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3.2. Architecture of the preference logic standardizer

The code complexity of the Prolog standardizer arises from the fact that many
grammatical elements cannot always be parsed unambiguously. The top–down parsing
phase of the Prolog standardizer is deterministic (using a certain amount of look-ahead)
but the cost of this determinancy is that a large number of contexts are required as well
as a significant post-processing phase. The preference logic standardizer makes use of the
technique in Example 1.1: a simple, but ambiguous grammar is defined, and ambiguity
is resolved using preference rules. Using this technique the preference logic standardizer
effectively moves most heuristics to preference rules, leading to simpler parsing and post-
processing rules. As a result, the preference logic standardizer has replaced the Prolog
standardizer for new commercial applications. The preference logic standardizer has been
extensively used to match supplier information for the Defense Logistics Agency against
Web-based catalog information, and against data from supply depots for the various armed
services. It has also been used to clean customer data for a large pharmeceutical company.

The functionality of the preference logic standardizer is essentially that of the Prolog
standardizer: recognition and standardization of different forms of organizational and
personal names and addresses. The architecture for the preference logic standardizer
consists of code for the same four phases as the Prolog standardizer. Conceptually, the
tokenization and bottom–up parsing phases are the same for the two standardizers. The
final two phases of preference logic standardization are:

• A preference logic parsing phase, which creates sets of name and address elements,
each of which sets corresponds to an entity frame.

• A post-processing phase which infers missing data.

In the preference logic standardizer, the post-processing phase does not correct misparsed
data, but only infers missing city, state, country or zipcode information, as done in
Example 3.3, or marks data for these fields as inconsistent. Thus the post-processing code
for the preference logic standardizer is essentially the same as that used by the Prolog
standardizer to infer missing data, and is not discussed further in this section. Rather, we
discuss in detail the architecture of code for the preference logic parsing phase.

3.2.1. The preference logic parsing phase
We begin by examining at a high level how preference logic grammars are used on the

running standardization example.

Example 3.4. Consider the output of the bottom–up parser as described in Example 3.1:

[’ORDER OF’,’ZZZ’,’AUTOPARTS’,’INC’,integer(’129’),

’WASHINGTON’,’EL SEGUNDO’]

Abstractly, the preference logic parsing phase encapsulates the parsing of names and
addresses via sets of name and address elements. If the parsing routines succeed with more
than one set, despite the preferences defined for them, the parse is ambiguous. Two possible
sets of address elements for the above token sequence are such that:
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(1) the street address element contains the token sequence integer(’129’),
’WASHINGTON’,’EL SEGUNDO’, and the city element is empty;

(2) the street address element contains the token sequence integer(’129’),
’WASHINGTON’, and the city element contains the token EL SEGUNDO, (which is a
valid city).

However the second parse may be preferred to the first since the second contains a greater
number of (valid) address elements.

Code for the preference logic parsing phase has been implemented using XSB [19].
Fig. 1 contains some relevant top-level predicates for preference logic address parsing
as encoded in XSB syntax. In order to be evaluated by XSB, the code in Fig. 1 would
need be pre-processed to undergo the normal embedding (Definition 2.1). When a query
is made to the transformed program, the top–down execution strategy of Prolog would be
used for program clause resolution, combined with a bottom–up propagation of answers
and of success information of tabled negation. This control strategy is evidenced by the
cut operator is used in Fig. 1. Just as pratical Prolog programs contain predicates and
control operators that are outside of Horn clauses with negation, so practical preference
logic programs in XSB may contain cut operators, non-tabled Prolog negation (\+ /2),
aggregation meta-predicates such as setof/3 and so on. In particular, the use of the cut is
safe in Fig. 1 since there is no tabled predicate in the scope of the cut. Intuitively, the safety
arises because the cut affects only program resolution steps for non-tabled predicates and
so cannot interfere with bottom–up propagation of answers from tables.

The top-level predicate for address parsing is address/1; upon its success its argu-
ment is bound to a list of address elements that are preferred via the predicate prefer/2
in Fig. 1. The predicate address/1 calls the DCG predicate scan_address/3, which
produces all possible address parses for the token string. scan_address/3 is called via
the tabled-DCG meta-predicate tphrase/1, an XSB analog to the prolog DCG meta-
predicate phrase/1. A Prolog DCG uses a difference lists to denote the segment of a
token sequence that it parses; but copying difference lists into and out of tables can be
expensive when tabling is used. Because difference lists for all sub-parses may be copied
into and out of a table, a parse that has linear complexity (in the length of the token se-
quence) for Prolog DCGs may have quadratic space and time complexity if DCGs are
tabled naively. Rather than difference lists, tabled DCGs use integers that denote their po-
sition in a token sequence, and assert the token sequence itself into Prolog’s store. As
an example of this translation, the token sequence in Example 3.4 would cause the facts
word(0,’ORDER OF’,1) and word(1,’ZZZ’,2), and so on, to be asserted to XS-
B’s store. To make use of this, tphrase(scan_address(Addr)) would make the
call scan_address(Addr,0,X) so that parsing would begin on the first token in the
store, and upon the success of the call, X would be instantiated to the position of the last
word used in the parse. Assertion of token sequences to the store is done through XSB
library predicates, and is not depicted in Fig. 1, but detailed information of this routine can
be found in [19].

The predicate scan_address/3 is called a scanning predicate whose only purpose
is to call the DCG predicate address_element_set/3 on each position of the token
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sequence. As its name implies, this predicate produces, through backtracking, all possible
sets of address elements by calls to the predicate address_element/4.4 As can be
seen from this predicate, an address element is simply a sequence of tokens together
with the type of the element—whether it is a street, pobox, and so on. The fact that
address_element/4 is tabled is an important factor in the efficiency of the preference
logic standardizer: different sets of address elements can be obtained without having to
reparse each element. The algorithm implicit in Fig. 1, is strikingly different from the
approach to top–down parsing discussed in Section 3.1.2. The parser does not require
different contexts to determine how to interpret unknown or ambiguous tokens, nor does
it requrire recognition heuristics embedded in DCG rules. It simply generates possible
parses, and leaves most disambiguation to the preference rules.

The preference rules in Fig. 1 are based on general principles. The first rule states that
a parses with more different types of address elements are preferred: a set S1 of address
elements is preferred to another set, S2, if S1 contains a type of address element that S2

does not contain, but if the converse is not true. For example, in Example 3.4 a set that
contains both a city and a street address is preferred to a set that contains a street address
only. The second rule states that longer address elements are preferred: that a set S1 of
address elements is preferred to a set S2 if they both contain the same types of address
elements, but if S1 contains at least one element of type T1 that is a super-sequence of an
element of type T1 in S2. For example, if S1 were the same except that S1 contained the
street address element 42,’N’,’SHAVER’, but S2 contained the street address element
42,’N’, S1 would be preferred to S2. Of course other preference rules may be needed
for a given domain, e.g., to ensure that sets of address elements do not contain two street
addresses. This is not usually necessary, in part because preferences can also be used to
limit the number of address elements that are parsed.

3.2.1.1. Pruning using preference logic. A simple preference relation on the predicate
preferred_city_state_zip/4 (Fig. 1) ensures that a city, state, zip triple suc-
ceeds as an address elements only if it is “optimal” over the entire token sequence.
Code for this predicate is shown in Fig. 2 and resembles the creation of address sets
in Fig. 1. The predicate preferred_city_state_zip/3 is called to see if a
preferred city, state, zip triple begins at a given position, p, in the token sequence.
preferred_city_state_zip/3 in turn calls scan_city_state_zip/3, which
finds all preferred city, state, zip triples for any position in the token sequence. If some pre-
ferred city, state, zip triple in fact begins at p, preferred_city_state_zip/3 suc-
ceeds, otherwise it fails. The preference rules defined on scan_city_state_zip/3
compare only the city, state, zip triples themselves and not their positions; further they
use a simple weighting function (the specification of which is not shown) to weigh the in-
formation in the triples. Note that tabling scan_city_state_zip/3 ensures that it is
executed only for the first position in which it is called; subsequent calls will read preferred
triples out of the table store.

4 In XSB version 2.4 the call to tabled negation, tnot/1 in Fig. 1, must be replaced by a call to ’sk_not’/1 in
order to execute non-ground tabled negation.
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:- table address/1.
address(Addr):- % Begin with first token

tphrase(scan_address(Addr)). % of input sentence.

scan_address(Addr) -->
address_element_set(Addr).

scan_address(Addr) -->
[_],
scan_address(Addr).

address_element_set([elt(Type,Elt)|Rest])-->
address_element(Type,Elt),
address(Rest).

address_element_set([]) --> tnot(address_element_set(_Type,_Elt)).

:- table address_element/4.
address_element(room,Rm) --> room(Rm).
address_element(building,Bld) --> building(Bld).
address_element(street,Str) --> street(Str).
address_element(pobox,PO) --> pobox(PO).
address_element(csz,Csz) --> preferred_city_state_zip(CSZ).
address_element(country,Ctry) --> country(Ctry).

prefer(address(Address1), % Prefer parses with
address(Address2)) :- % more types of elemenets.
member(elt(Type,_),Address1),\+ member(elt(Type,_),Address2),
!,
\+ (member(elt(Type1,_),Address2),\+ member(elt(Type1,_),

Address1)).
prefer(address(Address1), % Prefer parses with

address(Address2)):- % lengthier elements.
sort(Address1,Saddress1),
sort(Address2,Saddress2),
contained_in(Saddress2,Saddress1).

Fig. 1. Parsing an address using tabling.

3.2.1.2. DCG rules for organization names. In the preference logic standardizer, the
actual DCG rules to define address elements and names are ambiguous but concise.
This is most clearly seen by examining rules for parsing organization names, which are
often proper names and cannot easily be informed by a lexicon. An organization parse
is represented by a structure of the form element(Rel_Type,Name,Terminators). In this
case, Rel_Type is either the token org or some more specific relation-type between
organizations such as ’ON BEHALF OF’ or ’DOING BUSINESS AS’. Name is a
list of tokens representing the organization name, and Terminators are the list of tokens
terminating the organization name, such as ’INC’, ’CO’, ’GMBH’, etc. The first two
clauses of org/3 call the predicates preferred_company/3 and rel_company/3
and then themselves recursively. A well-structured company is one that has an explicit
termination sequence, such as ’INC’ or ’AND’,’ASSOCIATES’; a “subsidiary”
company is a company along with a parsed relationship type such as ’ON BEHALF
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:- table preferred_city_state_zip/3.
preferred_city_state_zip(CSZ,Beg,End):-

scan_city_state_zip(CSZ,B,E),
B = Beg, E = End.

:- table scan_city_state_zip/3.
scan_city_state_zip(CSZ) -->

city_state_zip(CSZ).
scan_city_state_zip(CSZ) -->

[_],
scan_city_state_zip(CSZ).

prefer(scan_city_state_zip(CSZ1,_,_),
scan_city_state_zip(CSZ2,_,_)):-
weigh_csz(CSZ1,W1),
weigh_csz(CSZ2,W2),
W1 >= W2.

Fig. 2. Predicates needed to prune according to city, state, and zip code.

OF’. The last two clauses of org/3 handle cases where relation types and organization
terminators may be omitted. They allow the parse to read to a line break (represented by the
pipe symbol) or beyond, if necessary. In a manner similar to preference rules for addresses,
preference rules for organizations prefer organizations with more specific information, that
is with longer lists of organization terminators and with specific relation types to those with
shorter lists of organization terminators and less specific organization types (i.e., with the
relation type of org). Personal names are parsed with a separate set of rules. Personal
names may be well-structured—(beginning with ’MR’, ’MS’ etc., or ending with, e.g.,
’PHD’)—or not. Preference rules then are used to determine whether a name belongs to
that of an organization or a person: well-structured names (or subsidiary companies) are
preferred to non-well structured names. On the other hand, deciding whether a name that is
not well-structured belongs to a person or to an organization by default is corpus-dependant
and is also performed by preference rules.

Once preferred names and preferred sets of address elements are obtained, they are
combined into entity frames, representing parses. Note that the third clause of org/3 can
cause a great deal of ambiguity if well-structured companies, or subsidiary companies are
not parsed. In this case, preference relations on entity frames together with the preference
relations on addresses ensure that only those name parses that combine with preferred
address parses are retained in preferred entity frames. Because of the several levels of
preference rules, experience shows that the preference logic standardizer generally gives
a single parse for names and addresses. In a small percentage of cases (usually less than
1%), ambiguous parses are derived and the results sent to an error file. We note that the
ability of the Preference Logic Standardizer to recognize cases where it parses improperly
is an advantage over that of the Prolog Standardizer which does not have this ability.
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:- table org/3.
org([Elem|R]) -->

well_structured_company(Elem),
org(R).

org([Elem|Others]) -->
rel_company(Elem),
org(Others).

org([elt(org,company(Elem,[]))]) ->
any_words(Elem).

Fig. 3. Ambiguous grammar rules for organization names.

3.2.1.3. Discussion. To summarize, preference rules are used in several places in the
name address standardizer:

(1) To determine preferred organization names (defined on the relation org/3 shown in
Fig. 3);

(2) To determine preferred personal names (as discussed above);
(3) To determine preferred names overall by combining preferred organization names and

preferred personal names;
(4) To determine preferred address elements (currently only used for

preferred_city_state_zip/3, shown in Fig. 2);
(5) To determine preferred sets of address elements (shown in Fig. 1);
(6) To determine preferred entity frames (as discussed above).

As will be substantiated in Section 3.3 the address parsing of Fig. 1 leads to much more
concise code than used by the DCG-parser of Section 3.1. General DCG rules, along the
lines of code in Fig. 3 are written to parse names and address elements, and preferences are
declared at various levels. As a result, when migrating from one corpus to another, changes
to the code can be minimized, and sometimes limited to preference rules themselves. The
ability to factor out heuristics into preference rules makes code maintenance simpler than
would be possible if programming were simply done in the well-founded semantics using
the normal embedding.

However, standardizer development requires not only a knowledge of Prolog and
preference logic, but also knowledge of several specifics of XSB. While tabled DCGs are
fairly simple to use in XSB, they have certain differences with Prolog DCGs, in particular
since tabled DCGs must have an input sentance asserted to Prolog store. Code must also
undergo a preprocessing phase in order to be executable, and preprocessed code (as well
as tabled code) can be difficult to trace at times. Furthermore, as evidenced in Fig. 1, the
interplay between cuts and tables may need to be understood in XSB in order to program
effectively in preference logic. There are other specifics of XSB and its evaluation method
required by the standardizer. Of course, all such specifics are documented [19], but learning
specifics of XSB, (or of other research-based programming systems) requires a degree of
intellectual commitment by the programmer.
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Table 1
Code sizes for prolog and XSB standardizers

Function Clauses Lines

Tokenization 94 412
Bottom–up parse 26205 26205
Domain information 59150 59150
Control and utilities 727 1345

(Prolog) Top–down 724 2082
(Prolog) Post-processing 604 2838

(PLP) Top–down 198 686
(PLP) Post-processing 7 106

Table 2
Performance of various standardizers

Prolog Stdzr PLP Stdzr (no pruning) PLP Stdzr (pruning)

Records per second 54 14 19

3.3. Comparison of the two standardizers

Table 1 provides insight into the amount of code in each standardizer. Clearly, most
code comprises domain information, mostly tables of cities, states, zip codes, countries,
and so on; along with rules for the bottom–up parse, which as mentioned in Section 3.1.1
is largely automatically generated based on declarations of keywords. The most elaborate
code is in the top–down parse and in the post-processing: each of these sections of code is
reduced. Indeed, the post-processing step almost eliminated, consisting only of consistency
checks for city, state, zipcode triples in the preference logic standardizer. Thus, while using
the new standardizer architecture does not lead to a large reduction in overall standardizer
code, it greatly reduces the amount of code needed by later phases of standardization—the
code that requires the most programmer maintenance.

Testing on Defense Department data indicates that the PLP standardizer works correctly
on about 96–97% of the time, a rate that is virtually identical to the Prolog standardizer.5

We note that the two standardizers differ slightly in their functionality so that the numbers
in each table, should be taken as approximate comparisons. Even with this disclaimer, it
can be seen that the PLP standardizer drastically reduces code in the top–down parsing and
post processing stages. This is due to both to the simple, ambiguous grammatical forms
that tabling allows (as illustrated by code in Fig. 3) and to the declarative use of preference
rules that are combined with the grammar rather than applied after the entire string has
been parsed. Table 2 indicates the performance of the various standardizers in terms of
records per second standardized on a PC. While the PLP standardizer is 3 times slower
than the Prolog standardizer, the tradeoff of speed for declarativity is beneficial for this

5 Verification is performed by human analysis of a random sample of data.
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application since the costs of maintenance by far outweigh the performance costs as long
as the performance costs remain reasonable.

4. Related work

Semantics. The semantics for preferences presented in Section 2 is distinct from
semantics for preferences presented previously in the literature. One distinction is that the
approach in this paper is atom-based rather than rule-based as with [1–3,5]. While simple
transformations can convert atom-based preference formalisms to rule-based formalisms
and back, we feel that an atom-based formalism is more natural to specify preference
grammars, as atoms directly represent schemas for parse trees. Furthermore, an atom-based
formalism avoids ambiguities that can arise when distinct but unifiable non-ground rules
are given different priorities (see [2] for a full discussion). Of perhaps greater importance
is that the rule-based formalisms [2,5] and the atom-based formalism of [13] are all based
on a semantics for stable models or answer sets rather than the well-founded semantics, a
point to which we now turn.

Theorem 2.1 indicates that definite PLPs—or PLGs—correspond to monophonic
normal programs, so that a semantics for PLGs under the normal embedding of
Definition 2.1 must incorporte non-stratified negation. In our opinion, this implies that the
semantics should be based either on the well-founded semantics or stable model semantics
(or their extensions). Well-founded semantics appears preferable for this application not
only because of its lower worst-case asymptotic complexity, but because the program does
not need to be grounded for each input string in order to be evaluated. The approach of [1] is
based on the well-founded semantics, but its computation is based on a fixed-point operator
distinct from that used to compute the well-founded semantics, while our semantics is
based on a direct transformation. Nonetheless, we believe the major contribution of this
paper lies not in the form of preference logic used, but in the efficient implementation
of the preference logic that we have described and in the documentation of its use in a
commercial standardizer.

Applications. [4] discusses the use of preference logic for modelling psychiatric
diagnoses according to the American Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders, version 4 (DSM-IV). We describe in a simplified manner
the features of preference logic required for psychiatric diagnosis in order to compare
this application to data standardization. First, as described in [4], modelling DSM-IV uses
a preference logic program [P,Pref ] in which P is non-stratified. This arises from the
possibility that a patient may have symptoms such that DSM-IV rules reduce to cases of
mutual exclusion. That is, DSM-IV rules may be “reduced” to cases such as:

aspergers_disorder:- not autism.

autism:- not aspergers_disorder

Under the well-founded semantics it is unknown whether a patient may have autism or
aspergers disorder, so that undefined truth values indicate that information in DSM-IV
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Table 3
Comparison of two preference logic applications

Feature Standardization Diagnosis

Definite PLP Yes No
Static preferences Yes No
Well-behaved preferences Yes No
Ground source program No Yes

is not sufficient for diagnosis. In such a situation, a diagnostician may add preferences
to indicate cases in which one of the conflicting diagnoses may be preferred to another,
so that the preferences allow a diagnostician to configure DSM-IV for her own purposes
without altering the modelling of DSM-IV. [4] also provides examples in which dynamic
preferences and preferences that are non well-behaved (Section 1.1) are needed. Table 3
summarizes these differences. The table also indicates that the application of psychiatric
diagnosis is simpler than that of standardization in that the source preference logic program
can easily be grounded, unlike our standardization examples.

The name and address standardizer presented here is not unique in the commercial
world. The most widely used address standardizer is written by the US Postal Service and
does not use logic programming techniques. Comparisons between the Postal standardizer
and the standardizer of [18] indicate complimentary strengths: the Prolog standardizer
is much better at extracting addresses from free text, at parsing the various address
components, and at handling foreign addresses. Because it works off of a more complete
knowledge base, the Postal standardizer is better at correcting address data once the address
components have been identified (e.g., the street, post-office box and city identified).
Indeed, these two standardizers have worked together to commercial advantage. Name and
address standardization thus provides an example of an important commercial problem
for which logic programming techniques offer significant advantages over other existing
methods. It should also be noted that the domain of names and addresses is only one
domain for which data standardization has commercial importance, and standardizers have
been written for other domains, including aircraft part information, transportation records,
and cargo descriptions. There are no other known standardizers for these domains.

5. Conclusions

We have described a simple logic for preferences, its efficient implementation, and its
successful application to a commercial problem. We believe that such implementation
and application efforts are important both for logic programming and non-monotonic
reasoning. Commercial organizations are often reluctant to use Prolog for program
development, let alone extensions of Prolog that include preferences or other uncommon
techniques for knowledge representation. We believe that it is only by developing efficient
implementations of these techniques that their research and commercial applications can
be discovered and tested—and that it is through such applications that the significance of
the knowledge representation techniques will ultimately be judged.
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The use of tabling as an implementation platform to combine knowledge representation
techniques and parsing formalisms has implications beyond those described in the
paper. It is well-known that a number of parsing formalisms besides DCGs can be
easily viewed as systems of logical deduction. These include newer formalisms such
as tagged-attribute grammars and categorical grammars, that can be implemented using
tabled logic programming (see [15] for a survey of these formalisms and their potential
implementations). The technique of tabling has also been used to implement a variety of
non-monotonic logics in addition to the preference logics described here (see, e.g., [17]).
Other combinations of non-monotonic formalisms and parsing techniques may prove
fruitful for commercial applications beyond data standardization, such as natural language
query evaluation, or text retrieval. Formulating these combinations and testing out their
practical usefulness remains an intriguing unexplored area.
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Appendix A. Proofs of theorems

Theorem A.1.

(1) Let [P1,Pref ] be a definite PLP. Then [P1,Pref ]norm is a monophonic program.
(2) Let P be a monophonic program. Then [Pdef ,PPref ] is a definite PLP, and

WFM(P ) = WFM([Pdef ,Ppref ]norm)|A
where A is the set of atoms in LP .

Proof.

(1) Immediate from Definitions 2.1 and 2.2.
(2) The first part of the theorem, that if P is monophonic then [Pdef ,PPref ] is a definite

preference program is straightforward from Definitions 2.2 and 2.3.
To see the second part, consider the rules defining an atom A in P :

A :- A1,1, . . . ,A1,n1,not B1, . . . ,not Bp

:
A :- Am,1, . . . ,Am,nq ,not B1, . . . ,not Bp
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From Definition 2.3, [Pdef ,PPref ] will have rules of the form

A :- A1,1, . . . ,A1,n1

:
A :- Am,1, . . . ,Am,nq

and

prefer(Bi,A), ∀i, 1 � i � p.

Next, [Pdef ,PPref ]norm will have the rules

A :- A1,1, . . . ,A1,n1,not overridden(A)

:
A :- Am,1, . . . ,Am,nq ,not overridden(A)

where overridden/1 is defined as in Definition 2.1. It is now straightforward to see that
overridden(A) is true iff the conjunction not A1, . . . , not Ap is true. Thus, for atoms
in LP , the well-founded models of the two program must be the same. ✷

Appendix B. Simple Preference Logic Programs

The normal embedding semantics of Section 2 provides a convenient fixed point
semantics for PLPs in terms of well-understood normal programs. A different approach,
however, was originally taken to define Preference Logic Grammars in [6]. First, in [6]
PLPs have static preferences (Definition 1.2); second, a possible worlds semantics was
provided for these PLPs. In this section we review relevant aspects of the possible worlds
semantics of [6] and discuss its relation to our fixed-point semantics. We show that the two
semantics coincide for the class of simple PLPs.6

We begin by defining the concept of a world. Suppose a PLP, [P,Pref ] is definite
and has well-behaved preferences. In this case, the canonical sub-model of [P,Pref ]
(Definition 1.2), together with a set of (true) preference atoms determines a model
for [P,Pref ]. This model can be constructed via the least fixed point of the inference
operator TPD starting from the canonical sub-model of [P,Pref ] and the preference atoms.
Accordingly, Definition B.1 defines a world of [P,Pref ] using two-valued interpretations
on preference atoms.

Definition B.1. Let [P,Pref ] be a definite PLP whose preferences are static, and whose
canonical sub-model is I . A two-valued interpretration of preference atoms in P whose
true atoms are a subset of the true atoms in the minimal model of P is called a world.

Example B.1. In Example 1.3, there are 8 possible worlds, whose true atoms are subsets
of {p(a),p(b),p(d)}. Any interpretation for which p(e) is true is not a world, since p(e)

6 Some of the results in this section were presented in a very preliminary form in [4].
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is not true in the minimal model of P1. Note that the truth of d(a) can be computed based
on whether p(a) is true in world or not.

The possible worlds semantics of preference logic programs is based on strongly
optimal worlds.

Definition B.2. Let [P,Pref ] be a definite PLP whose preferences are static. A world W1
is reflexively preferred to a world W2 (denoted W2 �sp W1) if there exists a A1 ∈ W1,A2 ∈
W2 such that A2 �sp A1. A world W is strongly optimal if for any other world Wpref ,
W �sp Wpref ⇒ W = Wpref .

We now turn to the optimal subproblem property of a PLPs. Intuitively a PLP [P,Pref ]
has this property if the derivation of an optimal preference atom (a preference atom that is
maximal with respect to <pref ) in the minimal model of P does not require non-optimal
preference atoms. The program in Example 1.3 does not have the optimal sub-problem
property since p(a) is an optimal preferenc atom in the minimal model of P1, but p(d) is
required to derive p(a), and p(d) is not optimal since both p(b) and p(a) are preferred to
p(d).

The definition of the optimal subproblem property relies on the notion of a world
being supported. A supported world W is analogous to a supported interpretation in logic
programming. Its definition below is complicated by the fact that derivation of preference
atoms in a world may depend on the truth of derived atoms which in turn may depend
on the set of preference atoms in W . A world is first extended to an interpretation IW of
[P,Pref ] by unioning to W the least fixed point, starting from W , of the inference operator,
TPC∪PD , of the derived and core atoms. Next, it is determined whether the preference atoms
in W are supported in IW . Formally:

Definition B.3. Let W be a world for a definite PLP [P,Pref ]. W is supported if for

IW = least_fixed_point
(
TPC∪PD (W)

) ∪W,

W = TP (IW )|pref_atoms,

where pref_atoms are the set of preference atoms in TP (IW ).
Let I be an interpretation for [P,Pref ]. The reduction of I , Ired , is obtained by

restricting I to preference atoms in [P,Pref ], and setting to false all and only those
preference atoms A ∈ I such that prefer(A1,A) is true in I .

Let M be the minimal model for (P ∪Pref ) considered as a definite program. A program
[P,Pref ] has the optimal subproblem property if Mred is supported.

A definite PLP whose preferences are static and well-behaved and that has the optimal
subproblem property is called simple.

Example B.2. The minimal model, M , of P1, considered as a definite program has
{
prefer

(
p(a),p(d)

)
,prefer

(
p(b),p(d)

)
, b(1),p(a),p(b),p(d)

}

true and {b(2),p(e)} false. Mred has true atoms {p(a),p(b)}. The interpretation

IMred = least_fixed_point
(
TPC∪PD (Mred)

) ∪Mred
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is also two-valued with true atoms
{
prefer

(
p(a),p(d)

)
,prefer

(
p(b),p(d)

)
, b(1),p(a),p(b)

}
.

TP (IMred )|pref_atoms has true atoms {p(b)} capturing the fact that the derivation of p(a)

requires a non-optimal atom, p(d), so that P1 does not have the optimal sub-problem
property.

The coincidence of the normal embedding semantics and the possible worlds semantics
is summarized by the following theorem.

Theorem B.1. Let [P,Pref ] be a simple PLP, and [P,Pref ]norm be the normal embedding
of P . Then

(1) There is a unique strongly optimal world, W for [P,Pref ].
(2) WFM([P,Pref ]norm) is two-valued;
(3) A is true in WFM([P,Pref ]norm) iff A ∈ W .

Proof. (1) Consider the reduction,Mred , of the minimal modelMmin of (P ∪Pref ). Clearly
by Definition B.1, Mred is a world. Mred must also be strongly optimal, for suppose there
were some other world W such that Mred �sp W . Then ∃AW ∈ W,∃AM ∈ Mred such that
AM <pref AW . It is not the case that AW ∈ Mred since AM ∈ Mred , and AM <pref AW

contradicts tha fact that Mred is reduced. AW must be in Mmin for W to be a world.
However, AW /∈ (Mmin − Mred). To see this, assume the opposite and note that, since
AW /∈ Mred, there must be some A ∈ Mmin such that AW <pref A. Since preferences are
well-behaved in [P,Pref ], it cannot be the case that A<pref A so that by the definition of
reduction, Mred must contain A, or some atom preferred to A, contradicting the assumption
that AW /∈ (Mmin − Mred). Thus, such an AW cannot exist and Mred must be strongly
optimal.

The argument that Mred is unique is as follows. For there to be a strongly preferred
world W different from M , it must be the case that W contains some atom AW , such
that AW /∈ Mred , and such that for no atom AM ∈ Mred is it the case that AW <pref AM

or AM <pref AW . However, AW must be in Mmin by the definition of a world, and must
also be in Mred by definition of the reduction operator since preferences in [P,Pref ] are
well-behaved,

(2) To show that WFM([P,Pref ]norm) is two-valued, we argue that [P,Pref ]norm is
dynamically stratified [11]. Since any dynamically stratified program has a two-valued
well-founded model proving this property will suffice.

Since P is definite, the core atoms will be dynamically stratified. Also note that if
preference atoms of P are two-valued, derived atoms in P will also be two-valued. The
remainder of the proof considers an arbitrary preference atom A1, and shows that A1 must
be true or false in WFM([P,Pref ]norm), i.e., either there is a rule for A1 all of whose
literals are true, or that there must be a false literal in each rule for A1 (see [11] for a
formal definition). This will be shown either by referring to the dynamic stratum of A1 or,
in certain cases, showing that the static atom dependency graph of [P,Pref ]norm contains
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no cycles through negation involving A1, a condition that implies that A1 must be true or
false.

(a) First, we note that since Pref is static and non-cyclic, Pref will introduce no cycles
through negation in [P,Pref ]norm between atoms A1 and A2 in P that do not depend
on each other in P . In other words, if there is no path between A1 and A2 in the
static atom dependency graph of P , the normal transformation will introduce no
cycles through negation involving A1 or A2 in the static atom dependency graph of
[P,Pref ]norm.

(b) Next, we consider cases of interactions between preferences and dependencies in P

for A1 and an arbitrary preference atom A2 in P where we assume A1 depends on A2
in P .
(i) As a first subcase, assume that A2 is preferred to A1, but that A2 does not depend

on A1 in P . In this case, the normal embedding of will not introduce a cycle
through negation in the dependency graph of P . We note in passing that in this
case in the dependency graph of [P,Pref ]norm) A1 will depend both positively on
A2 (since A1 depends on A2 in P ), and negatively on A2 since A2 is preferred to
A1.

(ii) Next, consider the case in which A1 depends on A2 in P (as stated above), A2 may
or may not depend on A1 in P , and A1 is preferred to A2. In this case, if there
is a rule for A2 in P , then there will be a negative cycle in the atom dependency
graph of [P,Pref ]norm, so that dynamic strata must be considered. There are two
subcases to consider.
(A) If A1 can be derived apart from A2 in [P,Pref ]norm, then A1 a belongs to

a lower dynamic stratum than A2, and A1 will be true and A2 false in the
well-founded model of [P,Pref ]norm.

(B) If A1 cannot be proved apart from A2 there are two further subcases to
consider. (1) If the derivation of A2 is failed, A2 will be false in the well-
founded model of [P,Pref ]norm and will not contribute to the undefinedness
of A1. (2) If the derivation of A2 does not fail, then A1 and A2 might
be undefined in [P,Pref ]. To show that this cannot happen, we consider
whether A1 is in a Mred where Mred is the reduction of the minimal model
of P (see Definition B.3). We begin by noting that since P is definite and
preferences are well-behaved, Mred is two-valued. Assume that A1 is optimal
in the minimal model of P . Then if A1 is not true in Mred , then it must be
underivable in P . To see that A1 is not true in Mred, consider that A1 cannot
be derived without A2 (in the context of the present assumption) and since

Mred = TP
(
least_fixed_point

(
TPC∪PD(Mred)

) ∪Mred
)|pref_atoms

by the optimal subproblem property, A2 must be in Mred as well, but since
A1 is preferred to A2, A2 cannot be in Mred , leading to a contradiction.
Therefore A1 must be underivable in P , and so will not be undefined in
WFM([P,Pref ])norm. For the case in which A1 is not optimal in the minimal
model of P , there must be some other atom A′ optimal in the minimal model
of P and preferred to A1. Since preferences are acyclic, the argument for A′
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is similar to that of A: A′ must either be true, or [P,Pref ] will not have the
optimal subproblem property.

(3) Note that in part (1) of the proof the unique strontly optimal world W for [P,Pref ]
was identified with Mred. Using the argument of part (2), the remainder of the proof is
a straightforward induction on the dynamic strata of WFM([P,Pref ]norm) to show that
WFM([P,Pref ]norm) = Mred. ✷
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