Radial Restraint:
A Semantically Clean Approach to Bounded Rationality for Logic Programs

Benjamin Grosof
Benjamin Grosof & Associates, LLC
Mercer Island, Washington, USA

Abstract

Declarative logic programs (LP) based on the well-founded
semantics (WFS) are widely used for knowledge represen-
tation (KR). Logical functions are desirable expressively in
KR, but when present make LP inferencing become undecid-
able. In this paper, we present radial restraint: a novel ap-
proach to bounded rationality in LP. Radial restraint is pa-
rameterized by a norm that measures the syntactic complex-
ity of a term, along with an abstraction function based on that
norm. When a term exceeds a bound for the norm, the term
is assigned the WES’s third truth-value of undefined. If the
norm is finitary, radial restraint guarantees finiteness of mod-
els and decidability of inferencing, even when logical func-
tions are present. It further guarantees soundness, even when
non-monotonicity is present. We give a fixed-point semantics
for radially restrained well-founded models which soundly
approximate well-founded models. We also show how to per-
form correct inferencing relative to such models, via SLGags,
an extension of tabled SLG resolution that uses norm-based
abstraction functions. Finally we discuss how SLGags is im-
plemented in the engine of XSB Prolog, and scales to knowl-
edge bases with more than 108 rules and facts.

Introduction

Declarative logic programs (LP) based on the well-founded
semantics (WFS) are widely used for knowledge represen-
tation (KR), e.g., in databases, business rules, and seman-
tic web. They represent logical non-monotonicity, and offer
much better scalability than answer-set programs (ASP) or
first-order logic (FOL). Logical functions are desirable ex-
pressively in KR overall, and in particular in Rulelog, the
logical extension of LP that has been developed and em-
ployed in the SILK project and system (SILK 2013). Func-
tions are needed there to support three expressive features:
hilog (Chen, Kifer, and Warren 1993); defeasibility via ar-
gumentation theories (Wan et al. 2009); and existentials in
FOL-like omniform rules. These three features are in turn
used for reasoning about causal processes/actions, qualita-
tive reasoning, and text-based knowledge acquisition (KA)
— in SILKs pilot application domain of cell biology at the
first year college level. However, functions pose a funda-
mental computational complexity challenge in LP and thus

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Terrance Swift
CENTRIA
Universidade Nova de Lisboa, Lisboa Portugal

Rulelog/SILK, as functions do also in FOL and ASP. LP
inferencing is tractable (worst-case quadratic) in the size
of the ground-instantiated rulebase. But when functions are
present, the Herbrand universe is infinite, and LP inferencing
is undecidable. The LP model might be infinite, and a single
LP query might have an infinite set of answers. Today’s com-
mercially dominant systems for databases, business rules,
and semantic web (e.g., SQL, SPARQL, production rules,
and event-condition-action rules) avoid use of functions. We
are thus motivated to seek a way to allow functions in LP
yet to mitigate their impact on scalability — including, as
a first step, to ensure finiteness of models and decidability
of inferencing. Our approach builds on the idea of bounded
rationality.

While AI bounded rationality research has largely fo-
cused on decision-theoretic optimization (e.g., (Russell and
Subramanian 1995; Anderson and Oates 2007)), a strand
has focused on limiting reasoning via deduction principles
that derive some beliefs explicitly but leave others implicit
(Konolige 1983; Levesque 1984; Fisher and Ghidini 1999;
Grant, Kraus, and Perlis 2000; Fisher et al. 2007). To date,
however, this strand has lacked much practical impact. For
resource-limiting logic programming (i.e., LP), the main ap-
proach that has emerged in practice is to set (manually or
heuristically) an inferencing engine parameter — for in-
stance, a timeout or a term-depth bound in Prolog — and to
treat as false any atom that is not inferred before the param-
eter bound is exceeded. However, incompleteness about an
atom A can lead to unsoundness if another atom A’ depends
negatively on A. In addition, the results of such inferencing
depend on the implementation code or session. Radial re-
straint overcomes both these shortcomings. It introduces (to
our knowledge) the use of the truth value undefined to rep-
resent implicit deductions that have not been made explicit.

Our starting point is recent work on termination proper-
ties of logic programs with negation (default negation, a.k.a.
negation-as-failure, a.k.a. weak negation). When tabled
evaluation is extended with subgoal abstraction, first intro-
duced in (Tamaki and Sato 1986), tabling can ensure termi-
nation to queries to safe normal programs that are strongly
bounded term size (SBTS) (Riguzzi and Swift 2013b;
2013a). Such programs have well-founded models (van
Gelder, Ross, and Schlipf 1991) that are representable via
finite sets of true and undefined ground atoms, and have

been shown to properly include the finitely ground programs
of (Calimeri et al. 2008), a class motivated by the needs of
ASP grounders (cf. (Alviano, Faber, and Leone 2010)). Al-
though these results are powerful, they do have drawbacks.
It is not decidable whether a program is SBTS. In addi-
tion, while SBTS-programs are Turing-complete (shown for
finitely ground programs in (Calimeri et al. 2008)), some
natural programs are not SBTS: such as those that contain
a predicate to determine list membership. From a theoreti-
cal level, this weakness can be addressed by defining pro-
gram classes that terminate for various types of queries (cf.
e.g., (Bonatti 2004)). However, membership in such classes
is again not decidable.

The tabled evaluation method of (Riguzzi and Swift
2013a) is complete for SBTS-programs and queries. Build-
ing on this evaluation method, and making use of the un-
defined truth value as discussed above, we ensure that both
the evaluations and the (sub-)models they produce are finite.
We introduce aspects of the approach through the following
example. to motivate the formalism that follows.

Example 1 Consider the program Pi,;:

p(s(X)) < p(X).

p(0).

q(0).
Pins is not SBTS as the sets both of true atoms of its
well-founded model, true(W F MP1), and the false atoms,
false(W F M), are infinite. However, an approximation
of the answers to p(X) can be made by restraining inferenc-
ing. For instance, if a depth norm were used with a level
of 4, then the answers p(0), p(s(0)), and p(s(s(0))) would
be derived. However the answer p(s(s(s(0)))) would be ab-
stracted to p(s(s(s(X)))) and all ground atoms unifying with
this answer would be assigned the truth value of undefined.
This infinite set of answers is represented by the sentence
VX. p(s(s(s(X)))). By allowing the set of atoms in W F M Pins
whose truth value is undefined (undef(WFMT)) to be
represented by such sentences in addition to atoms, a fi-
nite representation of the radially restrained model is con-
structed. In addition, because the default negation of any
undefined atom is itself undefined in the well-founded se-
mantics, the answer abstraction preserves the soundness of
negation. For instance the literal not p(s(s(s(s(0))))) is also
assigned undefined.

Intuitively, atoms that are true or false in the well-founded
model of a program remain true or false in the radially re-
strained model as long as they don’t exceed a bound defined
by a norm on atoms. Those atoms that exceed the bound are
abstracted, and have the truth value undefined. In this way,
radially restrained models are sound approximations to the
well-founded model. Further, because variables in the ab-
straction are regarded as universally quantified, the resulting
model can be represented using finite sets of true and unde-
fined atoms.

This paper thus explores radially restrained models along
with their efficient query evaluation. Specifically,

o We define the radially restrained well-founded model of

a normal program P as parameterized by an abstrac-

tion function abs(-). We show that such a model soundly

approximates the well-founded model of P, and that if
abs(-) is replaced by a weaker abstraction, the approxi-
mation of the radially restrained model becomes tighter.

e By extending SLG resolution with subgoal abstrac-
tion (Riguzzi and Swift 2013a) to incorporate an abstrac-
tion function for answers, we introduce SLGags, which
correctly evaluates queries with respect to radially re-
strained models. Given a finitary abstraction function,
SLGags terminates with an asymptotic complexity that
is equal to the best complexity that is known.

e Finally, based on the the SLG-WAM of XSB (Swift and
Warren 2012), we describe an implementation of SLGags
that is declarative, efficient and scalable.

Background

We assume a general knowledge of logic programming ter-
minology, including tabled resolution and the well-founded
semantics. In addition we make use of the following termi-
nology and assumptions.

Throughout this paper we restrict our attention to normal
programs, and to queries and subgoals that are atoms. We
also assume a fixed strategy for selecting literals in a clause:
without loss of generality we assume the selection strategy is
left-to-right. In accordance with this strategy, a normal rule
has the form

r=Ag < A1,...,Ap,not Ayy1, ..., not A,

where Ay, ..., A, are atoms. A program P is safe if each
rule r in P is such that every variable in 7 occurs in a posi-
tive literal in the body of 7. Our attention is also restricted to
three-valued (partial) interpretations and models, such as the
well-founded model. Each such interpretation is represented
as a pair of true and false atoms: (true(Z); false(Z)). For
two interpretations, Z and 7, Z C J iff true(Z) C true(J)
and false(Z) C false(J). Alternatively, a three-value in-
terpretation can be represented as a set of literals.

Symbols within a term may be represented through posi-
tions which are members of the set I1. A position in a term is
either the empty string A that reaches the root of the term, or
the string 7.7 that reaches the ith child of the term reached
by m, where 7 is a position and ¢ an integer. For a term ¢
we denote the symbol at position 7 in ¢ by ¢,. For example,
p(a, f(X))2.1 = X. We assume that a program P is defined
over a language £, containing a finite set A of predicate
and function symbols, and a countable set of variables from
the set VUV. Elements of the set) are referred to as program

variables. Elements of the set f), called position variables,
are of the form X, where 7 is a position. These variables
are used when it is convenient to mark certain positions of
interest in a term. The Herbrand Universe of £ is denoted
He, or as Hp if L consists of the predicate and function
symbols in P; similarly the Herbrand Base is denoted as B,
or as Bp. Throughout the paper variant terms are considered
to be equal.

Dynamic Stratification One of the most important for-
mulations of stratification is that of dynamic stratification.
(Przymusinski 1989) shows that a program has a 2-valued

well-founded model iff it is dynamically stratified, so that it
is the weakest notion of stratification that is consistent with
the well-founded semantics. As presented in (Przymusinski
1989), dynamic stratification computes strata via operators
on interpretations of the form (T'r; Fa), where Tr and Fa
are subsets of H p.

Definition 1 For a normal program P, sets Tr and Fa of
ground atoms and a 3-valued interpretation I (sometimes
called a pre-interpretation):

Truef (Tr) = {A|A is not true in I, and there is a clause
B « L,,...,L, in P, a grounding substitution 6 such
that A = B0 and for every 1 < i < n either L;0 is true
inl,or L;6 € Tr};

Falsef (Fa) = {A|Ais not false in I; and for every clause
B < Lq,...,L, in P and grounding substitution 0 such
that A = B0 there is some i (1 < i < n) such that L;0 is
false in I or L;0 € Fa}.

(Przymusinski 1989) shows that Truef and Falsel are
both monotonic, and defines 7'72}D as the least fixed point
of Truel () and FAY as the greatest fixed point of
FalseX (Hp). In words, the operator TRY extends the in-
terpretation [to add the new atomic facts that can be derived
from P knowing I; F.A¥ adds the new negations of atomic
facts that can be shown false in P by knowing I (via the un-
covering of unfounded sets). An iterated fixed point operator
builds up dynamic strata by constructing successive partial
interpretations as follows.

Definition 2 (Iterated Fixed Point and Dynamic Strata)
For a normal program P let

WFMy = (0;0);
WFMypr = WFMy,U(TRY par s FAY pas);
WFM, = Uﬂ<a W F Mg, for limit ordinal c.

W FM(P) denotes the fixed point interpretation W F Ms,
where § is the smallest (countable) ordinal such that both
sets TRy p ;s and FAL 5 v, are empty. The stratum of
atom A, is the least ordinal 3 such that A € W F Mag.

(Przymusinski 1989) shows that W F' M (P) is in fact the
well-founded model and that any undefined atoms of the
well-founded model do not belong to any stratum — i.e. they
are not added to W F'M; for any ordinal §. Thus, a program
is dynamically stratified if every atom belongs to a stratum.

Radially Restrained Models
Norms and Abstractions

Abstraction functions may be understood with respect to
norms, which can specify families of abstraction functions.
Typically, if the norm of an atom A is greater than a given
integer bound, A is abstracted.

A norm N(-) is a function from terms to non-negative
integers such that

1. N(t) = 0iff t = A (the empty term)
2. ¢ subsumes ¢’ implies N (t) < N(t')

A norm is finitary iff for any finite non-negative integer k,
the cardinality of the set {¢|t € H, A N(t) < k} is finite.

An abstraction of a term ¢, denoted abs(t), may replace
subterms of ¢ by position variables: formally, abs(t) is a term
such that if abs(t)|. € (FN UYV), then abs(t)|r = t|.
For instance p(f(g(X1.1.1),X1.2), X2) is an abstraction of
p(f(g(a), X), X). It is easy to see that abs(t) subsumes ,
so for any norm N(-), N(abs(t)) < N(t). An abstraction
abs(-) is finitary if the cardinality of {abs(t)|t € H,} is
finite. Given two abstractions, abs1(-) < absa(-) if for all
terms ¢, absy (t) subsumes absa(t). Note that if absi(-) <
absa(-), then {abs(t)|t € H,} C {abs(t)|t € H,}. Norms
and abstractions are applied to atoms by taking those atoms
as terms, and to rules by applying the operation to each atom
underlying a literal in the rule.

Example 2 A depth norm, depth(-), maps a term t to the
maximal depth of any position in t, where the depth of the
outermost function symbol of t is 1 and the depth of a po-
sition 7.1 is the depth of 7 plus 1 if t|.; is a not a position
variable, and is the depth of T otherwise. For a positive in-
teger k, a depth-k abstraction is an abstraction that maps
t to itself if depth(t) is less than or equal to k; and oth-
erwise to the abstraction of t with depth k that is maximal
with respect to subsumption. It is easy to see that such a
maximal depth-k abstraction of t must be unique. Within the
atom A = p(a, f(b,g(c))) the depth of ¢ is 4. The depth
3 abstraction of A is p(a, f(b, g(X2.2.1))), and the depth 2
abstraction of Ais p(a, f(X2.1, X2.2)). Both the depth norm
and the family of depth-k abstractions (for positive integer
k) are finitary.

Depth-£ abstractions are simple to understand and to im-
plement. However the number of terms whose depth is less
than k may grow exponentially. Thus, other abstractions,
based on the size of a term, or that weigh the occurrence of
certain types of function symbols over others (e.g., lists) can
be practically useful. Finally, note that the identity function
on terms, Id(+), is an abstraction function, but is not finitary
for languages that contain non-constant function symbols. In
fact, Id(-) is the maximal abstraction function.

Radially Restrained Models

The operators for Radially Restrained Models are based on
abstraction functions rather than on norms, both to provide
a basis for Theorem 2, and to highlight the correspondence
with the resolution method described in the next section.

Definition 3 For a normal program P, abstraction function
abs(-), sets Tr and Fa of ground atoms, and a 3-valued
interpretation I (sometimes called a pre-interpretation):

Truef (abs, Tr) = {A| there is a clause B + L, ..., L,
in P, a grounding substitution 0 such that A = B =
abs(B0), and for every 1 < i < n either L;0 is true in I,
or L € Tr};

Falsef (abs, Fa) = {A| for every clause B < L, ..., L,
in P and grounding substitution 0 such that A = B =
abs(B0) and there is some i (1 < ¢ < n) such that L;0 is
falsein I or L;0 € Fa}.

Unlike Definition 1, Definition 3 requires that abs(B6) =
B0 in order for an atom to be considered either true
or false. Clearly both Truel and Falsel are monotonic
in their second arguments; and as with the well-founded
model, we define TRY (abs) as the least fixed point of
Truel (abs,}) and F.AY (abs) as the greatest fixed point
of False? (abs, Hp).

Definition 4 (Radially Restrained Model) For a normal
program P and abstraction function abs(-)

WFM, = (0;0);
WFMyp1 = WFMJU
<TR11/DVFMQ (abs);]:AII?VFMQ (abs));

WFM, = Ugc, WEFMg(abs), for limit ordinal c.

The radially restrained model W FM (abs, P) denotes
the fixed point interpretation W FMs, where & is the
smallest ordinal such that both sets TR - 1, (abs) and

]:A{/DVFMJ (abs) are empty.

The following statement follows directly from Defini-
tion 3. Since the language of P has a finite number of
function symbols and predicates, and since abs(-) is fini-
tary, True? (abs, Tr) can only produce a finite number of
grounded rules, even if I or Tr were infinite !.

Proposition 1 For a program P and finitary abstraction
Sfunction abs(-) let

WF M (abs, P) = (TrueAtoms; FalseAtoms).
The cardinality of TrueAtoms is finite.

Because 7R (abs) is monotonic, due to Proposition 1 it
must reach fixed point for some finite ordinal. Accordingly,
if abs(-) is finitary, WEF'M (abs, P) will also reach fixed
point at some finite ordinal.

Theorem 1 Given a program P and finitary abstraction
Sfunction abs(-), then W F M (abs, P) = WFM((abs, P)s
for some finite ordinal 0.

The main theorem about radially restrained well-founded
models is as follows.

Theorem 2 Let absi(-),absa(-) be abstraction functions
such that absy1(-) < absa(:). Then for any program P,
WF M (absy, P) C WFM (abssy, P).

Since the identity function, Id(-) is the maximal abstrac-
tion function, and since W FM (Id, P) = WFM (P), The-
orem 2 implies:

Corollary 1 For a program P and abstraction function
abs(-), WF M (abs, P) C WFM(P).

For any program P, Theorem 2 also implies that a chain of
abstraction functions absi (+), absz(+), ... such that for ¢ <
J, abs;(-) < abs;(-) is associated with a chain of models:

WFM (absy, P),WFM(abss, P),...,WFM/ (absj, P) ...

"Proofs of all results, along with a full presentation of
SLGags (introduced in the next section) are available at
http://www.cs.sunysb.edu/ tswift/webpapers/radial.pdf.

such that for i < j, WFM((abs;, P) € WFM(abs;, P).
Thus, families of finitary abstraction functions, based on
depth, size or other measures, provide successively more
powerful finite approximations of the well-founded model.

Tabled Resolution for Bounded Rationality

SLGags is a tabled resolution method that correctly eval-
uates queries to radially restrained models of programs.
SLGaps strictly extends SLG evaluation (Chen and Warren
1996) which models well-founded computation at an opera-
tional level, ensuring goal-directedness, termination and op-
timal complexity for a normal programs. SLG evaluation,
along with numerous extensions of it, are well-described in
the literature. Accordingly in this section we present only
those extensions used in SLGags, after a brief review of the
terminology required by the extensions.

Terminology Used

In the forest-of-trees model of SLG (Swift 1999), an eval-
uation is a possibly transfinite sequence of forests (sets) of
trees in which each tree corresponds to a subgoal that has
been encountered in an evaluation. When a new tabled sub-
goal S is encountered, a tree with root S < |S is added
to the current forest by a NEW SUBGOAL operation, and
children of the root are added through PROGRAM CLAUSE
RESOLUTION operations. Other positive selected literals are
resolved through the POSITIVE RETURN operation; while
ground negative selected subgoals are resolved through the
NEGATIVE RETURN operation, or their resolution may be
delayed through the DELAYING operation. These delayed
literals may later be evaluated through SIMPLIFICATION or
ANSWER COMPLETION operations. The need to delay some
literals arises because modern Prolog engines rely on a fixed
order for selecting literals in a rule. However, well-founded
computations cannot be performed using a fixed-order literal
selection function. When it is determined that no more res-
olution may be performed for non-delayed literals in nodes
of trees for a mutually dependent set of subgoals, the trees
are marked as complete using the COMPLETION operation.
If a subgoal S has been marked as complete and S has no
answers, literals of the form not S can be resolved away by
the NEGATIVE RETURN operation.
More specifically, the nodes in each tree have the form

Ans + Delays|Goals or fail.

In the first form, Ans is an atom while Delays and Goals
are sequences of literals. The second form is called a failure
node. Goals represents the sequence of literals left to be ex-
amined, while Delays represents those literals that have been
examined, but their resolution delayed. A node N is an an-
swer when it is a leaf node for which Goals is empty. If the
Delays of an answer is empty, it is termed an unconditional
answer, otherwise, it is a conditional answer.

SLG resolution is used to resolve an answer A against a
node V.

Definition 5 (SLG Resolution) Let N be a node A <+
DI|Ly,..., Ly, wheren > 0. Let Ans = A’ < D'| be an an-
swer whose variables are disjoint from N. If 3i, 1 <1 < n,

such that L; and A’ are unifiable with mgu 0, then the resol-
vent of N and Ans on L; has the form:

(A — D|L1, ey Lifl, Li+1, ceey Ln)9
if D' is empty; otherwise the resolvent has the form:
(A — .D7 Li|L17 ceny Li*h Li+1, ey Ln)9

Example 3 below further illustrates the foregoing concepts
within an SLGags evaluation.

Definition 6 relates SLG forests to interpretations, and is
used for the statement of correctness in Theorem 4.

Definition 6 Let F be an SLG forest. The interpretation in-
duced by F, T, is the smallest set such that:

o A (ground) atom A € true(Zr) iff A is in the ground
instantiation of an unconditional answer Ans < | in F.

o A (ground) atom A € false(Zx) iff A is in the ground
instantiation of a subgoal whose tree in F is marked as
complete, and A is not in the ground instantiation of any
answer in a tree in F.

An atom S is successful (resp. failed) in F if S’ is in
true(Zx) (false(Zx)) for every S’ in the ground instan-
tiation of S. A non-ground subgoal not S succeeds (fails)
if S fails (succeeds). Given an interpretation J and for-
est F, the restriction of J to F, J|r is the interpretation
such that true(J|) (false(J|F)) consists of those atoms
in true(J) (false(J)) that are in the ground instantiation
of some subgoal whose tree is in F

SLGags

SLGags extends SLG to use abstraction both when creating
a tree for a new subgoal, and when deriving an answer.

Definition 7 (Subgoal Abstraction (Riguzzi and Swift 2013a))

NEW SUBGOAL: Let abs(-) be an abstraction function, and
let a forest F,, contain a tree with non-root node

N = Ans < Delays|G, Goals

where S is the underlying subgoal of the literal G. Assume
Fn, contains no tree with root abs(S). Then add the tree
abs(S) « |abs(S) to F,.

Abstaction is also used when an answer Ans is derived; If
the abstraction is non-trivial, i.e., if Ans # abs(Ans), then
a special atom undefined ,;, is added to the Delays of Ans.

Definition 8 (Answer Abstraction) POSITIVE RETURN:
Let abs(-) be an abstraction function, and let a forest F,
contain a tree with non-root node N whose selected literal
S is positive. Let Ans be an answer for S in F,, and
N’ = A < Delays|Goals be the SLG resolvent of N and
Anson S.

e If Goals is non-empty, then Nopq = N';

o Otherwise, if abs(N') = N, then N.pyia = N';

o Otherwise, if abs(N') # N', Nepya = abs(A +
Delays, undefined ,,)|-

If N does not have a child N_p;1q in Fy, then add N p;14 as
a child of N.

For SLGags to be correct with respect to radially re-
strained models of normal programs, negation must be ex-
tended to handle the lack of safety that is introduced by ab-
straction. The following example shows how this can occur,
and illustrates the SLG and SLGags terminology used so far.

Example 3 Figure 1 shows the SLGags evaluation of the
query r(X) against the safe program Peps_ynsafe:

P(s(X)) = p(X). p(0).
1(X) = p(X),not q(X). q(0).

where a depth-2 abstraction function is used (local schedul-
ing is assumed for this evaluation, cf. (Swift and Warren
2012)). The evaluation begins in a manner identical to SLG
evaluation. The initial forest consists simply of node 0. Chil-
dren of root nodes are created by PROGRAM CLAUSE RES-
OLUTION, which creates node 1. The selected (leftmost) lit-
eral of node 1 is p(X), which is new at this point of the
evaluation. A NEW SUBGOAL operation creates node 2,
(although an abstraction is applied, it is trivial), and PRO-
GRAM CLAUSE RESOLUTION creates node 3, an uncondi-
tional answer. Reapplication of PROGRAM CLAUSE RES-
OLUTION also creates node 4, whose selected literal is not
new to the evaluation. There is already an answer for p(X)
so that POSITIVE RETURN is applicable to this node; re-
peated applications of POSITIVE RETURN produce nodes 5
and 6. Although abstraction is performed for all answers,
it is trivial except when producing node 6. Once node 6 is
produced, the tree for p(X) is completely evaluated, and a
COMPLETION operation marks it complete. Another POSI-
TIVE RETURN operation produces node 7 which has a se-
lected negative literal. Evaluation of the subgoal q(0) shows
that q(0) is successful, and a NEGATIVE RETURN opera-
tion creates a failure node as child 10. The evaluation pro-
ceeds until finally the conditional answer, node 6 is resolved
against the selected literal of node 14. Because the answer
was conditional, the selected literal p(s(s(X)) is moved to the
Delays after resolution (Definition 10). Because of the ab-
straction used to produce node 6, the next selected literal not
q(s(s(X))) is non-ground. Nonetheless, the atom q(s(s(X)))
becomes failed (Definition 6), once its tree is completed with
no answers (step 15a). Because q(s(s(X))) is failed, a NEG-
ATIVE RETURN operation resolves the selected literal away,
leading to the conditional answer node 16.

Thus SLGags has the following extensions over SLG:

1. Abstraction is used both when creating new trees (in the
NEW SUBGOAL operation), and when adding an answer
(in the POSITIVE RETURN operation);

2. A special atom undefined,,;, is added to the Delays of
each non-trivially abstracted answer A (in the POSITIVE
RETURN operation). The truth value of undefined,,;,, is
always undefined, so it can never be removed from the
Delays of A, forcing A to have a truth value of undefined
as well; and

3. NEGATIVE RETURN is defined so that literal not A can be
resolved away in a forest F if A is failed in F, regardless
of whether A is ground.

Of course, NEW SUBGOAL and POSITIVE RETURN in
SLGags can be reduced to the classical definitions of SLG
by setting the abs(+) to the identity function.

If a finitary abstraction function is used in SLGags, then
any forest has a finite number of trees and answers. This fact
together with other tabling properties ensures the following.

Theorem 3 Let Q be a query to a normal program P,
and let abs(-) be a finitary abstraction function. Then any
SLGpgs evaluation £ of Q) against P reaches a final forest
Frin after a finite number of steps.

Regardless of whether abs(-) is finitary, a SLGags evalu-
ation is complete with respect to a model that is restrained
by the same abstraction function. If P is unsafe, SLGags
may derive truth values that are not in W F M (abs, P), but
that are in W F M (P). This occurs if SLGags derives a non-
ground answer A for which A = abs(A), and for some atom
A’ in the ground instantiation of A, A’ # abs(A’). In this
case A’ is undefined in W F M (abs, P), although A is true in
the interpretation induced by the final forest of the SLGags
evaluation (Zx,,).

Theorem 4 Let £ be an SLGaps evaluation of a query @ to
a normal program P using abstraction function abs(-), such
that £ has a final forest F ;. Then

WFM(abSaP)LFfm - IJ:fm c WFM(P)|]:]7‘IL

Complexity of SLGags

The best currently known bound on worst case complexity
for computing the well-founded semantics of a program P is
size(P)x|atoms(P)| (van Gelder, Ross, and Schlipf 1991).
In order to relate the complexity of SLGags to this result, we
extend the cost model of (Riguzzi and Swift 2013b).

The first aspect of our cost model, Cs 1,5, addresses the
fact that evaluations may terminate on ground programs that
are not finite. Let P be a ground (normal) program, and () an
atomic query to P (not necessarily ground). Then the atomic
search space of (), Pg, consists of the union of all ground
instantiations of @) in Bp together with all atoms reachable
in the atom dependency graph of P from any ground instan-
tiation of). By Theorem 3 a SLGags evaluation £ of Q)
against P that uses a finitary abstraction function will pro-
duce a final forest Fy;,, after a finite number of steps, and
Frin will itself be finite. It is evident that the set of subgoals
corresponding to trees in Fy;, (subgoals(Fyiy)) is finite.
Because Fy;;, may contain non-ground subgoals, it is not
the case that subgoals(Fin) C Pg; however if depth-k ab-
straction is used, it can be shown that |subgoals(F)| <
2 x |atoms(Pg)|.

Next, given the finite sequence £, we can construct the
set of (ground) rules that were used in some PROGRAM
CLAUSE RESOLUTION operation and denote this set as
Pg(&). It is evident that Po(€) € P C P, and that
Py (&) must always be finite. Define for a rule r, size(r)
as one plus the number of body literals in r. Extending
this, size(Pg(&)) is defined as the sum of sizes of rules
in Pg(E). Csra,es thus does not consider the size of terms
within an atom or literal.

Finally, Cg1c,gs determines the cost of each SLGags op-
eration. Note, since the scope of an abstraction function is
an atom, the cost of applying an abstraction function is con-
stant in Csr,Gags 2. Accordingly under CsrGues the NEW
SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE
RETURN, NEGATIVE RETURN, DELAYING, and SIMPLIFI-
CATION operations each affect one goal or delay literal and
are considered constant time. The COMPLETION operation,
however, applies to a set of subgoals S in a forest F and its
cost is proportional to the size of S: in the worst case this is
|subgoals(F)|. Similarly, the ANSWER COMPLETION op-
eration must determine an unsupported set of answers and
its worst case is size(Pg(£)).

The cost model Cs1,G,gs thus consists of

1. The definition of subgoals(F) which is finite, and is
O(atoms(P)) if atoms(P) is finite;

2. The definition of size(Pg(€)) which finite and is
O(size(P)) if size(P) is finite; and

3. Costs for each individual SLGags operation.

Theorem 5 Let P be a ground normal program, QQ a
ground query, and £ a terminating SLGags evaluation of
Q against P that uses depth-k abstraction, and with final
forest Frin. Then under the cost mode Cspgyygs, the cost of
& is O(|subgoals(Fyrin)| x size(Pg(£))).

Implementation, Performance and Scalability

SLGags is implemented using depth-k abstraction in ver-
sion 3.3.7 (publicly available) of XSB (XSB 2013), based
in part on a prior implementation of subgoal abstraction.
From the programmer’s perspective, depth-k abstraction is
not used by default, but can be invoked using different val-
ues of k£ on a predicate basis. Answer abstraction is per-
formed in the tabling engine of XSB, the SLG-WAM, dur-
ing the check/insert step which checks whether an answer
exists in a given table, and inserts the answer into the ta-
ble if not. A counter maintains the current depth of the an-
swer Ans < Delays| being traversed,; if the depth of Ans
is greater than k then the current subterm is replaced by a
free (position) variable. In addition, the atom undefined ..,
a reserved atom in XSB, is added to Delays if it is not al-
ready included, indicating that Ans is undefined. The over-
head of answer abstraction is thus the cost of maintaining
the depth-counter, along with that of copying undefined ,,
into Delays if the depth bound is exceeded.

If no answer abstraction function is specified (so that an-
swers will not be abstracted) the overhead consists solely
of the cost of maintaining the the depth counter within the
answer check/insert operation. For various forms of linear
recursion, we measured this overhead at 0 — 4% based on
the ratio of answers to subgoals in a given benchmark.

A series of independent studies have shown XSB to be
highly scalable (OpenRuleBench 2011). In addition, recent
work with trace-based analysis in XSB has performed so-
phisticated analysis on trace logs with 107 to 10% and more

20f course a practical implementation of an abstraction func-
tion should have a low cost as a function of the actual size of an
atom to which it is applied.

0. r(X) <- Ir(X)

1. r(X) <= 1 p(X),q(X)

T/

7.r(0):— | not q(0)

10. fail 13. r(s(0)):— |

2. p(X) <- I p(X) 6a. complete

3. p(0) < 4. p(s(X)) <- 1 p(X)

5. p(s(O)HAp(s(s(X.lJ))) <— undefined_absl|

15. q(s(s(X))) <= lq(s(s(X))) 15a. complete

11. r(s(0)):— | not q(s(0)).

14. r(s(s(X))):= p(s(s(X))I not q(s(s(X))).

16. r(s(s(X))):= p(s(s(X))!

8. q(0) <-1q(0) 9a. complete

9.q(0) <~ |

12. q(s(0)) <= Iq(s(0)) 12a. complete

Figure 1: Final forest for the query r(X) to Pgps-unsafe-

events, where each event corresponds to a Prolog fact that
is dynamically loaded for the analysis. This scalability has
not been affected by the extension to SLGaps in the SLG-
WAM.

Discussion and Current Work

This paper has shown how radially restrained well-founded
models of a program approximate the well-founded model
in a clear manner (Theorem 2). Queries to these models ter-
minate correctly (Theorems 3 and 4) with low abstract com-
plexity (Theorem 5). Tabled resolution for restrained mod-
els can be implemented with low overhead on performance,
without impacting the scalability of query evaluation.

Current work has been studying how this kind of bounded
rationality is best exploited for practical KR. To date, this
study has been primarily in the SILK project, which has
sought to provide a framework for scalable logic-based KR.
SILK’s logic, Rulelog, derives its scalability in part from
its reliance on the well-founded semantics, which offers a
low computational complexity and supports top-down query
evaluation. SILK has been used to evaluate sets of high-level
rules about cell biology at the first-year college level. These
rules are constructed by a team of knowledge engineers who,
as an experiment, constructed rules directly from textual
knowledge. While the heavy use of tabling makes evaluation
of such rule sets possible, they are often not well-behaved,
so that knowledge engineers may be faced with “run-away”
computations. Radial restraint bounds these computations so
that they will terminate. Then the results of queries may be
analyzed — via SILK’s justification-based debugging and
other introspection routines — and used to modify problem-
atic rules.

Besides such application piloting, current work is also
been addressing several areas of mechanisms and theory
around radial restraint. One area is been formulating results

on conditions that ensure computational tractability of LP
and Rulelog. A second area is developing methods to coor-
dinate radial restraint with temporal bounds (i.e., time-outs).
A third area is developing analysis, such as estimated maxi-
mum number of answers, that is specific to various abstrac-
tion norms, e.g., term size, term depth, and list vs. non-list
functions. A fourth area is developing justification mecha-
nisms to inform users whether an atom was undefined be-
cause of restraint, versus because negation lacked stratifia-
bility. A fifth area is developing methods for introspection
during long-running queries (within which SILK permits in-
terrupting and resuming computation), so that a knowledge
engineer can obtain information about what subqueries in a
current paused state of a computation have a truth value that
is undefined due to radial restraint.

A final area of current work is developing techniques and
theory for non-radial kinds of restraint. Restraint appears
to be potentially a rich realm for work in the field of KR
overall.

Acknowledgements

The authors would like to acknowledge support from Vul-
can, Inc. (specifically, the SILK project) while perform-
ing the work described in this paper; along with FCT
Project ERRO PTDC/EIACCO/121823/2010. The authors
also thank Keith Goolsbey and Michael Kifer for helpful dis-
cussions, the rest of the overall SILK team for their encour-
agement, and the anonymous reviewers for their stimulating
comments.

References

Alviano, M.; Faber, W.; and Leone, N. 2010. Disjunctive
ASP with functions: Decidable queries and effective com-

putation. Theory and Practice of Logic Programming 10(4-
6):497-512.

Anderson, M. L., and Oates, T. 2007. A review of recent
research in metareasoning and metalearning. Al Magazine
28:7-16.

Bonatti, P. 2004. Reasoning with infinite stable models.
Artificial Intelligence 156:75-111.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008. In
International Conference on Logic Programming, 407-424.

Chen, W., and Warren, D. S. 1996. Tabled Evaluation with
Delaying for General Logic Programs. Journal of the ACM
43(1):20-74.

Chen, W.; Kifer, M.; and Warren, D. S. 1993. HilLog: A
foundation for higher-order logic programming. Journal of
Logic Prog. 15(3):187-230.

Fisher, M., and Ghidini, C. 1999. Programming resource-
bounded deliberative agents. In International Joint Confer-
ence on Artificial Intelligence, volume 16, 200-205.

Fisher, M.; Bordini, R. H.; Hirsch, B.; and Torroni, P. 2007.
Computational logics and agents a roadmap of current
technologies and future trends. Computational Intelligence
23(1):61-91.

Grant, J.; Kraus, S.; and Perlis, D. 2000. A logic for charac-
terizing multiple bounded agents. Autonomous Agents and
Multi-Agent Systems 3(4):351-387.

Konolige, K. 1983. A deductive model of belief. In Interna-
tional Joint Conference on Artificial Intelligence, 377-381.

Levesque, H. 1984. A logic of implicit and explicit belief. In
Proceedings of the Conference of the American Association
for Artificial Intelligence, 198-202.

OpenRuleBench. 2011. Openrulebench:
Benchmarks for semantic ~web rule engines.
rulebench.projects.semwebcentral.org, benchmark suites
were tested in 2009, 2010, and 2011.

Przymusinski, T. 1989. Every logic program has a natural
stratification and an iterated least fixed point model. In ACM
Principles of Database Systems, 11-21. ACM Press.
Riguzzi, F., and Swift, T. 2013a. Termination of logic pro-
grams with finite three-valued models.

Riguzzi, F., and Swift, T. 2013b. Well-definedness and ef-
ficient inference for probabilistic logic programming under
the distribution semantics. Theory and Practice of Logic
Programming 13(2):279-302.

Russell, S., and Subramanian, D. 1995. Provably bounded-
optimal agents. Journal of Artificial Intelligence Research
2.

SILK. 2013. SILK: Semantic Inferencing on Large Knowl-
edge. http://silk.semwebcentral.org (project begun in 2008).

Swift, T., and Warren, D. 2012. XSB: Extending the power
of Prolog using tabling. Theory and Practice of Logic Pro-
gramming 12(1-2):157-187.

Swift, T. 1999. A new formulation of tabled resolution with
delay. In Progress in Artificial Intelligence, 163—-177.
Tamaki, H., and Sato, T. 1986. OLDT resolution with tabu-
lation. In International Conference on Logic Programming,
84-98.

van Gelder, A.; Ross, K.; and Schlipf, J. 1991. Unfounded
sets and well-founded semantics for general logic programs.
Journal of the ACM 38(3):620-650.

Wan, H.; Grosof, B.; Kifer, M.; Fodor, P.; and Liang, S.
2009. Logic programming with defaults and argumentation
theories. In International Conference on Logic Program-
ming, 432-448.

XSB. 2013. XSB Prolog. http://xsb.sourceforge.net (first
released in 1993).

Appendix

For the convenience of the reviewers, we include the proofs
of the technical results in this appendix.

Proof of Theorem 2

Theorem 2

Let absi(-),absa(-) be abstraction functions such
that absi(-) < absa(:). Then for any program P,
WFM(absy, P) C WFM (absa, P).

Proof Proof is by double induction, first on the number
of iterations of W F M (absy, P) and W F M (absa, P), and
within that by the number of iterations of Truef (abs) and
Falsel.

o Outer Induction Base Case: First, we show
WFM (absy, P) C WFM (absy, P), by showing

TRéD(absl) C TRéD(absz)

For the base step, note that since abs; (-) < absa(+), then
for any term ¢, absy (t) subsumes abso(t): thus if abs; ()
is ground, then abs,(t) must also be ground, and

Truey (absi,) C Truey (absz,)
For the induction step, assume that Tr C T'7’ to show that
Truey (abs1, Tr) C Truey (absz, Tr')

Note that forarule B < Ly, ..., L, in P and any ground-
ing substitution 6

Li,..L,0€Tr=Ly,..,L,0¢€ Tr'

Furthermore if abs(B)# is ground, then abs(B’)f must

also be ground. Finally, by definition F. Ag) is not affected
by the use of an abstraction function, and the Outer In-
duction Base Case holds.

e Outer Induction Successor Case: To distinguish between
the various sets, we sometimes denote as W F M;(abs, P)
the set W EFMs produced using abstraction function
abs(-) on program P. Assume that W F M;(abs,, P) C
WFMs(abse, P) to show WFMs,q(absy,P) C
W F Mjs.1(abss, P). First, for any abstraction function
a(-)ifICTI

True¥ (a,Tr) C Truet (a, Tr).

In other words, Truef’ (a, Tr) is monotonic on its “pre-
interpretation” I as well as on its parameter 7'r. Next,

True? (absy, Tr) C Truel (absy, T'r)

since every grounding substitution of abss (-) is a ground-
ing substitution of absy(-). Thus,

TR]X;/FM(;H (absy) C TRéDVFMé+1 (abss).
To show that

P P
FAW p My (abss,P) S FAWFM; 1 (abss, P)

For the sub-induction, the base case:

Falsew pags(abs,,) (D) € Falsew pass(abs,,p) (D)

is immediate, as Falsel (abs, Fa) is monotonic on its
subscripted “pre-interpretation’, as well the abstraction
function in its first argument. For the inductive step, note
that for Fa C Fd',

Falsely gy, (abs1, Fa) € Falsety gy, (absa, Fa')

as Falsel’ (Fa) is monotonic on both of its arguments, as
well as on its subscripted “pre-interpretation’. Thus

fAII,)VFM(absl) - IA‘I;VFM(abSQ)

and the statement holds for the successor case.

e Outer Induction Limit Case For non-finitary abstractions,
the limit case must also be considered. The statement
W F My (abs1, P) C WF My (absa, P) follows for limit
ordinal A immediately from the successor case.

SLGagsEvaluation

SLG resembles other Prolog-like tabling formalisms in the
case of programs that do not use default negation However,
for negation it introduces the concept of delaying literals in
order to be able to find witnesses of failure anywhere in a
rule, along with the concept of simplifying these delayed
literals whenever their truth value becomes known.

An SLG evaluation proceeds by constructing a forest ac-
cording to the set of SLG operations. Such a forest, and
the trees and nodes it contains are defined in the following
defintion, which formally defines the terminology used in
the body of the paper.

Definition 9 A node has the form
AnswerTemplate < Delays|Goals or fail.

In the first form, AnswerTemplate is an atom, while De-
lays and Goals are sequences of literals. The second form is
called a failure node. An SLG tree T" has a root of the form
S < |S for some atom S: we call S the root node for T and
T the tree for S. An SLG forest F is a set of SLG trees. A
node N is an answer when it is a leaf node for which Goals
is empty. If the Delays of an answer is empty, it is termed an
unconditional answer, otherwise, it is a conditional answer.
A program tree T may be marked with the symbol complete.

The underlying subgoal of a literal L is L if L is a positive
literal; otherwise itis S if L = not S .

An SLG evaluation £ of an atomic query () to a program
P is a sequence of forests. & starts with an initial forest con-
taining the single node @ < |Q and creates the n'" forest
in the sequence by applying an SLG operation if n is a suc-
cessor ordinal, or by taking the union of forests in previous
sequences if n is a limit ordinal. If no further operation is ap-
plicable, then the final forest for the evaluation of the query
has been reached. We introduce SLG operations incremen-
tally, in Definitions 11, 12, and 15. Before we present the
first set of operations, we present the definition of answer
resolution, which differs in SLG from resolution in Horn
rules in order to take account of delay literals in conditional
answers.

Definition 10 Ler N be a node A < D|Lq, ..., L, where
n > 0. Let Ans = A’ < D'| be an answer whose variables
are disjoint from N. N is SLG resolvable with Ans if 3,
1 <4 < n, such that L; and A’ are unifiable with a most
general unifier 0. The SLG resolvent of N and Ans on L;
has the form:

(A — D|L1, ey Lifl, Li+1, ceny Ln)6‘
if D' is empty; otherwise the resolvent has the form:
(A < l)7 L,‘,|L17 ceny Li—17 Li+1; ceny Ln)9

This form of resolution delays L; rather than propagating
the answer’s delay list D’, which means that L; in the delay
list is only simplified once D’ in the conditional answer has
been simplified. Preventing the propagation of the underly-
ing delay literals in D’ is necessary, as shown in (Chen and
Warren 1996), to ensure polynomial data complexity.®

The previous SLG definitions are not changed in SLGags.
However in the the next set of operations, both NEW SUB-
GOAL is changed (as in (?)) and POSITIVE RETURN is
changed.

Definition 11 (SLGags Operations: 1) Let P be a pro-
gram and assume that a fixed selection function is used to
select a literal from the Goals in a node. Finally, assume
that abs(+) is an abstraction function.

Given a forest F,, of an SLG evaluation of P F, 1 may
be produced by one of the following operations.

1. NEW SUBGOAL: Let F,, contain a tree with non-root
node
N = Ans < Delays|G, Goals

where S is the underlying subgoal of G. Assume F,
contains no tree with root abs(S). Then add the tree
abs(S) «+ |abs(S) to F,,.

2. PROGRAM CLAUSE RESOLUTION: Let F,, contain a tree
with root node N = S < |S and P contain a rule A <
Body such that A unifies with S with mgu 6.

e If Body is not empty, then Nepiiq = (S < |Body)b;

e Otherwise, if Body is empty and abs(S0) = S0, then
Nenita = (50 < |);

e Otherwise, if Body is empty and abs(S6) # S0, then
Nenita = abs(S0 < undefined ,;,]).

If N does not have a child N p;1q then add N.pi1q as a

child of N.

3. POSITIVE RETURN: Let a forest F,, contain a tree with
non-root node N whose selected literal S is positive.
Let Ans be an answer for S in F,, and N' = A «
Delays|Goals be the SLG resolvent of N and Ans on
S

e If N’ has a non-empty Goals sequence, Nop;10 = N'.
e Otherwise, if abs(N') = N', then Nopijq = N’
e Otherwise, if abs(N') # N’ then

Nenita = abs(A < Delays, undefined ,;,]).

31f delay lists were propagated directly, then delay lists could ef-
fectively contain all derivations which could be exponentially many
in the worst case.

In SLG, the NEGATIVE RETURN operation is restricted
to apply to ground negative literals. However, this is unnec-
essary. Recall from Definition ??hat an atom S is successful
(resp. failed) in F if S’ is in true(Zx) (false(Zx)) for ev-
ery S’ in the ground instantiation of S. SLGags removes this
restriction from the NEGATIVE RETURN operation.

Snot A.If an atom A is failed, then we can simplify away
not A.

Definition 12 (SLGags Operations: 2) Let P be program
and assume selection and abstraction functions as in Defini-
tion 11.

Given a forest F,, of an SLG evaluation of P, F, 11 may
be further produced by one of the following operations.

4. NEGATIVE RETURN: Let F,, contain a tree with a leaf
node, whose selected literal is not S

N = Ans < D|not S, Goals.

(a) NEGATION SUCCESS: If S is failed in F,, then create
a child N¢.p;1q of N where

e If Goals is non-empty, Nopiqg = Ans <+ D|Goals;

e Otherwise, if Goals is empty and Ans < D =
abs(Ans + D),

Nehita = Ans < D|;

e Otherwise, if Goals is empty and Ans < D +#
abs(Ans « D),

Nepita = Ans < D, undefined ;.

(b) NEGATION FAILURE: If S succeeds in F,, then create
a child for N of the form fail.

5. DELAYING: Let F,, contain a tree with leaf node
N = Ans < Delays|not S, Goals

S is neither successful nor failed in F,. Then create a
child for N of the form Ans < Delays,not S|Goals.

6. SIMPLIFICATION: Let JF,, contain a tree with leaf node
N = Ans < Delays|

and let L € Delays
(a) If L is failed in F then create a child tail for N.

(b) If L is successful in F, then create a child Ans <
Delays'| for N, where Delays’ = Delays — L.

The remaining operations and definitions are unchanged be-
tween SLG and SLGags. SLG also includes an operation
that marks a set of trees as complete if the corresponding set
of subgoals is completely evaluated.

Definition 13 A set S of subgoals in a forest F is com-
pletely evaluated if at least one of the conditions holds for
each S € S

1. The tree for S contains an answer S < |; or

2. For each node N in the tree for S:

(a) The underlying subgoal of the selected literal of N is
marked as complete; or

(b) The underlying subgoal of the selected literal of N
is in § and there are no applicable NEW SUB-
GOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE
RETURN (Deﬁnition 11), NEGATIVE RETURNor DE-
LAYING (Definition 12) operations for N.

Once a set of subgoals is determined to be completely eval-
uated, a COMPLETION operation marks the trees for each
subgoal (Definition 9). If a subgoal S is completed due to
condition 1 holding, we say that S is early completed. If con-
dition 1 does not hold, condition 2b of the above definition
prevents the COMPLETION operation from being applied to
a tree from a set if certain other operations are applicable to
the trees in the set. This notion of completion is incremental
in the sense that once a set S of mutually dependent subgoals
is fully evaluated, the derivation need not be concerned with
the trees for S apart from any answers they contain. In an
actual implementation most resources for such trees can be
reclaimed.

In certain cases the propagation of conditional answers
through SLG resolution (Definition 10) can lead to a set of
unsupported answers — conditional answers that are false
in the well founded model (see, e.g., Example 1 of M).* In-
tuitively, these answers, which have positive mutual depen-
dencies, correspond to an unfounded set, but their technical
definition is based on the form of conditional answers.

Definition 14 Let F be an SLG forest, and Answer be an
atom that occurs in the head of some answer in a tree with
root S. Then Answer is supported in F if and only if:

1. S is not completely evaluated; or

2. there exists an answer node Answer’ + Delays| in S
such that Answer’ subsumes Answer and for every posi-
tive literal L € Delays, L is supported in F.

We are now able to characterize the last two SLG opera-
tions: one allows the completion of trees, and the other re-
moves unsupported answers.

Definition 15 (SLG Operations: 3) Let P be a program.
Given a forest F,, of an SLG evaluation of P, F,4+1 may
also be produced by one of the following operations.

8. COMPLETION: Given a completely evaluated set S of
subgoals (Definition 13), mark the trees for all subgoals
in S as complete.

9. ANSWER COMPLETION: Given a set of unsupported an-
swers UA, create a failure node as a child for each an-
swer Ans € UA.

Each of the operations (1)—(9), in Definitions 11, 12 and 15,
can be seen as a function that associates a forest with a new
forest by adding a new tree, adding a new node (possibly a
failure node) to an existing tree, or marking a set of trees as
complete.

4 As an aside, we note that unsupported answers appear to be un-
common in practical evaluations which minimize the use of delay
as does XSB (Swift and Warren 2012).

Proof of Theorem 3 (SLGags Termination)

Theorem 3

Let Q be a query to a program P, and let abs(-) be a finitary

abstraction function. Then any SLGpgs evaluation £ of @

reaches a final forest Fy;,, after a finite number of steps.
Proof The proof is by induction on the maximal dynamic

stratum of any answer in £.

e For the base case, assume the maximal stratum is 1 (Def-
inition 2). Because @ is in stratum 1, the only applica-
ble SLG operations in £ are NEW SUBGOAL, PROGRAM
CLAUSE RESOLUTION, POSITIVE RETURN, and COM-
PLETION. Note that each of these operations is applicable
only once to a given node or set of subgoals.

— NEW SUBGOAL: The use of a finitary abstraction op-
eration means that there may only be a finite number
of NEW SUBGOAL operations in £, and hence a finite
number of trees in any forest of £.

— PROGRAM CLAUSE RESOLUTION: Since there are a
finite number of trees, and a finite number of program
clauses resolvable against the root subgoal of any tree,
& contains only a finite number of PROGRAM CLAUSE
RESOLUTION operations, and the root of any tree has
only a finite number of immediate children.

— POSITIVE RETURN: By Proposition 1 since abs(-) is
finitary, true(W FM?T) is finite. Also, since the maxi-
mal stratum of £ is 1, any answer returned will be un-
conditional. Accordingly there are a finite number of
answers that can be resolved against any selected sub-
goal. Because interior nodes SLG trees in stratum 1 can
only be extended by POSITIVE RETURN operations,
any non-root node in any tree may have only a finite
number of children. In addition, the depth of any tree
in £ is bounded by the maximal number of body liter-
als in any rule in P, which is finite. Thus the non-root
nodes of any tree in £ have a finite depth and a finite
branching factor, and so are finite. Because all trees are
finite and since each POSITIVE RETURN operation cre-
ates a new node, there can thus be only a finite number
of POSITIVE RETURN operations.

— COMPLETION: Finally since there are a finite number
of trees in any forest, there can be only a finite number
of COMPLETION operations.

Since the number of occurrences of each type of operation
in & is finite, £ itself must be finite.

e For the inductive case, assume that the statement is true
for all atoms whose (finite) stratum is less than n in order
to prove it true for those atoms whose stratum is n. By
Theorem 1 the maximum stratum of the restrained well-
founded model of P is finite, so that the inductive case
need not consider limit ordinals.

— POSITIVE RETURN: Because the stratum under con-
sideration is greater than 1, there is a possibility that
an answer may be unconditional or conditional. The
case for unconditional answers is argued as in the base
case above. However, it must be shown that there are
a finite number of conditional answers in Fp;,. Con-
sider first that because the maximal number of literals,

mazLit in any rule of P is finite, each node produced
by PROGRAM CLAUSE RESOLUTION will have a fi-
nite number of literals in Goals, and an empty Delays.
The only operations that add literals to Delays are DE-
LAYING and POSITIVE RETURN (through SLG resolu-
tion). However, Each of these operations must remove
a corresponding literal from Goals so that there are at
most max Lit literals in the Delays of any conditional
answer. When a conditional answer Ans is produced
by POSITIVE RETURN, each literal in its Delays is
also abstracted. There are at most maxlit literals in the
Delays of Ans, and since abs(-) is finitary, each such
literal is chosen from a finite set. Accordingly there are
only a finite number of conditional answers in F ;.
Having shown that there are at most a finite number of
answers (conditional or unconditional) each node that
has a positive selected literal may have at most a finite
number of children in F;,, the argument that there are
a finite number of POSITIVE RETURN operations in £
is essentially the same as in the base case.

— NEGATIVE RETURN: First, consider that a NEGATIVE
RETURN operation can be applied at most once to any
node N. As a result of this operation, any node N to
which a NEGATIVE RETURN operation is applied can
have only a single child: either a failure node in the
case of NEGATION FAILURE, or a single child with the
selected literal removed from the Goals of N in the
case of NEGATION SUCCESS. In the case of NEGA-
TION FAILURE this is enough to show that the finite-
ness of £ is not affected, as a failure node cannot be
further expanded. In the case of NEGATION SUCCESS,
the fact that the selected literal is removed from Goals,
means that the child of N will have a smaller Goals
sequence. Since Goals is finite, any path from N may
may have been produced by only a finite number of
NEGATIVE RETURN operations. Since there are only a
finite number of such paths, £ may have only a finite
number of NEGATIVE RETURN operations.

— DELAYING: Analogous considerations show that DE-
LAYING will not affect the finiteness of £.

— ANSWER COMPLETION: Next, note that ANSWER
COMPLETION will produce a single failure node as a
child of each answer node to which it is applied, and a
failure node cannot be further expanded. So ANSWER
COMPLETION does not affect the finiteness of any for-
est, no matter how many times it is applied.

— In the case of SIMPLIFICATION, an application of the
SIMPLIFICATION opertion that produces a failure node
does not affect the finiteness of any forest (Defini-
tion 12, 6a) as a failure node cannot be further ex-
panded.. On the other hand, if an application of a SIM-
PLIFICATION operation to a node [N produces a non-
failure child (Definition 12, 6b), note that similar to
the case of NEGATION SUCCESS, the child of N will
have a smaller Delays. Since Delays is finite, any path
from N to its descendents may have only a finite num-
ber of SIMPLIFICATION operations.

Since each operation can be applied only a finite number

of times, £ must be finite.

Example 4 p(f(X)):- p(X). p(1).
p(ff(2))))-

Proof of Theorem 4 (SLGags Correctness)

In the proof below, in order to appeal to previous correctness
proofs, we distinguish between

e SLG (Chen and Warren 1996; Swift 1999), which uses
no abstraction functions and in which the NEGATIVE RE-
TURN and DELAYING operations (Definition 12) require
a selected negative literal to be ground;

e SLGsa (?) which uses an abstraction function only in the
NEW SUBGOAL operation (Definition 11); and in which
the NEGATIVE RETURN and DELAYING operations re-
quire a selected negative literal to be ground;

e SL.Gaps introduced in this paper, which uses the same
NEW SUBGOAL operation as SLGsa, but uses an abstrac-
tion function in the POSITIVE RETURN operation (Defi-
nition 11), and generalizes the NEGATIVE RETURN and
DELAYING operations so that the they apply to any nega-
tive literal, ground or not

Theorem 4

Let £ be an SLGags evaluation of a query @ to a ground
program P using abstraction function abs(+), such that £ has
a final forest F;,,. Then

W FM (abs, P)|,,, € Ir,.. C WEM(P)|,..

Proof (?) provided a correctness theorem for SLGsa which
stated that if P was safe, then Zr,, = WFM(P)|z,,, for
any abstraction function used in the NEW SUBGOAL opera-
tion. Clearly this theorem holds for SLGags using the iden-
tity function as an abstraction function. Accordingly here we
focus on the use of general abstraction functions within the
POSITIVE RETURN operation, as well as the removal of the
ground subgoal restriction for DELAYING and NEGATIVE
RETURN. With this in mind, we first show soundness and
then completeness.

Soundness is shown by a double induction, first on the max-
imal stratum of any answer pr subgoal in £, and within
each outer induction step, by induction on the sequence
Fo, Fi,... of forests in &, and for each such forest F; we
show that Zr, C WF M (P)|F,.

1. Outer Induction Base Case For the base case, assume the
maximal stratum of any answer or subgoal in £ is 1.

(a) Inner Induction Base Case For the base case, Fg is
the initial forest to which only a PROGRAM CLAUSE
RESOLUTION operation may be applicable. The PRO-
GRAM CLAUSE RESOLUTION operation of SLGags
differs from that of SLGsa only if it creates an answer
abs(A <) where abs(A <) # A <+ . In this case, S
would be neither true nor false in /x,,, , and so is sound
However, the case must be considered where the PRO-
GRAM CLAUSE RESOLUTION operation produces an
answer (A <) which equals abs(A <), but A is non-
ground, and some atom A’ in the instantiation of A is

(b)

i.

iii.

iv.

©

such that A’ # abs(A’). In this case, A" will not be
in WF M (abs, P), but it will true in clx, . However,
but the correctness of SLGga, A’ will still be true in
WFM(P).
Inner Induction Successor Case For the induction
case, assume that Zr, C WFM(P)|F, to show
that Zr, ., € WFM(P)|r,,,. Given that the maxi-
mal stratum of any subgoal or answer in £ is 1, the
only SLGags operations to consider are NEW SUB-
GOAL PROGRAM CLAUSE RESOLUTION, POSITIVE
RETURN and COMPLETION.
NEW SUBGOAL The NEW SUBGOAL operation is de-
fined in the same way SLGags as in SLGsa and its
soundness follows from the proof of correctness of
SLGsa -

i. PROGRAM CLAUSE RESOLUTION The correctness of

the PROGRAM CLAUSE RESOLUTION operation is
the same as for the Inner Induction Base Case.
POSITIVE RETURN The POSITIVE RETURN opera-
tion of SLGags differs from that of SLGsa only if it
creates an answer abs(A <—) where abs(A <) #
A < . In this case, S would be neither true nor false
in Ix,,, and so is sound.
COMPLETION The COMPLETION operation is de-
fined in the same way SLGags as in SLGsp (and
SLG) and its soundness follows from of correctness
of SLGS/_\ .
Inner Induction Limit Case Note that since abs(-) is
finitary, then by Theorem 3 £ will be a finite sequence
of forests, so that the limit case does not need to be
considered.

2. Outer Induction Successor Case Assume that the state-
ment holds for all evaluations with stratum n or less to
show that the statement holds for evaluations with stra-
tum n.

(a)

(b)

I

Inner Induction Base Case For the base case, JF is the
initial forest to which only a PROGRAM CLAUSE RES-
OLUTION operation may be applicable. Soundness fol-
lows exactly as with case 1(a).
Inner Induction Successor Case For the induction case,
assume that Tz, C W F M (P)|, toshow thatZr,,, C
WFEM(P)|7,,,. We consider all possible cases of
SLGags operations that may produce ;1.
NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,
POSITIVE RETURN, COMPLETION. These cases are
argued as in case 1(b).

ii. NEGATIVE RETURN The NEGATIVE RETURN oper-

ation of SLGags differs from that of SLGga in one of
two ways.

A. First, if NEGATIVE RETURN is applied to a node

N = Ans < D|not S, Goals.

such that S is non-ground, S must be successful or
failed in Zr,. By Definition 6 if .S is successful, every
literal in the ground instantiation of S must be true,
i.e. there must be an answer S < in J;, so that by
the induction hypothesis, every literal in the ground

instantiation of .S is true in W F M (P). Under such
conditions application of the NEGATION FAILURE
case is sound. By Definition 6 if S'is successful, ev-
ery literal in the ground instantiation of S must be
false, i.e. there must be no answers to the completed
subgoal S in F;. Under such conditions the NEGA-
TION SUCCESS case is sound.

B. In addition, the NEGATION SUCCESS case differs
from that of SLGsa only if it creates an answer
abs(A <) where abs(A <) # A < . In this
case, S would be neither true nor false in Ir,, and
so0 is sound.

iii. DELAYING For a given node, the DELAYING op-
eration simply moves the selected literal of Goals
to Delays, and so will not affect the soundness of
SLGABs.

iv. SIMPLIFICATION The SIMPLIFICATION operation is
the same as in SLGgp, however in SLGppgs it can be
the case that a delayed literal is non-ground, which
could not occur in SLGsa. In this case, the sound-
ness of the SIMPLIFICATION operation is analogous to
cases of NEGATION SUCCESS and NEGATION FAIL-
URE in 2(b).ii.A above.

v. ANSWER COMPLETION ANSWER COMPLETION the
same as in SLGsp (and SLG) and its soundness fol-
lows from of correctness of SLGgp .

(c) Inner Induction Limit Case As with 1(c), since abs(-) is
finitary, then by Theorem 3 £ will be a finite sequence
of forests, so that the limit case does not need to be
considered.

Completeness The statement
WFM(abs, P)‘]:fm - I]:fin

is shown by a double induction, first on the stratum of
a given atom in WFM (abs, P), and within each outer
induction step, by induction on the sequence of applica-
tions of Truel (abs), along with a separate argument for
Falsef (abs)

1. Outer Induction Base Case For the base case, assume the
stratum of an answer in W F M (abs, P) is 1.

(a) Falsey (abs,Bp) consists of those atoms A for every
clause B <— Ly, ..., L, in P and grounding substitution
6 such that A = B = abs(B0) and there is some ¢
(1 <4 < n) such that L;# € Fa}. For an A that is
in the ground instantiation of subgoals(Fy;,) and for
which A = Bf = abs(B#), the statement holds by the
correctness of SLG. If A = B # abs(B6), then A
cannot be false in W EF' M (abs, P).

(b) We show the statement for T'rue (abs) by induction
on the applications needed to produce the fixed point.

1. Inner Induction Base Case Trueég(abs, () consists of
those atoms such that there is a clause B <« in P

and a grounding substitution 6 such that A = Bf =
abs(B6). Suppose that such an A is in the ground in-
stantiation of some subgoal in Fp;,. In such a case,

a PROGRAM CLAUSE RESOLUTION operation would

be applicable to the tree with rood S + |.S and based

on some program clause in P would derive abs(S6).
(If abs(Af) = Af and A0 is non-ground, then there
may be some atoms in the ground instantiation of
abs(A)0 that are in Zx,,, but not in W F M (abs, P);
however by soundness, such atoms are in W F M (P).)

ii. Inner Induction Successor Case Assume the statement
is true up to the " iteration of Truej (abs) (denoted
Tr) to show that it is true for the i 4+ 1°¢. This new
iteration consists of atoms such that there is a clause
B+ L, ..., L, in P, a grounding substitution # such
that A = B = abs(B#), and for every 1 < i < n,
L;0 € Tr. Thus, assume that A is in the ground in-
stantiation of some subgoal in Fp;,. In such a case,
by the induction hypothesis and the correctness of
SLGsa, each L; will be true in some F; in &£, and by
a PROGRAM CLAUSE RESOLUTION operation plus
a sequence of POSITIVE RETURN operations, an an-
swer will be derived of which A is in the ground in-
stantiation.

iii. Inner Induction Limit Case This case does not need to
be considered, as TrueéD will reach fixed point after a
finite number of iterations.

2. Outer Induction Successor Case Assume the statement
holds for W FM; (i.e., W F M (abs, P); to show that the
statement also holds at W F M, ;.

(@) Falsety gy (Bp). Falsely), (Bp) consists of those
atoms A such that for every clause B < L1, ..., L, in
P and grounding substitution such that A = B6 there
is some j (1 < j < n) such that ;0 is false in W F M,
or L;0 € Bp.

i. First we consider only the condition where L ;0 is
false in W EFM;. Accordingly, consider an atom A
that is in the ground instantiation of some subgoal in
Fin and a given rule r for A with a leftmost false lit-
eral L;0 as above. Since L ;0 is false in W F'M;, then
by the induction hypothesis it will be failed in F;j,.
Since L; is the leftmost literal in r, it will be the se-
lected literal of some node IV in Fp;,, where N is a
descendent of a node N, created by a PROGRAM
CLAUSE RESOLUTION operation that used 7.

A. Lj is positive. In this case, one of two things will
happen. (1) Since L; is failed in Fy;, it may be
that no answers for L; are resolved against the se-
lected literal of V. In such a case, the derivation path
from N, through N will produce no answers. (2)
Within an POSITIVE RETURN operation, SLG reso-
lution (Definition 10) will resolve a conditional an-
swer against N. Since L;0 is failed in F;,,, either a
SIMPLIFICATION or an ANSWER COMPLETION op-
eration will create a failure node as a descendent of
N by the correctness of SLG.

B. L; is negative. In this case, either a NEGATION
FAILURE operation will create a failure node as a
child of N, or L; will be delayed, and later simpli-
fied away, since L; is failed in F;,.

ii. The previous subcase, 2(a).i argued that when L; is
the witness of failure for a rule r for an atom A, and

if L; is false in WIFM;, then SLGags will ensure
that there is no answer for A using q rule with lit-
eral L;. However, there is still the case of a rule r
in which no literal is false in W F'M;, but for which
the witness of failure is simply in the greatest fixed
point of False{fVFM. For this to be the case, A must
be an unfounded set in the interpretation W EF M;. If
abs(A) = A, then the statement holds by the correct-
ness of SLG, while if abs(A) # A, then A is unde-
fined in WF M (abs, P).

(b) We show the statement for Truefy, ., (abs) by induc-
tion on the applications needed to produce the fixed
point.

i. Inner Induction Base Case For the base case,
Truejy gy, (abs,) consists of those atoms such that
there is a clause B < Ly,...,L,, in P, a grounding
substitution 6 such that A = Bf = abs(B0), and
forevery 1 < i < n L;0 is true in W F M;. Suppose
that such an A is in the ground instantiation of some
subgoal in Fy;,. By the outer induction hypothesis
Ly, ..., L, are true in Fy;,, and by the correctness of
SLG, an answer abs(Bn) would be derived such that
abs(Bn) subsumes A. Furthermore, since abs(B0)
equals BO (because BO € Truel . (abs,0)),
then abs(Bn) = Bn (as Bn subsumes B#) so that
undefined ., is not added to the Delays of the an-
swer. Thus BO(= A) isin Zr,,).

ii. Inner Induction Successor Case For the inner induc-
tion case we also assume that 7 is the result of the i*"
iterations of T'ruefy -y, and that Tr| 7, C Ir,, .
The arguments for the successor case are essentially
those of the base case 2(b).i

iii. Inner Induction Limit Case This case does not need to
be considered, as True;, v, Will reach fixed point
after a finite number of iterations.

3. Outer Induction Limit Case By Theorem 1, this case does
not need to be considered.

Proof of SLGags Complexity

The proof of complexity of SLGags is a fairly direct exten-
sion of that of SLGga.

Theorem 6 ((?)) Let P be a ground strongly bounded-
term-size program, () a ground query, and £ a terminat-
ing SLGsa evaluation of () against P that uses depth-k
abstraction. Then under the cost mode C, the cost of £ is
O(|subgoals(Fin)| x size(Pg(£))).

Theorem 6 is thus the basis of the proof of the complexity
bound of SLGags.

Theorem 5 Let P be a ground program, @) a ground query,
and £ a terminating SLGags evaluation of () against P that
uses depth-k abstraction. Then under the cost mode C, the
cost of € is O(subgoals(Fyin) x Po(E)).

Proof We consider first the case where P is a strongly
bounded-term-size program. Recall that SLGags differs
from SLGgpa in its use of abstraction in the POSITIVE RE-
TURN operation, and in allowing the NEGATIVE RETURN

and the DELAYING operations to apply to selected nega-
tive literals in cases where they are non-ground. We consider
each case in turn.

e (POSITIVE RETURN) In C, all atoms are assumed to have
a maximal size: since P is strongly bounded-term-size
this maximal size as defined by a depth function must ex-
ist. Thus, in C the cost of an POSITIVE RETURN operation
is taken to be costant, except if answer abstraction is used
when the cost is 1 plus the number of delay literals in the
answer. To show that answer abstraction does not affect
the complexity of SLGags, consider an arbitrary tree T’
in Fy;,. Each child IV, of the root of T is created by a
ground rule . We show that each descendent of NV, has
at most one child. This follows directly from the defini-
tions of SLGagsfor all operations except for POSITIVE
RETURN. However note that if an POSITIVE RETURN op-
eration is applied to a ground selected atom A of a node
N, N may have only one child; also note that if answer
abstraction was applied to A (so that A is non-ground),
there may still be only one child for N. Thus, answer ab-
straction may be applied a maximum of once per rule so
that the total cost of all POSITIVE RETURN operations in
€ is at most size(r), so that answer abstraction does not
affect the worst-case complexity of SLGags evaluation.

e (NEGATIVE RETURN and DELAYING) Note that the
change to allow the NEGATIVE RETURN and the DE-
LAYING operations to apply to selected negative literals
in cases where they are non-ground will not affect the
complexity of the NEGATIVE RETURN and DELAYING
operations under the cost model C.

Thus, if P is strongly bounded-term-size, the statement
holds.

The restriction to strongly bounded-term-size programs is
necessary in Theorem 6 as SLGsp is not guaranteed to ter-
minate if a program is not strongly bounded-term-size. By
Theorem 3, SLGapgs will always terminate if a finitary ab-
straction function is used, and depth-k abstraction functions
are finitary. There is thus no difference in complexity be-
tween a strongly bounded-term-size program for which ab-
straction is used in &£, and an arbitrary normal program for
which abstraction is used in £. The statement thus holds for
any normal program P.

