Software Reuse

+ Laziness is a virtue among programmers
+ Often, a given task must be performed multiple times

+ Instead of (re)writing the code each time, it is more

efficient to write the code once and reuse it as necessary

Functions and CS8 130 Irodction o
RecurS]'On Stony Brook University
Functions

+ A function is a small block of code that can be called
from another point in a program

+ Functions enable reuse, and can be used to abstract out
common tasks

+ Ex. computing the factorial of a number

* Function effects can be changed by supplying different
input values

Calling a Function

To call a function, write its name, followed by a pair of

parentheses

& Exczand ()

+ If the function takes any input, those values go inside

the parentheses

& Exe printE(23de = value)s:

Function Arguments

* Arguments are pieces of data that are passed into a
function

+ Different input can produce different results
+ Arguments can be manipulated, like variables

= Arguments are normally passed as copies — changes
are not sent back when the function returns

« int answer

Return Values

* Some functions pass a value back to the place where

they were called

+ Ex. factorial () sends back an integer value

+ The return value effectively replaces the function call in

the original expression

factorial(3);

becomes
int answer

61

Return Values

+ If a function returns a value, it must contain a return

statement:

return value;

= The return value must match the return type in the
function header!

* A function may return any value of the specified type

Function Execution

* Only one function can be active at a time

* When a function is called, the calling function is put on

hold while the called function executes.

» When the called function completes (returns), execution

returns to the calling function

+ Function calls can be nested (i.e., A calls B, which calls C

— when C completes, B resumes, then returns to A)

Defining a Function

+ A function definition consists of a function header and a

function body

= The function header specifies the return type, name, and
arguments list

+ The function body is a brace-enclosed set of 0 or more
program statements

General Form

return_type function_name (arguments)

{

function body

}

Real-world “Functions”

No input Has input

No return value Car Horn? Parking meter

C Funcuon Examples

Returns a “value” Tissue box Vending machine

No input Has input
No return value srand()
Returns a value rand() sqrt()

Class I Functions

+ No arguments (input)
* No output (void return type)

* These functions are often used for their side effects
(they change values elsewhere in the program)

Example 1

void printDashedLine ()

{
printf(“--——————--"-——-—————— N

Another Example

void getuserName()

{
/* side effect: user input is stored in */
/* name, which is defined elsewhere. */
printf (“Enter your name: ”);

scanf(“%s”, name);

Example 3

void clearScreen ()
{
aligne akg
o (i = @ga <€ 24 ald=F)
{
joseatanedt ((7\)

Class 2 Functions

“ Accept input, but do not return anything

* Again, these functions are used for their side effects

+ Ex. srand()

An Example

void printSomeStars (int n)
{
aligng alg
ifere (sl = @gil < my ild=r)
joneatiniest (2237))
joiEaLaneiE (2 \m”) g

Another Example

void printlToN (int n)
{
abjpre alg
iBepe (il = llgal &= W3 gy

preanEiE (| ZSeN\m@,, a)p

Class 3 Functions

“ Do not take any input
+ Return a value to the calling function

+ Ex. rand()

An Example

int getYear ()
{

int value;
printf (“Enter the year: ”);

scanf (“ %d”, &value);

return value;

Class 4 Functions

* Take input and return a value
“ Most functions are of this type

* Ex. sqrt()

An Example

int average (int a, int b, int c)
{
int sum = a + b + c;

return sum/3;

Example 2

int multiply (int first, int second) /* header */

{

return (first * second); /* body */

Another Example

int factorial (int wvalue)

{

int fac;
for (fac = 1; value > 1; value--)

fac = fac * value;
return fac;

} /* value is unchanged in the calling ftn */

Scope

Variable Scope

= Scope refers to the area of a program for which a
variable is defined

“ Scope is restricted to the smallest set of curly braces
around the variable

+ Ex. the function in which a variable is defined

Scope Illustration

int myFunction ()

{

aligig 529

. /* X is in scope here */

/* X is out of scope here */

Global Variables

“ A global variable is declared outside of any function

“ Global variables are accessible from anywhere in a
program

+ Global variables are used to share data

* Constants are usually declared as globals

Global Variables

const float PI = 3.1415926;

int main (void)
{
float area = PI * 2 * 2;

Scope and Naming

= Several variables can have the same name, as long as
they are in different scopes

* The most recently-declared variable takes precedence

* We say that it shadows the other variable

Same Names

int x = 5; /* x is global */

void foo ()

{
int x = 10; /* this x shadows the other */
erealere (296l , sk)p /= mprenes 10 </

Storage Classes

Storage Classes

Every variable and function has two attributes: type and
storage class

The storage class determines how memory is allocated

There are four storage classes: auto, extern,
register, and static

The auto Storage Class

This is the most common storage class
Used for variables declared in function bodies

When a block is entered, the system allocates memory
for any variables declared in that block

When a block is exited, the system releases that
memory (and those variable values are lost)

The Extern Storage Class

When a variable is declared outside a function, storage
is permanently assigned for that variable

The variable’s (implicit) storage class is extern

The variable is global to all subsequent function
declarations

extern variables never disappear

Using extern Across Files

File filel.c:

int a =1, b = 2, ¢ = 3; /* external variables */
int f(void);

int main(void)

{
printf(“%3d\n”, £());
printf(“%3d%3d%3d\n”, a, b, c);

return 0;

Using extern Across Files, Pt. 2

File file2.c:

int f(void)
{

extern int a; /* “look for ‘a’ elsewhere” */

e, 19, @f /* global b and c are masked */

a = bi=ilci = dis

return (a + b + c);

The register Storage Class

= Tells the compiler that a variable should be stored in
high-speed memory registers

+ Used to improve program execution speed

+ Defaults to automatic if necessary (no CPU registers
are available)

+ Defaults to the int type

= Only treated as advice to the compiler

The static Storage Class

+ Static declarations allow a variable to retain its value

when its block is re-entered

 This is the opposite of automatic variables, which are

destroyed when their block ends and must be re-
initialized when the block is re-entered

static Function Example

void f(void)
{

statilc dnt count = 0; /% count is private o & 2/
++count;

if (count % 2 == 0)
£ oo)}

else

T

static As A Protection Mechanism

“ The static keyword also provides a privacy (scope
restriction) mechanism

+ The scope of a static external variable is the remainder

of the file in which it’s declared

“ Static functions are only available within the file in
which they are defined

“ This can be useful for developing private modules

#define INITIAL SEED 17
#define MULTIPLIER 25173
#define INCREMENT 13849
#define MODULUS 65536
#define FLOATING_ MODULUS 65536.0

static unsigned seed = INITIAL SEED;

unsigned random(void)

{
seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;
return seed;

i

double probability(void)

{
seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;

return (seed / FLOATING MODULUS);
}

Default Initialization

* External variables and static variables are automatically
initialized to 0 unless explicitly initialized

“ Automatic and register variables are NOT automatically

initialized by the system

+ They start with “garbage” (undefined) values

Counting Rabbits

+ Problem: Given certain properties of breeding pairs of

More AdvaIlCCd Functon TOpiCS rabbits, compute the size of a population of rabbits

= If we start with one pair of rabbits, how many rabbits
will we have after n months?

Rabbit Rules Rabbit Growth Chart

Month # Mature Pairs # Immature Pairs

All pairs of rabbits are breeding pairs (one male, one z : 2
female)

2 0 1

+ Rabbits reach maturity after two months 3 1 1

+ Mature rabbits produce a new pair of rabbits (one male, 4 1 2

one female) every month 5 2 3

6 3 4

+ Rabbits never die, and have no predators

Rabbit Predictions

= Based on this growth model, how many rabbit pairs will

we have in 6 months? In 10? In 20?

= Is there a general rule that we can derive?

Population Growth Rules

+ At the end of n months, the number of pairs of rabbits

will be equal to:
* the # of pairs at the end of (n-1) months, plus

= the # of pairs at the end of (n-2) months

+ Thus, rabbit(n) = rabbit(n - 1) + rabbit(n - 2)

Recursive Functions

= A recursive function is one that calls itself to solve a
smaller version of the original problem

+ Ex. rabbit(n) calls rabbit(n - 1)

* A final solution is put on hold until the solution to the
smaller problem is computed

Recursion Requirements

+ In reaching a solution, the problem must first solve a

smaller version of itself

+ There must be a version of the problem that can be

solved without recursion (this is called the base case)

+ Ex. rabbit(1) and rabbit(2) have fixed values

+ A recursive solution may have more than one base case

Notes on Recursion

* Some problems lend themselves to elegant recursive
solutions

+ All recursive solutions can also be restated in iterative
terms

+ Recursion is not as efficient as iteration
* Need for increased storage overhead

+ Increased time for function calls

Factorial Revisited

int factorial (int wvalue)
{
if (value <= 1)
return 1;

else
return value * factorial(value - 1);

Seeing Stars

void printStars(int numStars)

{

if (numStars > 0)

{
printf(“*");

printStars(numStars - 1);

Another Example

/* Ackermann'’s function */
int acker (int m, int n)
{
if (m == 0)
EeEuEnTns L.
else if (n == 0)
return acker(m - 1, 1);

else
return acker(m-1, acker(m,n-1));

The Towers of Hanoi

+ Given a set of discs stacked on one pole, move them to a
second pole, subject to the following rules:

* Only one disc can be moved at a time

+ Alarger disc can never be placed on top of a smaller
disc

* A third pole can be used as temporary storage

&
3

&
3

A Recursive Solution

Base case: 1 disc

+ Move the disc from source to destination
Recursive case: n discs

+ Move n - 1 discs from source to temp

+ Move 1 disc from source to destination

+* Move n - 1 discs from temp to destination

Solution Code, Part 1

void hanoi (int n, int source, int dest, int temp)
{
if (n == 1) /* base case */

{

printf(“Move 1 disc from %d to %d”, source, dest);

Solution Code, Part 2

else /* recursive case */

{

}

hanoi (n-1, source, temp, dest);
printf(“Move 1 disc from %d to %d”, source, dest);

hanoi (n-1, temp, dest, source);

/* end of else clause */

} /* end of function */

