
Enumeration Types
and Structures

CSE 130: Introduction to
Programming in C

Stony Brook University

Enumeration Types

Enumeration Types

❖ Used to:

❖ name a finite set

❖ declare elements of that set (enumerators)

❖ Used as programmer-specified constants

❖ Ex. enum color {red, blue, green, yellow};

❖ color is the tag name

Enumerators

❖ Enumerators specify the values that variables of the
enumerated type can take on

❖ Ex. enum boolean {false, true};

❖ These are constants of type int

❖ By default, they are given the values 0, 1, ...

❖ They can also be assigned specific values

Enumeration Type Variables

❖ Ex. enum color c1, c2;

❖ c1 and c2 are of type enum color

❖ Note: the type is enum color, NOT color

❖ c1 and c2 can only take on the values red, blue,
green, and yellow:  
 
c1 = green;

Initializing Enumerators

❖ enum suit {clubs = 1, diamonds, hearts,
spades};

❖ diamonds, hearts, and spades have the values 2, 3, and 4
respectively

❖ Uninitialized enumerators are assigned consecutive values,
starting after the last initialized enumerator

❖ The values may be duplicated, but the identifiers must be
unique

More Declaration Examples

❖ enum suit {clubs, diamonds, hearts, spades} a;

❖ a is of type enum suit

❖ If we omit the tag name, then every variable of that type must
be declared as part of the enumeration type:

❖ enum {fir, pine} tree;

❖ No other variables of type enum {fir, pine} can be
declared

enum move {rock, paper, scissors};
enum outcome {win, lose, tie};
...
enum outcome result;
if (player == computer)
 result = tie;
else
{
 switch(player)
 {
 case paper:
 result = (machine == rock) ? win : lose;
 break;
 case scissors:
 result = (machine == paper) ? win : lose;
 break;
 etc.
 }
}

Structures

The Structure Type
❖ A structure makes it possible to aggregate components into a

single, named variable

❖ Ex. a bank account contains an account #, a balance, an
interest rate, etc.

❖ Structure components have individual names, and can be
accessed individually

❖ A structure is a derived type

❖ It’s sort of like a primitive/limited class from an object-oriented
language

Declaring a Structure

❖ Structure declarations begin with the keyword struct,
followed by a tag name and a brace-enclosed list of
components

❖ The tag name can be used to declare variables of the
structure’s type

❖ The variable type is struct tag-name

Structure Example

struct account /* tag name is account */
{

 long number;
 float balance;
 float interestRate;
};

struct account myAcct;

Structure Members

❖ Members of a structure can be accessed using the structure
member (“.”) operator:  
 
struct account a;  
a.balance = 1234.56;  
a.number = 8463745;

❖ Member names must be unique within the same structure

❖ Two different structure types may have identical member
names, though

Structure Declarations

❖ We can combine a structure definition with variable
declarations

❖ struct card  
{  
 int value;  
 char suit;  
} c, deck[52];

Structure Example 2a
struct fruit
{
 char name[15];
 int calories;
};

struct vegetable
{
 char name[15];
 int calories;
};

Structure Example 2b

struct fruit a;
struct vegetable b;
a.calories = 35;
b.calories = 45;

Another Example

struct student
{

 char *lastName;

 int studentID;

 char grade;

};

int fail(struct student class[])

{

 int i, count = 0;  
 for (i = 0; i < CLASS_SIZE; i++)

 if (class[i].grade == ‘F’)

 count++;

 return count;

}

Structure Initialization
❖ A structure variable can be followed by a list of constants

contained within braces

❖ the remaining members are assigned the value 0

❖ Ex. struct card c = {12, ’s’};

❖ Ex. struct fruit frt = {“plum”, 150};

❖ We can also name members, as with arrays:  
 
struct card c = {.value = 5, .suit = ‘d’};

Structure Assignment

❖ If a and b are variables of the same structure type, we
can write  
 
a = b;

❖ Each member of a is assigned the value of the
corresponding value of b

Passing Structures As Function Arguments

void assignValues(struct card c, int p,
 char s)
{
 c.value = p;
 c.suit = s;
}

Passing Structures
❖ When a structure is passed as an argument, it is copied

(because of call-by-value)

❖ It is more efficient to pass the address of the structure
instead

❖ In this case, use the member access operator -> (a dash
followed by an arrow bracket) to manipulate the
structure’s members:  
 
p -> data = 25;

