
Stony Brook University

Multidimensional Arrays,
Command-Line Arguments, and
Functions as Arguments
CSE 130: Introduction to Programming in C

Multidimensional Arrays

✤ C lets us create arrays of any type

✤ This includes arrays of arrays

✤ Just add a new bracket pair for each additional
dimension: int b[2][7] creates a 14-element array

✤ Array elements are stored contiguously in memory
starting at the base address of the array

Two-Dimensional Array Example

✤ int a[3][5];

✤ a[i][j] is equivalent to:

✤ *(a[i] + j)

✤ (*(a + i))[j]

✤ *((*(a + i)) + j)

✤ *(&a[0][0] + 5*i + j)

Formal Parameter Declarations

✤ When passing a multidimensional array to a function,
all sizes except the first must be specified

✤ e.g., int sum(int a[][5])

✤ The following three versions are equivalent:  
 
int a[][5] int a[3][5] int (*a)[5]

Initializing Multidimensional Arrays

int a[2][3] = {1, 2, 3, 4, 5, 6};

int a[2][3] = {{1, 2, 3}, {4, 5, 6}}

int a[][3] = {{1, 2, 3}, {4, 5, 6}}

Arguments to main()

✤ To pass command-line arguments to main(), we need
to use arrays of pointers

✤ Ex. gcc <filename>

✤ main() can take two arguments:

✤ argc (an int)

✤ argv[] (an array of char *)

argc and argv

✤ argc provides the number of command-line
arguments

✤ argc is always at least 1 (the program name)

✤ argv contains all of the command-line arguments

✤ argv[0] contains the name of the original command

An Example

int main(int argc, char * argv[])

{  
 int i;

 printf(“argc = %d\n”, argc);

 for (i = 0; i < argc; i++)

 printf(“argv[%d] = %s\n”, i, argv[i]);

 return 0;

}

Sample Output

Input: my_echo

Output:

 argc = 1
 argv[0] = my_echo

More Sample Output

Input: my_echo try this

Output:
 argc = 3
 argv[0] = my_echo
 argv[1] = try
 argv[2] = this

More on argv

✤ argv could also have been declared as:  
 
char **argv;

✤ This is a pointer to pointer to char

✤ Alternately, argv is an array of pointers to char (an
array of strings)

✤ The system allocates space for argv

Functions as Arguments

✤ Pointers to functions can be passed as function
arguments, used in arrays, and returned from
functions

✤ We just need to specify the function’s arguments and
return type

✤ The compiler interprets it as a pointer

double my_function(double f(double x), int m, int n)
{
 ...
 int value = f(m);
 ...
}

• The passed function’s parameter name (x) is not strictly necessary  

• We can also make the pointer nature of the function explicit:  
 
double my_function(double (*f)(double), int m, int n)

Pointers and const

✤ Remember that we can use const to qualify a given
variable as a constant

✤ An unqualified pointer may NOT be assigned the
address of a const-qualified variable

✤ We might accidentally try to change the value of the
variable that the pointer points to

More on Pointers and const

✤ To declare that a pointer points to a constant value, add const
to its declaration:  
 
const int a = 7;  
const int *p = &a; /* p points to a constant  
 int */

✤ To make the pointer itself constant:  
 
int a;  
int * const p = &a; /* p can’t be changed, but  
 *p can */

The Last Straw

✤ Finally, consider:  
 
const int a = 7;  
const int * const p = &a;

✤ p is a constant pointer to a constant int

✤ Neither p nor *p can be assigned to, incremented, or
decremented

