Arrays

* Programs often operate on large quantities of similar

data
IHtI’O dllCtiOIl o gf;::&iﬂ:;?:cctm 2 * Assigning a unique variable (and name) to each piece of
. data is tedious
AT rays lﬂ C Stony Brook University

+ Ex. varl, var2, var3, ...

* An array is a collection of many variables of the same
type, all under one name

Declaring An Array Array Elements

+ Individual elements of an array are accessed by using

+ To declar(‘e an array, follow the array name with a size, the array name, followed by an (integer) index value,
enclosed in square brackets: e
double foo[5]; * Ex.myArray[1l]

+ Array sizes must be integer values + Indices are numbered starting with 0

+ Thus, myArray[1] refers to the second element in

* Array sizes must be positive (> 0)
myArray

Array Numbering

* The name of an array (e.g., values) actually refers to
the location in memory where the first array value is
stored

+ The number in brackets (the index) is an offset that
indicates how many elements to jump ahead from the
array beginning

* Ex. values|[3] means three “jumps” from where
values[] beginsin memory

Array Access Examples

int numbers[10];

numbers[0] = 14; /* first element of numbers */

int temp = numbers[5];

numbers[15] = 21; /* what will this do? */

Array Boundaries

+ Remember that the elements of an array are numbered
from 0 to n-1

C will not check to make sure that your program only
accesses valid array elements!

= This means that you can (accidentally) read memory
that doesn’t belong to your array

This is a common programming error

Initalizing Arrays

Arrays can be initialized when they are declared:

dme e[S = 45, 4, 3, 2, 1}

+ If the array size is greater than the number of elements,
the remaining array elements are set to 0:

int oo 200 = 12, 4, 6, S ;

Arrays and Loops

+ Loops (especially for loops) are the perfect way to
manipulate arrays:

ant a5
aljote, kg

sgere (il = Olo ol £ Fo alah)
ali] = it X9

Array Examples

Program 1

+ This program:

* reads in a list of 10 integers
* multiplies them together

* prints their product

“ prints the list in reverse order

Program 1, part 1

#include <stdio.h>

/* constant declarations */
const int SIZE = 10; /* max elements in array */

int main (void)

{

/* Variable declarations */
int values[SIZE]; /* array to hold user input */

int product = 1; /* product of user input */

int i, temp; /* temporary variables */

Program 1, part 2

/* Read in (SIZE) values from the user */
for (i = 0; i < SIZE; i++)
{

printf("Enter a value: ");

scanf (" %d", &temp);

values[i] = temp;

Program 1, part 3

/* Compute the product of the values */
igee (i = @ i € Suding ader))
product = product * values[i];

/* Print the product */
printf("\n\nThe product is %d\n\n", product);

Program 1, part 4

/* Print the list in reverse order */
o (il B S1n = kg ol == 0p ileo))
printf("%d\n", values[i]);

return 0;

Program 2

* This program:

* Generates a list of 200 random integers between 0
and 100

+ Counts the number of times each value occurs

* Prints the number of times each value appears

Program 2, part 1

#include <stdio.h>
#include <stdlib.h>

#include <time.h>

/* Constant declarations */
const int SIZE = 200; /* # of values */
const int RANGE = 101; /* # of possible values */

int main (void)
{

/* Variable declarations */
int values[SIZE], counts[RANGE];

int i, temp; /* temporary variables */

Program 2, part 2

/* Seed the random number generator */

srand(time(0));

/* Generate SIZE random integers */
ifere (i = 0 al K Sudimg aa=p))
{

values[i] = rand() % RANGE;

Program 2, part 3

/* Initialize counts[] */
for (i = 0; i < RANGE; i++)
counts[i] = 0;
/* Count # of occurrences */
iZere (i = @i € Siimgsiasr)
{
temp = values[i];

counts[temp] = counts[temp] + 1;

Program 2, part 4

/* Print # of occurrences */
printf("value\tOccurrences\n\n");
for (i = 0; i < RANGE; i++)
{

printf("%d\t%d\n", i, counts[i]);
}

return 0;

