Multdimensional Arrays,
Command-Line Arguments, and
Functions as Arguments

CSE 130: Introduction to Programming in C

Stony Brook University

Multidimensional Arrays

+ C lets us create arrays of any type
+ This includes arrays of arrays

* Just add a new bracket pair for each additional
dimension: int b[2][7] creates a 14-element array

+ Array elements are stored contiguously in memory
starting at the base address of the array

Two-Dimensional Array Example

< int a[3][5];

% a[i][]] isequivalent to:
+* *(a[i] + J)
 (2(a F 1))[]]

* ((Fla ® 1)) + j)

+ *(&al0)[0] t Ski k)

Formal Parameter Declarations

+ When passing a multidimensional array to a function,
all sizes except the first must be specified

B cpg, int sum(int a(][5])
+ The following three versions are equivalent:

int a[][5] int a[3][5] int (*a)[5]

Initializing Multidimensional Arrays Arguments to main ()

o<

To pass command-line arguments to main (), we need
to use arrays of pointers

int a[2][3]

]

-~

[
~

N
~

w
~

=
~

(6]
~
(o)}
-
~

+ Ex. gcc <filename>

Hnt afi2][3 1, 2 8L fde 5. 6 ;
e A g L + main() can take two arguments:
Botafl sl = ({1, 2, Sk, {4, 5, 64}

< argc (an int)

+ argv[] (an array of char *)

argc and argv An Example

+ argc provides the number of command-line int main(int argc, char * argv[])
arguments {
alione, aLg
+ argc is always at least 1 (the program name) printf(“argc = %d\n”, argc);
for (i = 0; i < argc; ikf)
+ argv contains all of the command-line arguments printf(“argv(#d] = %s\n”, i, argv[i]);

return 0;
+ argv[0] contains the name of the original command }

Sample Output

Input: my echo

Output:
argc = 1
argv[0] = my echo

More Sample Output

Input:my echo try this

Output:
argc = 3
argv[0] = my echo
argv[l] = try

argv[2] = this

More on argv

< argv could also have been declared as:
char **argv;
+ This is a pointer to pointer to char

+ Alternately, argv is an array of pointers to char (an
array of strings)

+ The system allocates space for argv

Functions as Argumcnts

+ Pointers to functions can be passed as function
arguments, used in arrays, and returned from
functions

+ We just need to specify the function’s arguments and
return type

+ The compiler interprets it as a pointer

double my function(double f(double x), int m, int n)

{

int value = f(m);

e The passed function’s parameter name (x) is not strictly necessary
® We can also make the pointer nature of the function explicit:

double my function(double (*f)(double), int m, int n)

Pointers and const

K

Remember that we can use const to qualify a given
variable as a constant

K

An unqualified pointer may NOT be assigned the
address of a const-qualified variable

+ We might accidentally try to change the value of the
variable that the pointer points to

More on Pointers and const

+ To declare that a pointer points to a constant value, add const
to its declaration:

const int a = 7;
const int *p = &a; /* p points to a constant
int */

+ To make the pointer itself constant:
int aj;

int * const p = &a; /* p can’t be changed, but
*p can */

The Last Straw

+ Finally, consider:

const int a = 7;
const int * const p = &a;

% pis a constant pointer to a constant int

+ Neither p nor *p can be assigned to, incremented, or
decremented

