
Functions and
Recursion

CSE 130: Introduction to
Programming in C

Stony Brook University

Software Reuse

❖ Laziness is a virtue among programmers

❖ Often, a given task must be performed multiple times

❖ Instead of (re)writing the code each time, it is more
efficient to write the code once and reuse it as necessary

Functions

❖ A function is a small block of code that can be called
from another point in a program

❖ Functions enable reuse, and can be used to abstract out
common tasks

❖ Ex. computing the factorial of a number

❖ Function effects can be changed by supplying different
input values

Calling a Function

❖ To call a function, write its name, followed by a pair of
parentheses

❖ Ex. rand();

❖ If the function takes any input, those values go inside
the parentheses

❖ Ex. printf(“%d”, value);

Function Arguments

❖ Arguments are pieces of data that are passed into a
function

❖ Different input can produce different results

❖ Arguments can be manipulated, like variables

❖ Arguments are normally passed as copies — changes
are not sent back when the function returns

Return Values
❖ Some functions pass a value back to the place where

they were called

❖ Ex. factorial() sends back an integer value

❖ The return value effectively replaces the function call in
the original expression

❖ int answer = factorial(3);  
becomes  
int answer = 6;

Return Values

❖ If a function returns a value, it must contain a return
statement: 
 
return value;

❖ The return value must match the return type in the
function header!

❖ A function may return any value of the specified type

Function Execution

❖ Only one function can be active at a time

❖ When a function is called, the calling function is put on
hold while the called function executes.

❖ When the called function completes (returns), execution
returns to the calling function

❖ Function calls can be nested (i.e., A calls B, which calls C
— when C completes, B resumes, then returns to A)

Defining a Function

❖ A function definition consists of a function header and a
function body

❖ The function header specifies the return type, name, and
arguments list

❖ The function body is a brace-enclosed set of 0 or more
program statements

General Form

return_type function_name (arguments)
{

 function body
}

Real-world “Functions”

No input Has input

No return value Car Horn? Parking meter

Returns a “value” Tissue box Vending machine

C Function Examples

No input Has input

No return value srand()

Returns a value rand() sqrt()

Class I Functions

❖ No arguments (input)

❖ No output (void return type)

❖ These functions are often used for their side effects
(they change values elsewhere in the program)

Example 1

void printDashedLine ()

{

 printf(“--------------------”);

}

Another Example

void getuserName()

{

 /* side effect: user input is stored in */

 /* name, which is defined elsewhere. */

 printf(“Enter your name: ”);

 scanf(“%s”, name);

}

Example 3

void clearScreen ()

{

 int i;  
 for (i = 0;i < 24; i++)

 {

 printf(“\n”);

 }

}

Class 2 Functions

❖ Accept input, but do not return anything

❖ Again, these functions are used for their side effects

❖ Ex. srand()

An Example

void printSomeStars (int n)

{

 int i;

 for (i = 0;i < n; i++)

 printf(“*”);

 printf(“\n”);

}

Another Example

void print1ToN (int n)

{

 int i;

 for (i = 1;i <= n; i++)

 printf(“%d\n”, i);

}

Class 3 Functions

❖ Do not take any input

❖ Return a value to the calling function

❖ Ex. rand()

An Example

int getYear ()

{

 int value;  
 printf(“Enter the year: ”);

 scanf(“ %d”, &value);

 return value;

}

Class 4 Functions

❖ Take input and return a value

❖ Most functions are of this type

❖ Ex. sqrt()

An Example

int average (int a, int b, int c)

{

 int sum = a + b + c;

 return sum/3;

}

Example 2

int multiply (int first, int second) /* header */

{

 return (first * second); /* body */

}

Another Example

int factorial (int value)

{

 int fac;  
 for (fac = 1; value > 1; value--)

 fac = fac * value;

 return fac;

} /* value is unchanged in the calling ftn */

Scope

Variable Scope

❖ Scope refers to the area of a program for which a
variable is defined

❖ Scope is restricted to the smallest set of curly braces
around the variable

❖ Ex. the function in which a variable is defined

Scope Illustration

int myFunction ()

{

 ...

 int x;

 ... /* x is in scope here */

}

/* x is out of scope here */

Global Variables

❖ A global variable is declared outside of any function

❖ Global variables are accessible from anywhere in a
program

❖ Global variables are used to share data

❖ Constants are usually declared as globals

Global Variables

const float PI = 3.1415926;

int main (void)

{

 float area = PI * 2 * 2;

 ...

}

Scope and Naming

❖ Several variables can have the same name, as long as
they are in different scopes

❖ The most recently-declared variable takes precedence

❖ We say that it shadows the other variable

Same Names

int x = 5; /* x is global */

void foo ()

{
 int x = 10; /* this x shadows the other */

 printf(“%d”, x); /* prints 10 */

}

Storage Classes

Storage Classes

❖ Every variable and function has two attributes: type and
storage class

❖ The storage class determines how memory is allocated

❖ There are four storage classes: auto, extern,
register, and static

The auto Storage Class

❖ This is the most common storage class

❖ Used for variables declared in function bodies

❖ When a block is entered, the system allocates memory
for any variables declared in that block

❖ When a block is exited, the system releases that
memory (and those variable values are lost)

The Extern Storage Class

❖ When a variable is declared outside a function, storage
is permanently assigned for that variable

❖ The variable’s (implicit) storage class is extern

❖ The variable is global to all subsequent function
declarations

❖ extern variables never disappear

Using extern Across Files
File file1.c:
 
int a = 1, b = 2, c = 3; /* external variables */
int f(void);

 
int main(void)  
{

 printf(“%3d\n”, f());

 printf(“%3d%3d%3d\n”, a, b, c);

 return 0;
}

Using extern Across Files, Pt. 2
File file2.c:
 
int f(void)  
{

 extern int a; /* “look for ‘a’ elsewhere” */

 int b, c; /* global b and c are masked */

 a = b = c = 4;

 return (a + b + c);

}

The register Storage Class
❖ Tells the compiler that a variable should be stored in

high-speed memory registers

❖ Used to improve program execution speed

❖ Defaults to automatic if necessary (no CPU registers
are available)

❖ Defaults to the int type

❖ Only treated as advice to the compiler

The static Storage Class

❖ Static declarations allow a variable to retain its value
when its block is re-entered

❖ This is the opposite of automatic variables, which are
destroyed when their block ends and must be re-
initialized when the block is re-entered

static Function Example

void f(void)  
{  
 static int count = 0; /* count is private to f */
 
 ++count;
 
 if (count % 2 == 0)  
 { ... }  
 else  
 { ... }  
}

static As A Protection Mechanism

❖ The static keyword also provides a privacy (scope
restriction) mechanism

❖ The scope of a static external variable is the remainder
of the file in which it’s declared

❖ Static functions are only available within the file in
which they are defined

❖ This can be useful for developing private modules

#define INITIAL_SEED 17
#define MULTIPLIER 25173
#define INCREMENT 13849
#define MODULUS 65536
#define FLOATING_MODULUS 65536.0

static unsigned seed = INITIAL_SEED;

unsigned random(void)
{
 seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;
 return seed;
}

double probability(void)
{
 seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;
 return (seed / FLOATING_MODULUS);
}

Default Initialization

❖ External variables and static variables are automatically
initialized to 0 unless explicitly initialized

❖ Automatic and register variables are NOT automatically
initialized by the system

❖ They start with “garbage” (undefined) values

More Advanced Function Topics

Counting Rabbits

❖ Problem: Given certain properties of breeding pairs of
rabbits, compute the size of a population of rabbits

❖ If we start with one pair of rabbits, how many rabbits
will we have after n months?

Rabbit Rules

❖ All pairs of rabbits are breeding pairs (one male, one
female)

❖ Rabbits reach maturity after two months

❖ Mature rabbits produce a new pair of rabbits (one male,
one female) every month

❖ Rabbits never die, and have no predators

Rabbit Growth Chart

Month # Mature Pairs # Immature Pairs

1 0 1

2 0 1

3 1 1

4 1 2

5 2 3

6 3 4

7 5 8

Rabbit Predictions

❖ Based on this growth model, how many rabbit pairs will
we have in 6 months? In 10? In 20?

❖ Is there a general rule that we can derive?

Population Growth Rules

❖ At the end of n months, the number of pairs of rabbits
will be equal to:

❖ the # of pairs at the end of (n-1) months, plus

❖ the # of pairs at the end of (n-2) months

❖ Thus, rabbit(n) = rabbit(n - 1) + rabbit(n - 2)

Recursive Functions

❖ A recursive function is one that calls itself to solve a
smaller version of the original problem

❖ Ex. rabbit(n) calls rabbit(n - 1)

❖ A final solution is put on hold until the solution to the
smaller problem is computed

Recursion Requirements

❖ In reaching a solution, the problem must first solve a
smaller version of itself

❖ There must be a version of the problem that can be
solved without recursion (this is called the base case)

❖ Ex. rabbit(1) and rabbit(2) have fixed values

❖ A recursive solution may have more than one base case

Notes on Recursion

❖ Some problems lend themselves to elegant recursive
solutions

❖ All recursive solutions can also be restated in iterative
terms

❖ Recursion is not as efficient as iteration

❖ Need for increased storage overhead

❖ Increased time for function calls

Factorial Revisited

int factorial (int value)

{

 if (value <= 1)

 return 1;

 else  
 return value * factorial(value - 1);

}

Seeing Stars

void printStars(int numStars)

{

 if (numStars > 0)

 {

 printf(“*”);

 printStars(numStars - 1);

 }

}

Another Example
/* Ackermann’s function */

int acker (int m, int n)

{

 if (m == 0)

 return n + 1;

 else if (n == 0)  
 return acker(m - 1, 1);

 else  
 return acker(m-1, acker(m,n-1));

}

The Towers of Hanoi

❖ Given a set of discs stacked on one pole, move them to a
second pole, subject to the following rules:

❖ Only one disc can be moved at a time

❖ A larger disc can never be placed on top of a smaller
disc

❖ A third pole can be used as temporary storage

A Recursive Solution

❖ Base case: 1 disc

❖ Move the disc from source to destination

❖ Recursive case: n discs

❖ Move n - 1 discs from source to temp

❖ Move 1 disc from source to destination

❖ Move n - 1 discs from temp to destination

Solution Code, Part 1

void hanoi (int n, int source, int dest, int temp)

{

 if (n == 1) /* base case */

 {

 printf(“Move 1 disc from %d to %d”, source, dest);

 }

Solution Code, Part 2

 else /* recursive case */

 {

 hanoi (n-1, source, temp, dest);  
 printf(“Move 1 disc from %d to %d”, source, dest);

 hanoi (n-1, temp, dest, source);

 } /* end of else clause */

} /* end of function */

