
Stony Brook University

Pointers and Strings
CSE 130: Introduction to Programming in C

Pointer Basics

✤ Remember that every variable occupies some location 
in the computer’s memory

✤ A pointer is a special type of variable that stores the 
memory address of another variable

✤ Pointers are used to access memory and manipulate 
addresses

Pointer Operators

✤ If v is a variable, then &v is the location (address) in 
memory of its stored value

✤ If p is a pointer, then *p is the value of the variable at 
memory location p

✤ The * operator is also used to declare a pointer:  
 
int *p; /* p is a pointer to an int */

Pointer Assignment Examples

int *p;

p = 0;

p = NULL; /* equivalent to p = 0; */

p = &i;   /* “p points to i” */

p = (int *) 1776; /* 1776 is an absolute address in
                     memory */



A Simple Pointer Example

✤ Start with: 
 
int a = 1, b = 2, *p;

✤ p = & a; /* p is assigned the address of a */

✤ b = *p; /* b gets the value pointed to by p */  
 
which is equivalent to b = a;

#include <stdio.h>

int main(void)
{
  int i = 7, *p = &i;

  printf(“Value of i: %d\nLocation of i: %p\n”,
         *p, p);

  return 0;
}

Sample program output:

Value of i: 7
Location of i: effffb24

%p prints an address in a system-specific 
format (usually hexadecimal)
%u prints an address as an unsigned 
decimal integer

Pointer Conversions

✤ Even though pointers all store memory addresses, 
they are not interchangeable!

✤ Conversions are only allowed if the right side is 0, or if 
one of the types is a pointer to void

✤ void * is a generic pointer type

Legal Assignments Illegal Assignments

p = 0; p = 1;

p = (int *) 1; v = 1;

p = v = q; p = q;

p = (int *) q;

int *p;
float *q;
void *v;



Pointer Prohibitions

✤ Not every value is stored in an accessible memory 
location

✤ Do not point at constants (e.g., &3)

✤ Do not point at ordinary expressions (e.g., &(k + 99))

✤ Do not point at register variables

Call-by-Reference

✤ Ordinarily, when a variable is passed as an argument 
to a function, its value is copied and not modified

✤ This is known as “call-by-value”

✤ Pointers can be used to implement “call-by-reference” 
instead, where the original variables are modified

✤ Pass the addresses of variables as the arguments

#include <stdio.h>

void swap (int *p, int *q) /* parameters are pointers */
{
  int tmp = *p;
  *p = *q;
  *q = tmp;
}

int main(void)
{
  int i = 3, j = 5;
  swap(&i, &j);           /* arguments are addresses */
  printf(“%d %d\n”, i, j);
  return 0;
}

Arrays and Pointers

✤ An array name is an address or pointer value

✤ Pointers, like arrays, can be subscripted

✤ An array name, however, is a pointer value that is 
fixed; a regular pointer variable can take different 
addresses as values



Pointer Arithmetic

✤ Suppose a is an array and i is an integer

✤ Then a[i] is equivalent to *(a + i)

✤ The expression a + i is the ith offset from the base 
address of array a

✤ The actual address depends on the type of values 
stored in a

Pointer Arithmetic and Arrays

✤ Assume that an int occupies 4 bytes of memory

✤ Given: int a[100], *p;  
 
p = a; is equivalent to p = &a[0];  
 
and 
 
p = a + 1; is equivalent to p = &a[1];

Two Ways to Sum an Array

for (p = a; p < &a[100]; p++)
{
  sum += *p;
}

for (i = 0; i < 100; i++)
{
  sum += *(a + i);
}

Arrays as Function Arguments

✤ When an array is passed as an argument to a function, 
its base address is passed “call-by-value”

✤ The array elements are not copied

✤ Equivalent function headers:  
 
double sum (double a[], int n) { ... }  
double sum (double *a, int n)  { ... }



Example: Bubble Sort

✤ Bubble sort is a simple algorithm for sorting lists of 
values

✤ It uses multiple passes (rounds) to sort the data

✤ Adjacent pairs of values are compared, and 
reordered as necessary

✤ Each pass guarantees that the largest unsorted 
value will be moved to its proper sorted place

void bubble sort (int a[], int n)
{
  int i, j;

  for (i = 0; i < n - 1; i++)
  {
    for (j = n - 1; j > i; j--)
    {
      if (a[j-1] > a[j])
      {
        swap(&a[j-1], &a[j]);
      }
    }
  }
}

Dynamic Memory Allocation

✤ Sometimes we need to allocate memory for a data 
structure at run-time

✤ We don’t know ahead of time how much space will 
be needed

✤ We can do this using the calloc() (“continuous 
allocation”) and malloc() (“memory allocation”) 
functions from stdlib.h

Using calloc()

✤ calloc() takes two arguments, both of type size_t (an 
unsigned integral type)

✤ calloc(n, el_size) allocates contiguous space for an array 
of n elements, where each element occupies el_size bytes

✤ The space is initialized with all bits set to 0

✤ If the call is successful, a pointer of type void * is returned; 
otherwise, NULL is returned



#include <stdio.h>
#include <stdlib.h>

int main(void)
{
  int *a;
  int n;
  ...
  a = calloc(n, sizeof(int));
  ...
}

Using malloc()

✤ malloc() works in a similar fashion to calloc(), 
but it only takes one argument: the total number of 
bytes to allocate. 
 
a = malloc(n * sizeof(int));

✤ malloc() doesn’t initialize the memory space to 0

Set Me Free!

✤ Memory allocated by malloc() and calloc() is 
NOT automatically released to the system when a 
function exits

✤ The programmer must explicitly release the memory 
using the free() command (and passing in a pointer 
to the memory to be deallocated):  
 
free(a);

Example: Merge Sort

✤ The mergesort algorithm works by repeatedly 
dividing an array in half, sorting the halves, and then 
merging the sorted halves back together.

✤ This is actually much more efficient than bubble sort: 
O(n log n) time rather than O(n2) time for n elements



void merge(int a[], int b[], int c[], int m, int n)
{
  /* c is the destination array, m and n are the sizes
     of a and b */
  int i = 0, j = 0; k = 0;
  while (i < m && j < n) /* both arrays have data */
  {
    if (a[i] < b[j])
      c[k++] = a[i++];
    else
      c[k++] = b[j++];
  }
  while (i < m)          /* collect leftover data */
    c[k++] = a[i++];
  while (j < n)
    c[k++] = b[j++];
}

void mergesort(int key[], int n)
{
  int j, k, *w;

  w = calloc(n, sizeof(int));
  assert(w != NULL); /* check that calloc() worked */

  for (k = 1; k < n; k *= 2)
  {
    for (j = 0; j < n - k; j += 2 * k)
    {
      merge(key + j, key + j + k, w + j, k, k);
    }
    for (j = 0; j < n; j++)
    {
      key[j] = w[j]; /* copy w back into key */
    }
  }
  free(w); /* release memory allocated by calloc() */
}

Strings

✤ A string is a one-dimensional array of type char

✤ Strings are delimited by the end-of-string sentinel \0, or null 
character

✤ Strings effectively have a variable length (determined by the 
position of \0) inside a maximum length (the size of the char 
array)

✤ The array containing a string MUST include storage for the end-
of-string sentinel

String Constants

✤ String constants are written between double quotes

✤ “abc” is a string constant of size 4 (don’t forget the end-of-
string sentinel)

✤ String constants are treated as pointers

✤ char *p = “abc”;  
printf(“%s %s\n”, p, p+1); /* prints abc bc */



String-Handling Functions

✤ char *strcat(char *s1, const char *s2) — 
concatenates s1 and s2, puts the result in s1, and 
returns s1

✤ int strcmp(const char *s1, const char 
*s2) — returns an integer less than, equal to, or 
greater than 0, based on whether s1 is less than, equal 
to, or greater than s2

More String-Handling Functions

✤ char *strcpy(char *s1, const char *s2) — 
Copies characters from s2 into s1 until \0 is 
encountered, then returns s1

✤ size_t strlen(const char *s) — Returns the 
number of characters before \0 in s


