Pointers and Strings

CSE 130: Introduction to Programming in C

Stony Brook University

Pointer Basics

K

Remember that every variable occupies some location
in the computer’s memory

K

A pointer is a special type of variable that stores the
memory address of another variable

K3

Pointers are used to access memory and manipulate
addresses

Pointer Operators

< If v is a variable, then &v is the location (address) in
memory of its stored value

+ If p is a pointer, then *p is the value of the variable at
memory location p

+ The * operator is also used to declare a pointer:

ant *p: /* p is a pointer to an int x/

Pointer Assignment Examples

int *p.

p= 0

p = NULL; /* equivalent to p = 0; */
P = &i; /* “p points to i %/

p = (int *) 1776; /* 1776 is an absolute address in
memory */

A Simple Pointer EExample

+ Start with:

dnt al = 1, b = 9 &ns
« p =& a; /* p is assigned the address of a */
“ b = *p; /* b gets the value pointed to by p */

which is equivalenttob = a;

#include <stdio.h>

int main(void)

{

ant 1= 7, *p = g

printfi(“Value of i: %d\nlLocation of i: Sp\nZ,

*pP, B)7

return 0;

}

Sample program output:

Wailue of d: 7
Location of i: effffb24

$p prints an address in a system-specific
format (usually hexadecimal)

$u prints an address as an unsigned
decimal integer

Pointer Conversions

+ Even though pointers all store memory addresses,
they are not interchangeable!

+ Conversions are only allowed if the right side is 0, or if
one of the types is a pointer to void

* void * is a generic pointer type

dint *p'
flleakt *q;
void *v;

Legal Assignments Illegal Assignments

p=0
p = (it 9l
P=V=d

p=(>nt*)g;

Pointer Prohibitions Call-by-Reference

<

Not every value is stored in an accessible memory

: + Ordinarily, when a variable is passed as an argument
location

to a function, its value is copied and not modified

+ This is known as “call-by-value”

<

Do mist proitie ois ot (o (52 + Pointers can be used to implement “call-by-reference”

instead, where the original variables are modified

<

Do not point at ordinary expressions (e.g., &(k +99))

+ Pass the addresses of variables as the arguments

<

Do not point at register variables

1 e <etdion> Arrays and Pointers

void swap (int *p, int *q) /* parameters are pointers */

{
int tmp = *p;
*p = *q;

*q = tmp;

o

- An array name is an address or pointer value

}

KX

Pointers, like arrays, can be subscripted
int main(void)
{
Rt = 35 = G
swap(&i, &Jj); /* arguments are addresses */
pPrintf(43d 3d\n?, 1, J):

KX

An array name, however, is a pointer value that is
return 0; fixed; a regular pointer variable can take different

} addresses as values

Pointer Arithmetic

% Suppose a is an array and i is an integer
+ Thena[i]isequivalentto *(a + 1)

* The expression a + 1 is the ith offset from the base
address of array a

+ The actual address depends on the type of values
stored in a

Pointer Arithmetic and Arrays

+ Assume that an int occupies 4 bytes of memory
<+ Given: int a[100], *p;

p = a; isequivalenttop = &a[0];

and

p = a + 1;isequivalenttop = &a[l];

Two Ways to Sum an Array

for (p = a; p < &a[100]; pit)
{
sum += *p;

}

ffere (it = 0- i < 100; itt)
{
sum E= x(a o+ i)

}

Arrays as Function Argumcnts

+ When an array is passed as an argument to a function,

its base address is passed “call-by-value”
+ The array elements are not copied

+ Equivalent function headers:

double sum (double a[], int n) {
double sum (double *a, int n) {

[Example: Bubble Sort

+ Bubble sort is a simple algorithm for sorting lists of
values

+ It uses multiple passes (rounds) to sort the data

+ Adjacent pairs of values are compared, and
reordered as necessary

+ Each pass guarantees that the largest unsorted
value will be moved to its proper sorted place

Void bubble sort (int a[], int n)

{

int i, g;:

o (1L = 0: 1 < n — 15 Gt

{
EoE (5 = n — 1s g > 95 5-—)
{
abiz ((Bialll] = gl)
{
swap(&a[j-1], &a[j]);
}
}
}
}

Dynamic Memory Allocation

% Sometimes we need to allocate memory for a data
structure at run-time

+ We don’t know ahead of time how much space will
be needed

+ We can do this using the calloc () (“continuous
allocation”) and malloc () (“memory allocation”)
functions from stdlib.h

Using calloc()

+ calloc() takes two arguments, both of type size_t (an
unsigned integral type)

¢ calloc(n, el_size) allocates contiguous space for an array
of n elements, where each element occupies el_size bytes

¢+ The space is initialized with all bits set to 0

¢ If the call is successful, a pointer of type void * is returned;
otherwise, NULL is returned

#include <stdio.h>
#include <stdlib.h>

int main(void)

Sint:: %o
qdnt ne

a = callec(n, sizeof(int)):

Using malloc()

+ malloc () works in a similar fashion to calloc(),
but it only takes one argument: the total number of
bytes to allocate.

a = malloc(n * sizeof(int));

+ malloc () doesn’tinitialize the memory space to 0

Set Me Free!

% Memory allocated by malloc () and calloc() is
NOT automatically released to the system when a
function exits

+ The programmer must explicitly release the memory
using the free () command (and passing in a pointer
to the memory to be deallocated):

free(a);

Example: Merge Sort

+ The mergesort algorithm works by repeatedly
dividing an array in half, sorting the halves, and then
merging the sorted halves back together.

+ This is actually much more efficient than bubble sort:
O(n log n) time rather than O(n2) time for n elements

Woid merge(int a[], int b], int c[], int m, int n)
{
/* ¢ is the destination array, m and n are the sizes
of a and b */
fint 0 = 0, 5 = 0: k = 05
while (1 < m && j < n) /* both arrays have data */
i
2B (@[] < blii])
clikct=t] = aliittE];
else
clksEt |

b[j++]1;

}

while (i
clktt]

while (j
clktt]

A

m) /* collect leftover data */
allift]:

n)

bt ;

A

void mergesort(int key[], int n)

{

}

tnt g, k, *w:

w = calloc(n, sizeof(int));
assert(w != NULL); /* check that calloc() worked */

for (k= M-k < n: k &= 2

{
o (7 = 0; 5 < n — ke g = 9 Xk
{
merge(key & 5, key & 5 £k, wt 5, ik,)
}
Eor: (6 = 0 o < n; gibh)
{

key[j] = w[j]; /* copy w back into key */
}
}

free(w); /* release memory allocated by calloc() */

Strings

% A string is a one-dimensional array of type char

+ Strings are delimited by the end-of-string sentinel \ 0, or null
character

+ Strings effectively have a variable length (determined by the
position of \0) inside a maximum length (the size of the char
array)

+ The array containing a string MUST include storage for the end-
of-string sentinel

String Constants

String constants are written between double quotes

+ “abc” is a string constant of size 4 (don't forget the end-of-
string sentinel)

String constants are treated as pointers

+ char *p = “abc”;
printf(“%s %s\n”, p, ptl); /* prints abc bc */

String-Handling Functions More String-Handling Functions

+ char *strcat(char *sl, const char *s2) —
concatenates s1 and s2, puts the result in s1, and char *strcpy(char *sl, const char *s2) —
returns s1 Copies characters from s2 into s1 until \0 is

encountered, then returns s1

K

+ int strcmp(const char *sl, const char
*s2) — returns an integer less than, equal to, or size t strlen(const char *s) — Returns the
greater than 0, based on whether s1 is less than, equal number of characters before \0in s
to, or greater than s2

K3

