Enumeration Types f3mumie
and Structures e

Enumeration Types

Enumeration Types

+ Used to:
* name a finite set
+ declare elements of that set (enumerators)
+ Used as programmer-specified constants
“ Ex. enum color {red, blue, green, yellow};

* color is the tag name

Enumerators

+ Enumerators specify the values that variables of the

enumerated type can take on

“ Ex. enum boolean {false, true};

+ These are constants of type int

* By default, they are given the values 0, 1, ...

+ They can also be assigned specific values

Enumeration Type Variables

e enunm collor cl, c2:
* cl and c2 are of type enum color
- Note: the type is enum color, NOT color

* ¢l and c2 can only take on the values red, blue,
green, and yellow:

cl = green;

Initalizing Enumerators

* enum suit {clubs = 1, diamonds, hearts,
spades};

* diamonds, hearts, and spades have the values 2, 3, and 4
respectively

* Uninitialized enumerators are assigned consecutive values,
starting after the last initialized enumerator

+ The values may be duplicated, but the identifiers must be
unique

More Declaration Examples

- enum suit {clubs, diamonds, hearts, spades} a;

+ aisof type enum suit

* If we omit the tag name, then every variable of that type must
be declared as part of the enumeration type:

+ enum {fir, pine} tree;

* No other variables of type enum {fir, pine} canbe
declared

enum move {rock, paper, scissors};
enum outcome {win, lose, tie};

enum outcome result;

if (player == computer)
result = tie;
else
{
switch(player)
{
case paper:
result = (machine == rock) ? win : lose;
break;
case scissors:
result = (machine == paper) ? win : lose;
break;
efc.
}

Structures

The Structure Type

« A structure makes it possible to aggregate components into a
single, named variable

+ Ex. a bank account contains an account #, a balance, an
interest rate, etc.

+ Structure components have individual names, and can be
accessed individually

« A structure is a derived type

“ It's sort of like a primitive/limited class from an object-oriented
language

Declaring a Structure

+ Structure declarations begin with the keyword struct,
followed by a tag name and a brace-enclosed list of
components

* The tag name can be used to declare variables of the
structure’s type

“ The variable type is struct tag-name

Structure Example

struct account /* tag name is account */

!

long number;
float balance;
float interestRate;

struct account myAcct;

Structure Members

+ Members of a structure can be accessed using the structure

“"

member (“.”) operator:

SEEUCE acCOURNE a-
a.balance = 1234.56;
a.number = 8463745;

+ Member names must be unique within the same structure

+ Two different structure types may have identical member
names, though

Structure Declarations

* We can combine a structure definition with variable
declarations

& struct card
{
int value;
char suit;
¥ e, deck[527;

Structure Example 2a

struct fruit

{

char name[15];
int calories;

}i

struct vegetable

|

char name[15];
int calories;

Structure Example 2b

struct fruit a;
struct vegetable b;
a.calories = 35;
b.calories = 45;

Another Example

struct student

{
char *lastName;
int studentID;
char grade;

}i

int fail(struct student class[])

{
int i, count = 0;
ifere (i = 0p i < QuASE SiAze ali=r))
if (class[i].grade == ‘F')
count++;

return count;

Structure Initialization

* A structure variable can be followed by a list of constants
contained within braces

= the remaining members are assigned the value 0
¥ Excstruct card ¢ = {19 icil.
o b Greigtehe smehte stice = {1509

“ We can also name members, as with arrays:

StrEUCE card ' = [wvallue = 570 Ssu it = id L.

Structure Assignment

If a and b are variables of the same structure type, we

can write

as = by

+ Each member of a is assigned the value of the

corresponding value of b

Passing Structures As Function Arguments

void assignValues(struct card c, int p,
char s)
{
c.value = p;
c.suit = s;

Passing Structures

+ When a structure is passed as an argument, it is copied

(because of call-by-value)

= Itis more efficient to pass the address of the structure

instead

+ In this case, use the member access operator -> (a dash

followed by an arrow bracket) to manipulate the
structure’s members:

p —> data = 25;

