
Overview of C, Part 2
CSE 130: Introduction to Programming in C

Stony Brook University

Integer Arithmetic in C
• Addition, subtraction, and multiplication work as you
would expect
• Division (/) returns the whole part of the division (the
quotient)

• 12 / 3 is 4
• 15 / 2 is 7

• Modulus (%) returns the remainder
• 12 % 3 is 0
• 15 % 2 is 1

Shorthand Operators
• Some operators are shortcuts for others

• Ex. +=, -=, *=, /=, %=, ++, and --
• x += 5;  
 
is the same as 
 
x = x + 5;  

• y++;  
 
is the same as 
 
y = y + 1;

The Increment (++) and
Decrement (--) Operators

• When used by themselves, y++ and ++y have identical results
• In an expression, they have different results

• The relative order of the operator matters:  
 
y++: use y’s current value, then increment it 
 
++y: increment y, then use the new value

• The same is true for decrement (--)

Operator Precedence

• Precedence rules specify the order in which operators are
evaluated
• Remember PMDAS:
• Parentheses, Multiplication, Division, Addition, Subtraction

• Associativity determines left-right order

Precedence Examples

• 3 - 8 / 4
• / has the highest precedence, so we compute 8 / 4

first, then subtract the result from 3

• Equivalent expression: 3 - (8 / 4)

What is the value of 3 * 4 + 18 / 2?

Precedence Examples

5 - 3 + 4 + 2 - 1 + 7

• + and - have equal precedence, so this expression is
evaluated left to right: 
 
(((((5 - 3) + 4) + 2) - 1) + 7)

• The innermost parentheses are evaluated first

Parentheses

• Parentheses can be used to force a different order of
evaluation:

• 12 - 5 * 2 produces 2
• (12 - 5) * 2 produces 14

Expression Examples
What do the following expressions evaluate to?

1 + 2 * 3

(1 + 2) * 3

13 % 5

23 % 4 * 6

More Expression Examples
• 27.0 / 6.0 

• 27.0 / 6 

• 27 / 6 

• Given: 
 
int x = 5;
• int y = x++ * 6;
• int y = ++x * 6;

printf() and scanf()
revisited

• Each of these functions takes a list of arguments
(input values):

• a control string

• an optional list of other arguments (data)

• The control string determines how the other
arguments are displayed

Control Strings
• A control string may contain one or more conversion

specifications (formats)

• conversion specifications are replaced (or substituted)
by the arguments that follow the control string, in order

• They begin with a % and end with a conversion character

• For example, the statement 
 
printf(“%s”, “abc”);  
 
will replace “%s” with “abc” in the final output

printf() Conversion Characters

Conversion character How the corresponding argument is printed

c as a character

d as a decimal integer

e as a floating-point number in scientific notation

f as a floating-point number

g in the e-format or f-format, whichever is shorter

s as a string

Three Equivalent Statements

printf(“abc”);

printf(“%s”, “abc”);

printf(“%c%c%c”, ‘a’, ‘b’, ‘c’);

Fields
• A field is the area where an argument is printed

• The field width is the number of characters that make up the field

• Field width can be specified as an integer between the % and the
conversion character

• For example, 
 
printf(“%c%3c%5c”, ‘a’, ‘b’, ‘c’);  
 
will print  
 
a b c

Control Strings for scanf()

• scanf() is used to collect user input from the
keyboard

• It is called with a control string and a list of addresses

• The control string conversion specifiers describe how
the input stream characters should be interpreted

• The addresses correspond to the memory locations
where variables are stored

Parsing Data

• scanf() will skip whitespace (tabs, blanks, and
newlines) when reading in numbers

• Whitespace is NOT skipped when scanf() is
reading in characters

scanf() Conversion Characters

Conversion character How input stream characters are converted

c as a character

d as a decimal integer

f as a floating-point number (float)

lf or LF as a floating-point number (double)

s as a string

#include <stdio.h>

int main(void)
{
 char c1, c2, c3;
 int i;
 float x;
 double y;

 printf(“\n%s\n%s”, “Input three characters,”,
 “an int, a float, and a double: “);

 scanf(“%c%c%c%d%f%lf”, &c1, &c2, &c3, &i, &x, &y);
 printf(“\nHere is the data that you typed in:\n”);
 printf(“%3c%3c%3c%5d%17e%17e\n\n”,
 c1, c2, c3, i, x, y);
 return 0;
}

Return Values

• printf() and scanf() each return an integer
value when they complete

• printf() returns the number of characters
printed, or a negative value if an error occurred

• scanf() returns the number of successful
conversions or the system-defined end-of-value.

Flow of Control

Control Flow

• Normally, C programs are executed sequentially

• We can alter this process using conditionals (which
provide alternative actions) and loops (which
repeat groups of statements)

Conditions
 • Conditional statements execute a test to determine which

path to follow  

 • This test consists of an expression that is evaluated  

 • Normally, this expression compares two or more values  

True and False Values
• Any expression with a non-zero value is considered to
be true

• Ex. 1, 3.14159, -23
• An expression is only false if its value is 0
• Common programming error: using ‘=’ (assignment)
instead of “==” (equality)

• Ex. if (x = 5)

Relational Operators
Operator Meaning Example

< Less than age < 30

> Greater than height > 6.2

<= Less than or equal to taxable <= 20000

>= Greater than/equal to temp >= 98.6

== Equal to grade == 100

!= Not equal to number != 250

The if Statement
• General form: 

if (condition)  
 statement (or block of statements) to be
 executed if condition is true

• Ex.
if (length < 2)  
 printf(“Too short!\n”);

The if-else Statement
• Select one of two possible execution paths,
based on the result of a comparison

General format:
 if (expression)
 statement block 1
 else
 statement block 2

Compound Statements
• if and else only execute a single following statement

• We can get around this by enclosing multiple
statements in curly braces  
• The resulting block is called a compound statement  

• Style suggestion: always use curly braces around the
body of an if or else clause

if (key == ‘F’)

{  
 contemp = (5.0/9.0) * (intemp - 32.0);

 printf(“Converted to Celsius\n”);

}

else

{

 contemp = (9.0/5.0) * intemp + 32.0;
 printf(“Converted to Fahrenheit.\n”);
}

Iterative Programming

• Many programs perform the same task many times
 • Operations are repeated on different data
• Ex.Adding a list of numbers
• Ex. Displaying a menu of options 

• Repetitive tasks are specified using loops

Loop Elements

• All loop constructs share four basic elements:
1.Initialization
2.Testing the loop condition
3.The loop body (the task to be repeated)
4.The loop update

• The order of these elements may vary

Initialization
 • This section of code is used to set starting values  

 • For example, setting a total to 0 initially  

 • This can be done as part of the loop, or separately
before the loop code begins  

Loop Tests

• Test expressions are used to determine whether the

 loop should execute (again)

• Tests compare one value/variable with another

• If the test evaluates to TRUE, then the loop will
execute another time

Loop Update
• This step changes the value(s) of the loop variable(s)

before the loop repeats

• Ex. moving to the next item to process

• This can be done explicitly as part of the loop, or it
can be done inside the loop body

while Loops
• while loops can execute an arbitrary number of

times  

• Order of execution:
1. Initialization
2. Loop condition test
3. Loop body
4. Loop update

General Form
initialization 
while (loop condition test)
{
 loop body
 loop update
}

while Loop Example

int countDown = 5;
while (countDown >= 0)
{
 printf(“%d...”, countDown);
 countDown--;
}

Loop Output

5...4...3...2...1...0...

Another Example

int root = 0;
while (root < 10)
{
 root += 1;
 printf(“%d * %d = ”, root, root);
 printf(“%d\n”, root * root);
}

root output
0 1 * 1 = 1
1 2 * 2 = 4
2 3 * 3 = 9
3 4 * 4 = 16
4 5 * 5 = 25
5 6 * 6 = 36
6 7 * 7 = 49
7 8 * 8 = 64
8 9 * 9 = 81
9 10 * 10 = 100

for Loops

• for loops execute a fixed number of times  

• Order of execution:
1.Initialization
2.Loop condition test
3.Loop body
4.Loop update

General Form

for (initialization ;  
 loop condition test ;  
 loop update)
{
 loop body
}

for Loop Example

int i;
for (i = 0; i < 10; i++)
{
 printf(“%d ”, i);
}

Loop Output

0123456789

Another Example

int nextNumber, i, sum = 0;
for (i = 0; i < 5; i++)
{
 printf(“\nEnter a number: ”);
 scanf(“%d ”, nextNumber);
 sum += nextNumber;
}

i nextNumber sum
- - 0

0 2 2
1 15 17

2 5 22
3 7 29

4 3 32
5 - 32

