
Fundamental Data Types
CSE 130: Introduction to Programming in C
Stony Brook University

Program Organization in C

The C System
■ C consists of several parts:

■ The C language

■ The preprocessor

■ The compiler

■ The library

■ Other tools (editors, debuggers, etc.)

The Preprocessor
■ The preprocessor is a program that scans a source file before it is

compiled

■ The preprocessor makes substitutions in the source file

■ Preprocessor directives (instructions) begin with #

■ For example, #include “stdio.h” tells the preprocessor
to replace that line with a copy of the referenced file

■ Quotes search in the current directory and other system-
dependent places; < > only search in the “other places”

The Standard Library
■ The standard library contains many useful functions that you can include

in your C programs

■ For example, math functions, random numbers, etc.

■ The C compiler knows where to find the (pre-compiled) definitions of
these functions

■ However, your program must still include function prototypes for any
library functions that you use

■ This is generally done by #include-ing the appropriate header (.h)
files

Example: Random Numbers
■ Use the rand() function (found in stdlib.h) to generate random

integer values 
 
printf(“%7d”, rand());

■ If you put this into a program, you’ll find that you program generates the
same “random” values each time it runs

■ To fix this, you must “seed” the random number generator with an ever-
changing value from time.h: 
 
srand(time(NULL)); /* goes at start of code block */

Fundamental Data Types

Variables

■ Remember that variables are named blocks of
memory

■ Variables have two properties:
■name — a unique identifier
■ type — what sort of value is stored

Identifiers
■ Identifiers give unique names to various objects in a program

■ An identifier may contain letters, digits, and the underscore
character (‘_’)

■ An identifier must begin with a letter or _

■ Identifiers should be meaningful (and nouns)

■ Style convention: the second and subsequent words in an
identifier are capitalized

Identifier Examples
■ Good Identifiers 
 
tax_rate  
taxRate  
level4score

■ Bad Identifiers 
 
1stName /* starts with a digit */  
%discount /* contains invalid character */

Keywords
■ Some words may not be used as identifiers
■ These words have special meaning in C

■C has 32 reserved words
■Ex. for, if, while, switch

Reserved Words in C
auto double int struct

break else long switch
case enum register typedef
char extern return union
const float short unsigned

continue for signed void
default goto sizeof volatile

do if static while

Data Types
■ int — stores integer values (ex. 5)

■ float — stores decimal values (ex. 3.14)

■ double — stores larger decimal values than float
(double the precision of a float)

■ char — stores an integer representing a character (ex.‘A’)

■ Also short, unsigned, and long

The char Data Type
■ C variables of any integer type (typically char and int)

may be used to represent characters

■ In some cases, an int is required for technical reasons

■ Character constants (literals) like ‘a’ and ‘+’ are of type
int, not char

■ The char type can also hold small integers

■ char is stored in 1 byte (8 bits) of memory

Manipulating Characters
■ Because characters are inherently integers, we can compare them

using the standard relational operators

■ e.g., to test for a lowercase letter: 
 
if (input >= ‘a’ && input <= ‘z’)

■ We can also perform arithmetic on them: 
 
/* convert lowercase letter to equivalent
uppercase letter */  
c = c - ‘a’ + ‘A’;

Escape Sequences
■ We can use escape sequences to print some hard-to-

print characters

■ A backslash (\) changes the meaning of the character
that follows it

■ e.g., \n means newline, and \t means tab

Interchangeable ints and chars
■ Consider the following code fragment: 
 
char c = ‘a’;  
printf(“%c”, c); /* produces a */  
printf(“%d”, c); /* produces 97 */  
 
printf(“%c%c%c”, c, c+1, c+2); /* produces
abc */  

Memory Representation
■ Computer data is stored as sequences of bits (1s and 0s)

■ Just like in decimal (base 10), each bit position represents a
power of the base (in this case, 2): 
 
2n2n-1...222120

■ Consider the character ‘a’, whose memory representation is
01100001: 
 
0x27 + 1x26 + 1x25 + 0x24 + 0x23 + 0x22 + 0x21 + 1x20

The int Data Type
■ Integers are stored in different sizes of memory blocks on

different platforms

■ e.g., 2 bytes (16 bit systems) or 4 bytes (32-bit systems)
■ This affects the number of values that can be stored
■ Storing too large a value can cause overflow

■ Beware of integer values that begin with a leading 0!
■ 0x precedes a hexadecimal value; 0 precedes an octal value

Floating-Point Types
■ Use float, double, and long double to store real

numbers like 0.001 and 3.14159

■ Use a suffix (f for float, l for long double) to specify
the type of a floating constant; otherwise, it’s a double by
default

■ e.g., 3.19f or 4.62l

■ Exponential notation is also available, e.g. 1.234e5

typedef
■ Use typedef to associate a type with a mnemonic identifier  
 
typedef int INCHES;  
typedef char uppercase;

■ You can then use the identifier to declare a variable or
function

■ typedef lets you abbreviate long declarations or easily
redefine types when porting code to different machines

The sizeof Operator
■ sizeof() returns the number of bytes needed to store an

object (a type or an expression)

■ parentheses are only required when applied to a type

■ sizeof(char) is always 1

■ sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)

■ sizeof(signed) == sizeof(unsigned) == sizeof(int)
■ sizeof(float) <= sizeof(double) <= sizeof(long double)

getchar() and putchar()
■ These are macros from stdio.h that are used to read and print

characters one at a time

■ They work with int values, not char values!

■ stdio.h defines a symbolic constant named EOF that
represents an end-of-file mark

■ For example, to read one character at a time from the keyboard: 
 
while ((c = getchar()) != EOF) { ... }

Mathematical Functions
■ These are generally defined in math.h

■ sqrt(), pow(), exp(), log(), sin(), cos(), tan(), etc.

■ Most of these functions take one argument of type double, and
return a double result

■ pow() takes two double arguments (base and exponent) instead

■ You can use abs() (integer absolute value) and fabs() (floating-
point absolute value) as well

