
AN OVERVIEW OF C
CSE 130: Introduction to Programming in C

Stony Brook University

WHY C?

➤ C is a programming “lingua franca”

➤ Millions of lines of C code exist

➤ Many other languages use C-like syntax

➤ C is “portable”

➤ C compilers exist for most platforms

➤ C is used for embedded systems, operating systems, and
thousands of applications

PROGRAMMING LANGUAGES

➤ Programming language: a form of notation used to describe an
algorithm to a computer

➤ As programmers, we are concerned with:

➤ syntax = the rules of the language

➤ semantics = the meaning of a program

➤ The compiler will only check syntax for you!

TYPES OF ERRORS

➤ Syntax Errors: Incorrect program “grammar”

➤ Run-Time Errors: Illegal operations during execution

➤ e.g., Division by zero

➤ Logic Errors: Incorrect program results

COMPILING A PROGRAM

➤ gcc — the GNU C Compiler

➤ gcc is installed on Sparky

➤ Usage: 
 
sparky% gcc filename.c  
 
sparky% gcc -o name filename.c

➤ Other compilers include Xcode and Microsoft Visual Studio

EXECUTING A PROGRAM

➤ To execute a compiled program on Sparky, type ./filename

➤ For example:
➤ sparky% ./a.out

➤ sparky% ./myprog

A FIRST PROGRAM

/* My first C program */

#include <stdio.h>

int main (void)

{

 printf(“Hello world!\n”);

 return 0;

}

PROGRAM COMPILATION

PUNCTUATION IN C

➤ Statements are terminated with a ; (semicolon)

➤ Groups of statements are enclosed by curly braces: { and }

➤ Commas separate function arguments

➤ Whitespace is ignored (but indentation is recommended as
part of good coding style)

COMMENTS

/* My first C program */
#include <stdio.h>
int main (void)
{
 printf(“Hello world!\n”);
 return 0;
}

 COMMENTS ON COMMENTS

➤ Comments are:

➤ used to document code

➤ ignored by the compiler

➤ delimited by /* and */

➤ required in this class

➤ Comments add value to your code

➤ They explain how and why you are doing something

PREPROCESSING DIRECTIVES

/* My first C program */
#include <stdio.h>
int main (void)
{
 printf(“Hello world!\n”);
 return 0;
}

#INCLUDE STATEMENTS

➤ Our sample program uses a function (piece of code) named
printf()

➤ printf() is defined in a file named stdio.h

➤ The #include statement tells the compiler that it can find
the definition of printf() elsewhere (in stdio.h)

➤ Analogy: the bibliography of a term paper

STANDARD LIBRARIES IN C

➤ Standard libraries contain frequently-used functions for C
programs

➤ Ex. input/output, math functions

➤ stdio.h is the C standard library for input and output
functions

➤ You can also create your own libraries of common code for
your programs

THE C PREPROCESSOR

➤ Files are passed to the preprocessor before they move on to the
compiler

➤ The preprocessor:

➤ strips out comments

➤ makes substitutions for named constants

➤ inserts the contents of #include-d files

➤ Directives to the preprocessor begin with #

THE MAIN () FUNCTION

/* My first C program */
#include <stdio.h>  
int main (void)  
{
 printf(“Hello world!\n”);
 return 0;
}

MORE ON MAIN ()

➤ Program execution begins and ends with the main() function

➤ Program statements are executed sequentially

➤ When all of the statements in main() have been executed,
the program terminates

THE PRINT STATEMENT

/* My first C program */
#include <stdio.h>
int main (void)
{
 printf(“Hello world!\n”);
 return 0;
}

THE printf() STATEMENT

➤ The printf() function:

➤ sends program output to the display

➤ is part of the standard I/O library

➤ Output is specified in a quote-enclosed “control string”

➤ ‘\n’ is a special “newline” character

THE RETURN STATEMENT

/* My first C program */
#include <stdio.h>
int main (void)
{
 printf(“Hello world!\n”);
 return 0;
}

RETURN VALUES

➤ Many functions return values

➤ e.g., a mathematical function

➤ main() returns a value to the operating system to indicate
program status

➤ Here, 0 means “everything completed OK”

PROGRAM STRUCTURE

1.Preprocessor Directives

a. #include-d files

b. Other definitions/declarations

2.Supporting Functions

3.The main() function

EXAMPLE PROGRAM 2

#include <stdio.h>

int main (void)

{

 printf(“Programming is fun.\n”);

 printf(“Doing it in C is even more fun.\n”);

 return 0;

}

EXAMPLE PROGRAM 3

#include <stdio.h>

int main (void)

{

 printf(“Testing...\n..1\n...2\n....3\n”);

 return 0;

}

VARIABLES

➤ Programs use variables to store data

➤ Variables are named blocks of memory

➤ Variables must be declared before use

➤ Different kinds of variables store different kinds of data

➤ integers, floating-point numbers, characters

DECLARING VARIABLES

➤ Variables may be declared with or without an initial value: 
 
int x;  
 
int y = 5;  
 
int z = x;

➤ Variables must be assigned a value before use

VARIABLES AND MEMORY

int a; /* a can hold an int value */

int b = 3; /* b holds the value 3 */

ASSIGNMENTS

➤ Assignments store values in variables

➤ General form: 
 
<target variable> = <expression>;  

➤ “=” means “is assigned the value”, not “is equal to”!!!

➤ Example: area = length * width;

PROGRAM 4

#include <stdio.h>
int main(void)
{
 int feet = 6;
 int inches = feet * 12;
 printf(”%d feet = %d inches”,feet,inches);
 return 0;
}

ANALYSIS OF PROGRAM 4

➤ feet and inches are integer variables

➤ %d is a placeholder for an int variable

➤ Program output: 
 
6 feet = 72 inches

USER INPUT

➤ The printf() function is used to display output on the
screen

➤ The scanf() function is used to read input from the
keyboard

➤ scanf() is also defined in stdio.h

USING scanf()

➤ scanf() reads in data and stores it in one or more variables 
 
int userAge;  
scanf(“ %d”, &userAge);

scanf() USAGE

➤ The first argument (the control string) contains a series of
placeholders

➤ These are like the ones that printf() uses:  
 
%d = int, %f = float, %c = char, etc. 

➤ Spaces are used to separate placeholders and absorb
whitespace 

➤ “ %d” absorbs leading spaces and reads an integer value

scanf() USAGE, PT. 2

➤ The remaining arguments to scanf() are a comma-separated
list of variable names

➤ Input is stored in these variables

➤ Each variable name is preceded by &

➤ &i means “the memory address associated with variable i”

➤ We’ll talk more about this later on

scanf() EXAMPLES

int a, b, c;  
char d;
 
scanf(“ %d %d”, &a, &b);
scanf(“ %c %d”, &d, &c);

