
Flow of Control
Revisited

CSE 130: Introduction to
Programming in C

Stony Brook University

The switch Statement

❖ Long if-else chains can be unwieldy to read and
maintain

❖ The switch statement generalizes the if-else
statement

❖ It specifies different actions (cases) depending on the
value of an integer expression

The switch Statement

switch (expression)

{
 case value : statement(s)  
 case value : statement(s)
 ...

}

switch Execution

1. The integer expression is evaluated

2. Execution jumps to the case statement whose label
matches the expression value

3. Execution continues until a break statement is
encountered (or the switch ends)

❖ Common error: failure to include break

switch Example

switch (labSection)
{
 case 1: printf(“Section 01\n”);
 break;
 case 2: printf(“Section 02\n”);
 break;
 default: printf(“Invalid section\n”);
}

The default Case

❖ The default label denotes statements to be executed if
no case matches the expression value

❖ default is usually the last label in a switch statement

❖ e.g., default: statement(s)

The Conditional Operator

❖ General form: expr_1 ? expr_2 : expr_3 ;

❖ If expr_1 is true, the conditional statement’s value is that
of expr_2; otherwise, its value is that of expr_3

❖ This operator can be confusing to look at

Equivalent Code

if (y < z)
 x = y;
else  
 x = z;

x = (y < z) ? y : z;

do…while Loops

❖ Like while loops, but always execute at least once

❖ Order of execution:

1. Initialization

2. Loop body

3. Loop update

4. Loop condition test

General Form

initialization
do

{
 loop body
 loop update  
} while (loop condition test) ;

do…while Example 1

/* print numbers from 1-15 */
int counter = 1;
do
{
 printf(“%d\n”, counter);
 counter++;
} while (counter < 16);

Loop Output
1
2

3

4
5

…
13

14

15

do…while Example 2

int sum = 0, value = 0;
do
{
 sum += value;
 printf(“\nEnter a # (-1 to quit): ”);
 scanf(“ %d”, value);
} while (value != -1);

Sample Execution

sum value value (at end)

0 0 5

5 5 3

8 3 7

15 7 -1

The goto Statement
❖ goto allows a program to jump to a labeled statement

somewhere in the current function

❖ A label is just an identifier prepended to a C statement:  
 
label-identifier : statement

❖ Use of goto is generally considered a bad practice

❖ Sometimes, it may be useful (for example, to escape a
deeply-nested inner loop)

break And continue

❖ break causes an immediate exit from the innermost
enclosing loop or switch statement

❖ continue causes the current iteration of a loop to stop
and causes the next iteration of the loop to begin
immediately

❖ continue is only used within for, while, and do
loops

