
Web Forms
CSE/ISE 102: Intro to Web Design

Stony Brook University

The Interactive Web

• The Web started out as a collection of
static pages

• Now it's a place where people go to get
things done

• We use forms to handle these
interactions with users

The Parts of a Form

• Every Web form has two parts:

• HTML markup that provides buttons,
input fields, and drop-down menus

• an application or server-side script that
processes form information and
returns some kind of response

Step-by-Step

1. Visitor opens a page with the Web form

2. User enters data into the form fields

3. Browser encodes data, sends it to server

4. Web application processes the data

5. Web application returns a response

6. Server sends response back to browser

The form Element

• form is a container for the form content

• this includes form controls and other
HTML (but not another form!)

• form also has several attributes that are
required for interacting with the server

Sample Form

<form action="/mailinglist.php" method="post">  
<fieldset>  
<legend>Join our e-mail list</legend>  
<p>descriptive text</p>  
  
<label for="firstlast">Name:</label>  
 <input type="text" name="username" id="firstlast">  
<label for="email">E-mail:</label>  
 <input type="text" name="email" id="email">  
  
<input type="submit" value="Submit">  
</fieldset>  
</form>

Form Attributes

•action

• provides URL of the application or
script (action page) that will process the
form

•method

• specifies how the info should be sent

• POST or GET (default)

POST vs. GET
• POST

• browser sends a separate server request
containing special headers and data

• best for sensitive information or lots of data

• GET

• encoded form data is added to URL sent to
server, following a question mark

• www.foo.com/maillist.php?name=Sally&email=...

Variables and Content

• Variables: information collected by the form

• user-entered data is the value/content of the
variable

• name attribute provides the name for a control

• User info is sent to server as name-value pairs

•name=Sally%20Strongarm

• All form control elements MUST include a name

Form Controls

• Text entry controls

• Specialized text entry controls

• Submit and reset buttons

• Radio and checkbox buttons

• Pull-down and scrolling menus

• File selection and upload control

• Hidden controls

Text Entry Controls

• input

• single-line text field

• set type to "text"

• use value to specify default text

• use maxlength to limit the # of
characters that can be entered

Multiline Text Entry

• Use textarea to display a scrollable,
multiline text entry box

• has a closing tag

• can use rows and cols to set size

• wrap attribute specifies whether to
keep or lose line breaks (can be soft or
hard)

Specialized Text Entry

• Password entry field

• use normal input element, but type is
"password"

• obscures whatever is typed there

• Note: does NOT encrypt the
contents!

Submit and Reset Buttons

• Use the input element to add these

• Specify the type as "submit" or "reset"

• The value attribute determines the
button text

Radio Buttons

• Radio buttons only permit a single selection

• use input type "radio"

• name attribute is required

• radio buttons with the same name are
grouped together into a set

• Use a unique value for each button

• the checked attribute sets a default

Checkboxes

• Allow multiple simultaneous selections

• Use input type "checkbox"

• Assign same name, as with radio buttons

• May be set to checked by default

Menus

• More compact than groups of buttons
and checkboxes

• Two forms: drop-down and scrolling

• this depends on size and whether
multiple options can be selected

• Uses the select element

Drop-down Menus

• select displays as a drop-down menu
(or pull-down menu) when size
attribute is set to 1 or omitted

• Use option to identify menu items

• add value attribute to send a
different value to the server

<p>What is your favorite band? 
<select name="Fave"> 
 <option>The Cure</option> 
 <option>Cocteau Twins</option> 
 <option value="DM">Depeche Mode</option> 
 <option>New Order</option> 
</select> 
</p>

Scrolling Menus

• Add a size attribute to select indicating
number of lines to make visible

• Use the multiple attribute to allow
multiple selections

• Add the selected attribute to options to
select them by default

• this can also be used with pull-down menus

Grouping Menu Options

• Use optgroup to create conceptual groups of
elements

• label attribute is required to provide a
heading for the group

<select ...>  
<optgroup label="traditional">  
 <option>...</option>  
</optgroup>  
</select>

File Selection

• Can be used to select a file to upload

• Use the "file" type with input

• If you do this, you must use POST, and
you must set the encoding type (enctype)
to "multipart/form-data" in your form
element

Hidden Controls

• Used to send additional information to
the form-processing application

• Use the "hidden" type with input

• passes a name/value pair to the server

Form Accessibility

• Problem: what about users who are not
using visual browsers?

• Need to clarify the semantic connections
between form components

• label, fieldset, and legend

Labels

• A label associates descriptive text with a
form field

• a label is associated with exactly 1 control

• Implicit association nests the control and
description inside the label element

• this is the only way to label radio buttons
and checkboxes

Labels, part 2

• Explicit association matches the label with the control's
id reference

• uses the for attribute

<label for="username">Login account</label>  
<input type="text" name="login"
id="username">

fieldset and legend

• fieldset indicates a logical group of
form controls

• A fieldset may include a legend
that provides a caption for the contained
fields

<fieldset>  
<legend>Mailing List Sign-up</legend>  
  
 <Label>Add me to your list  
 <input type="radio" name="list"  
 value="yes" checked="checked">  
 </label  
 <label>No thanks <input type="radio"  
 name="list" value="no">  
 </label>  
  
</fieldset>

Form Layout and Design

Usable Forms

• Goal: make the process as smooth as possible

• Avoid unnecessary questions

• Consider impact of label placement

• put labels above their respective fields

• Choose input types carefully

• Group related inputs

• Clarify primary and secondary actions

Styling Forms

• We can use CSS to create a clean form
layout

• e.g., a consistent look

• Form elements can be styled in terms of
colors, dimensions, fonts, and background
effects

• This can be tricky, though...

Available Options

• Text inputs: width, height, background-color, color,
background-image, border, margin, padding

• Textareas: line-height, resize (for resize handles),
plus anything for text input controls

• Button inputs: width, height, margin, padding,
background, box-shadow

• CSS syntax: input[type="submit"]

More Options

• Radio and checkbox buttons: leave these
alone, or use Javascript

• Drop-down and select menus: width,
height, or just leave them to be rendered
as-is by the browser

• Fieldsets and legends: border, background,
margin, padding

ul { list-style-type: none; }

ul li { clear: both; }

form { width: 40em;  
 border: 1px solid #666;  
 border-radius: 10px;  
 box-shadow: .2em .2em .5em #999;  
 background-color: #d0e9f6;  
 padding: 1em;  
 overflow: hidden; }

label { display: block;  
 float: left;  
 width: 10em;  
 text-align: right;  
 margin-right: .5em;}

input.textinput { width: 30em;  
 height: 2em;  
 border: 1px solid #666; }

Next Time

• Form processing with Perl and CGI

