CGl and Perl

CSE/ISE 102: Intro to Web Design (section 02)
Stony Brook University

What is Perl?

* Practical Extraction and Report Language
* developed in 1987 by Larry Wall
* a programming/scripting language
* A perl script consists of a sequence of commands

* these commands are executed sequentially by
the Perl interpreter

What is CGI?

* The Common Gateway Interface

* controls the way a Web server interacts with
external programs (scripts)

* CGI programs can be written in any language

* This is only one of the ways a Web server can
apply customized processing to user data

* e.g., ASP, PHP, Java servlets, server modules

Form Processing

Web Server Form

y

CGl Program Web Browser

The HT TP Protocol

* Hypertext Transfer Protocol

% Governs how the Web server and the client
exchange information

% Uses TCP/IP for a reliable bidirectional
communication channel

HTTP Event Sequence

1.Connection: client opens a connection to a server
2.Query: client sends HTTP request to server
3. Processing: server receives and processes request

4.Response: server sends an HTTP response to
client containing requested resource or result

5.Transaction finished: connection may be closed or
kept open for a follow-up request

HTTP Message Format

initial line (different for query and response)
HeaderKey1: value
HeaderKey?2: value2

Optional message body containing query/response
(Amount and type of data in the body are specified
in headers)

The Query Line

* Query line

* query method name, a server-side path (URI),
and HTTP version number

* GET /path/to/file/index.html HTTP/1.1
% POST /cgi-bin/script.cgi HTTP/1.1

% HEAD /path/to/file/index.html HTTP/1.1

The Response Line

* Version number, status
code, and text J i
description of status RS

% HTTP/1.1 200 OK

% HTTP/1.1 404 il 0 2
Not Found ildi

% There are other status -
codes as well

Sample POST Query

POST /cgi-bin/register-user.cgi HTTP/1.1

HOST: www.SymbolicNet.org

From: jdoe@great.enterprise.com

User-Agent: Netscape 6.2

Content-Type: application/x-www-form-urlencoded
Content-Length: 132

name=John+Doe&address=678+Main+Street&. ..

CGl Program Outline

1. Determine request method and receive input data
2.Decode and check input data
3. Perform tasks

4.Produce output (usually as an HTML document)

Output Formats

* HTML

* Content-Type: text/html
(empty line)
HTML page

* URL

% Location: url

Sparky & CGl

* First, we need to set up your Sparky account

* add a new directory called “cgi-bin” to your
www directory

* In all HTML forms, you will reference your CGl
programs using the URL:

* http://www.sinc.sunysb.edu/cgi-bin/cgiwrap/
rmckenna/???.cqi

* instead of rmckenna use your Sparky login name

—instead of ??? use the name of the cgi script

File Permissions

% Use the Unix command 'chmod' to set file
permissions

* owner, group, and other/world

* Each type of permission is a number in octal
that corresponds to the sum of the permissions
desired

* 4 =read, 2 = write, 1 = execute

* e.d., chmod 755 myFile.txt

CGl Script Permissions

* Your CGl scripts should have permissions 755

* This lets you (the owner) read, modify, and execute
them, but everyone else can only read and execute
them

* in particular, this lets the Web server execute
your scripts

Testing Your Scripts

* To test your scripts before deploying them, run
them from the Unix command line:

* perl hello.cgi
* Put form data after the script name:
* perl hello.cgi name=Mike email=foo@bar.com

* See what output your script produces

A Toy CGI Program

* Consists of two parts:
* An HTML form
* A CGil script that receives/processes form data

* Our sample CGl script will be written in Perl

<form method="post" action="http://www.sinc.sunysb.edu/cgi-
bin/cgiwrap/?2?/hello.cgi">
<table width="400">
<tr> <td><label for="name">Full Name:</label></td>
<td><input id="name" name="name" size="35" /></td>
</tr>
<tr> <td><label for="email">Email:</label></td>
<td><input id="email" name="email" size="35" /></td>
</tr>
<tr> <td></td>
<td><input type="submit" value="Send" /></td>
</tr>
</table>
</form>

This indicates that the Perl interpreter
should be used to process this script

#!/usr/bin/perl

hello.cgi -- a toy CGl program —— Use i# to indicate the

start of a comment

use CGI qw(:standard); ## cgi perl module

var $name = param(‘'name’); The Perl module CG/ makes it
var $email = param(‘'email'); easy to write Perl CGI scripts

These lines declare two variables and
assign them values from the form data

\r\n represents a newline; we
use two of them to add a blank

send response to standard output / line between the content type
print "Content-type: text/htminin\nin"; ~ and the body of the response

print <<END;

<!DOCTYPE html>

<html> This tells the script to
<head> print out everything until

<meta charset="utf-§"> it sees the label "END"

<title>Hello</title>

</head>

<body>

<h1>Hello, $nhame</h1>

<p>The e-mail address you submitted is</p>
<p>$email</p>

</body>

</html> \

END . .
We replace the variable names with
their actual values in the output

CGl Environment Variables

* Allow the the Web server to communicate with the
CGl program

* these are set when the program starts to run

* SERVER_NAME, SERVER_ADDR, PATH,
GATEWAY_INTERFACE, SERVR_ADMIN,
SERVER_SIGNATURE, DOCUMENT_ROOQT,
SERVER_SOFTWARE

Per-Request Variables

* SERVER_PORT, SERVER_PROTOCOL, TZ,
REQUEST_URI, REQUEST_METHOD,
CONTENT_LENGTH, CONTENT_TYPE,
QUERY_STRING, SCRIPT_NAME,
SCRIPT_FILENAME, REMOTE_ADDR

* There are more, but these are the most commonly-
used ones

* To access these in Perl, use $ENV{var_name}

A Quick Perl Tutorial

Script Basics

* Perl scripts should be written using a plain text
editor (TextWrangler, Notepad, Emacs, vim, pico)

* Perl scripts normally use a .pl extension

% Each Perl statement ends with a semicolon

* Statements execute sequentially

Perl| Variables

* Three types: scalar, array (list), and association
array (hash)

* Scalar variables have a $ prefix, and hold a single
value of any type

* $var = 'a string'; # a quoted string
* $x =12;

* $abc = "$var$x"; # 'a string12'

Single vs. Double Quotes

* Single quotes indicate a string of characters
* contents are printed literally
* Double quotes also indicate a string
* substitutions are made for variable names
* Use backslashes to include literal quotes

* \'and \" produce ' and " respectively

Arrays

* Use @ in front of an array variable

* Put starting values in a parenthesized list
* @arr = ("aa", "bb", "cc", "dd");

* Use $ to assign values inside an array
* Positions are numbered starting with O
* $arr[2] = 76; # store 76 in third position

* Assign an array to a scalar to get its length

Aside: Perl Output

* Use print to display output
* print does not add a newline at the end
* Use \n to add a newline to output:

* print "$myVar\n";

Perl Hashes

* A hash is an array with an even number of
elements (key-value pairs)

* Notation: (key1 => value1, key2 => value2, etc.)
* Kkeys serve as indices for the values

% %asso = ("a" => 7, "b" => 11);

% print "S$asso['a']\n" # prints 7

% Sasso{'c'} = 13; # adds 13 to asso

Arithmetic and String
Operators

* Standard arithmetic: + - * /™ %

* $a = $b . $c; # concatenates b and c as strings
* $a = $b x $c; # repeats $b $c times

* Use = to assign values

* Boolean operators: == !=eq ne && || !

Conditional Statements

* if (test)

{ ... }
else # optional
{ ... }

* elsif is also available:

if (test) { ... }
elsif (test2) { ... }
else { ... }

Conditional Execution

% Add a modifier at the end of a statement to make
its execution conditional

* e.g., statement if (test);

% e.g., statement unless (test);

Standard I/O in Perl

* STDIN = standard input (keyboard)
* abbreviated as <>
* STDOUT = standard output (to screen)
* A Perl CGl script receives data by reading STDIN

* read(STDIN, $input, num_characters});

More Perl |/0O

* We can read one line at a time from STDIN:
* $var = <STDIN>;
* $var = <>;
* This leaves the newline at the end

* Use 'chomp' to get rid of trailing newlines:

* chomp($var);

lterations

* Four forms: foreach, while, do-while, and for
* while (test condition) { statements }
* do { statements } while { condition };
* for (initialization; test; update) { statements }

* We'll skip foreach loops for now

Perl Subroutines

* Start with the sub keyword

% sub name

{
}

* Declare subroutines before using them

a sequence of statements

* predeclare them using 'sub name;'

* Call subroutines by their name, followed by ()

Subroutines and Values Next Time

* Input arguments are stored in a special array
named @_

% Use 'return' to send back a value % More Perl examples
* e.g., return $answer;

* this also immediately terminates the subroutine

