
Working With Text

ISE 108: Introduction to Programming

Stony Brook University

Text and Strings
Goal: display information besides
shapes and images

We can do this now with print() and
println()

Problem: that output only appears at
the bottom of the sketchpad, where
it’s hard to read

Solution: find a way to add text to the
program window

2

Fonts and Text
Before we can display any text, we
need to tell Processing what font to
use

A font is a combination of:

a typeface (ex. Times New Roman)

a style (ex. bold or italic)

a point size (ex. 48 point)

3

Fonts and
Processing

Use the PFont type to represent a font

Processing needs to work with a special
font format

We can convert fonts to this format
(.vlw) either before or while we run the
program

If we create the font first, we need to
store it in the sketch’s “data” folder

4

.vlw Font Creation
Use the Tools menu in Processing

Choose “Create font...” from the menu

Select a font and size from the list

Creating a font beforehand allows you
to work with fonts that the user may
not have installed

5

Loading Fonts
To use a pre-existing .vlw font in a
Processing sketch, use loadFont()

loadFont() takes the name of the
font file as its argument

loadFont() returns a PFont object

PFont font =  
 loadFont("FFScala-32.vlw");

6

Creating Fonts at
Run-time

To create a font while your sketch is
running, use createFont()

createFont() requires the font name,
the point size, and a boolean (indicating
whether the font should be smoothed)

 
PFont f =  
createFont(“Courier”, 24, true);

7

Font Creation
Pitfalls

Problem: you can only create a font
“on the fly” if the user has it installed

Solutions:

1.store an original copy of the file (in .ttf
or .otf) format in the “data” folder

2.use PFont.list() to get a list of
fonts installed on the user’s computer

8

Using Fonts
The textFont() command tells
Processing what font to draw with

This is like fill() or stroke() for
drawings

textFont() takes a PFont as input

Processing will use that font until you
call textFont() again to change it

9

Displaying Text
Use the text() command to actually
display text on the screen

text() uses the font set by textFont()

text() takes three arguments:

A String (character sequence) to print

the x and y coordinates where the text
should be displayed

10

// Load the font to use (24-point Courier,

// with anti-aliasing turned on)

PFont f = createFont(“Courier”, 24, true);

// Tell Processing to use this font

// from now on

setFont(f);

// Display text starting at (25, 50)

text(“Hello, world!”, 25, 50);

Aligning Text
Processing lets you change where text
is positioned

textAlign() takes a constant as its
input:

Possible values: LEFT, RIGHT, CENTER

Call textAlign() before text()

Ex. textAlign(CENTER);

12

Strings and Things
The text() command takes a String
as its first argument

A String holds a sequence of characters

String is one of the most frequently
used data types in Processing (and Java)

String has a number of useful helper
methods

13

String Methods
String() — creates a new String

String s = new String(“Hello!”);

Shorthand: String s = “Hello!”;

This shorthand only works for String!

length() — returns the total number of
characters in the String

14

String Adjustments
trim() — returns a new String
with no leading or trailing whitespace

toLowerCase()/toUpperCase()
— return a new copy of the String in
lower/uppercase

All three methods leave the original
String unchanged

Java strings are immutable

15

Extracting Data
From Strings

The positions in a String are
numbered from 0 to (length - 1)

charAt() — returns the character at
a given position (index)

indexOf(str) — returns the first
index at which str occurs in the string
(or -1 if it isn’t there)

16

Extracting Data
From Strings, cont’d

substring(start, end) — returns a
new String containing the characters
from position start up to (but not
including) end

You can also call substring() with
exactly one argument

In this case, it returns everything from
the specified index through the end

17

String Equality
What makes two Strings equal?

Do they have the same length? The
same case? The same characters?

According to Processing,  
 

“abcdef” == “abcdef”  
 
is false (they are not the same).

What gives?

18

Objects & Primitives

19

Remember the difference between primitive
(built-in) types and objects

Primitive variables hold an actual value

Object variables (references) only hold the
address of an object!

This causes problems when we try to
compare two objects

Processing is
Shallow

Processing performs shallow comparisons
by default (using the == operator)

A shallow comparison looks at the value
immediately associated with a variable

This is okay for primitive types

For objects, this means that we compare
their memory addresses, not their contents!

Objects are only “equal” if they live at the
same memory address

20

String Equality
String has methods to test equality
based on content, not memory location

equals() — returns true if two
Strings have the same sequence of
characters

Usage: firstString.equals(secondString)

equals() requires both strings to have
identical capitalization

21

Comparing Strings
compareTo() — compares two strings
for their relative lexicographical ordering

case, then alphabetical, then by length

Usage: firstString.compareTo(secondString)

This method returns an integer value

22

Result Positive 0 Negative

Meaning first > second first == second first < second

Don’t Be So
Sensitive!

Problem: equals() and compareTo()
are case-sensitive

Sometimes, we only want to compare two
Strings by length and/or characters

Processing has two more methods for this
situation:

equalsIgnoreCase()

compareToIgnoreCase()

23

Splitting Strings
Use split() to break up a String into an array of shorter Strings

NOTE: split() is part of Processing, not the String class!

Usage: split (string_to_split, delimiter)
delimiter: the marker that separates “words”

Ex. split(“abc def ghi jkl mno”, “ ”) returns {“abc”, “def”, “ghi”, “jkl”, “mno”}

Reading From A File
Use Processing’s loadStrings() function to read the contents of a text
file

Usage: loadStrings(filename);

Put the file in your sketch’s “data” folder

loadStrings() returns an array of Strings

Each line from the file is a separate String

Saving Data to a File
Use Processing’s saveStrings() function

Usage: saveStrings(filename, array_of_data)

array_of_data is an array of Strings

Each array element becomes a new line in the file

WARNING: If filename already exists, it will be replaced/overwritten!

Getting Online Data
loadStrings() is also Internet-enabled

Instead of a local filename, pass in a URL instead

loadStrings() will retrieve the data from the URL and save it to an array of
Strings

Ex. loadStrings(“http://www.cnn.com/index.html”)

If you know what the format of the result is, you can then use String
methods like indexOf() and substring() to parse it into usable pieces

