
Introduction to Images

ISE 108: Introduction to Programming
Stony Brook University

Why is it called “PImage”
and not just “Image”?

• Processing is based on Java

• Java already has a class
called “Image”

• “PImage” is Processing’s
redefined version of this
class

Images and PImage
The PImage type is used to represent an image in a Processing
program

e.g., PImage myPic;

PImage has two fields (height
and width) that tell us the size
of an image

These fields are constants

We can’t change them to
resize an image!

Loading Images from Disk

Use the loadImage() function to open an image file from disk

loadImage() returns a PImage object

loadImage() takes a String representing the name of the file

e.g., PImage myPic = loadImage(“dog.jpg”);

Image files *MUST* be stored in a directory named “data”
inside your sketch folder

Displaying an Image

To display an image, use the image() function

Usage: image (source, x, y)

source = PImage representing the file/image

x and y: coordinates of the top left corner of the image

Add two more (integer) arguments to specify how wide and tall
the image should be drawn

The image will be scaled/stretched as needed

Image Example

size(400, 400);

PImage pic =
 loadImage(“jesterdog.jpg”);

image(pic, 0, 0);

Image Manipulation

Processing lets us change an image before we display it

Processing defines several basic filters that can modify an
image

We can also create our own image filters

Built-in Image Filters

tint() changes the way an image looks

tint(a) changes the image’s brightness

0 = black, 255 = normal brightness

tint(a, b) affects alpha transparency as well

tint(a, b, c) adjusts the red/green/blue

tint(a, b, c, d) adjusts r/g/b and alpha

Experiments with tint()

tint(100); tint(255, 127);

tint(0,200,255); tint(255,0,0,100);

PImage Properties

The PImage class has two fields (width and height) that tell us
how large an image is

e.g., int numRows = myPic.height

Note that these fields are constants; we can’t change them to
resize an image directly!

Pixel-Perfect Filters
Every PImage has an internal array of pixels

We can directly edit pixel values in this array

The internal array is named pixels

Before we can use this array, we need to fill it by calling
loadPixels():

myPic.loadPixels();

To save our changes, use updatePixels()

This doesn’t modify the original file

Locating a Specific Pixel

We describe pixels by their row and column, but the array
is one-dimensional

If we know the pixel’s location, and the width of the image,
we can use the formula

array index = COLUMN + (ROW * WIDTH)

Pixel Editing

The “pixels” array contains variables of type “color”

We can change a pixel by assigning that pixel a new
color

e.g., pixels[5] = color(120, 34, 170);

We can “automate” this process with a loop

Color Components

Processing provides helper functions to get one component
of a given pixel’s color

red() returns the value of the red component

blue() and green() do the same thing

WARNING: these methods return a float!

e.g., float rValue = red(myPic.pixels[17]);

A Simple Image Filter
// This filter tints an image by removing
// the blue from all of its pixels

PImage myPic = loadImage(“jesterdog.jpg”);

myPic.loadPixels(); // fill the pixels[] array

for (int i = 0; i < myPic.pixels.length; i = i + 1)
{
 // Save original red and green values
 float r = red(myPic.pixels[i]);
 float g = green(myPic.pixels[i]);
 myPic.pixels[i] = color(r, g, 0);
}

myPic.updatePixels(); // “save” the changes

