Text and Strings

= Goal: display information besides
shapes and images

= We can do this now with print() and
println(

1 1 s Problem: that output only appears at
orking Vvith lext put only app
the bottom of the sketchpad, where

it’s hard to read

ISE 108: Introduction to Programming « Solution: find a way to add text to the

Stony Brook University program window

2

Fonts and

Fonts and Text Processing

= Before we can display any text, we
need to tell Processing what font to
use

= Use the PFont type to represent a font

= Processing needs to work with a special
font format

= A font is a combination of: = We can convert fonts to this format

(.vlw) either before or while we run the
program

= a typeface (ex. Times New Roman)

= a style (ex. bold or italic)
= If we create the font first, we need to

=a point size (ex. 48 point) store it in the sketch’s “data” folder

4




vlw Font Creation Loading Fonts

=To use a pre-existing .vlw font in a
Processing sketch, use loadFont ()

= Use the Tools menu in Processing

s Choose “Create font...” from the menu

s loadFont () takes the name of the

= Select a font and size from the list font file as its argument

= loadFont () returns a PFont object
= Creating a font beforehand allows you
to work with fonts that the user may
: PFont font =
not have installed

loadFont ("FFScala-32.v1lw");

6

Creating Fonts at

| Font Creation
Run-time

Pitfalls

= Problem: you can only create a font
“on the fly” if the user has it installed

= To create a font while your sketch is
running, use createFont ()

=createFont () requires the font name,
the point size, and a boolean (indicating
whether the font should be smoothed)

= Solutions:

Lstore an original copy of the file (in .ttf
or .otf) format in the “data” folder
PFont f =

2.use PFont.list () to get alist of
createFont (“Courier”, 24, true);

fonts installed on the user’s computer




Using Fonts Displaying Text

= Use the text () command to actually

s The textFont () command tells
display text on the screen

Processing what font to draw with

« This is like £111 () or stroke() for = text () uses the font set by textFont ()

drawings = text () takes three arguments:

" textFont () takesa PFont as input « A String (character sequence) to print

= Processing will use that font until you

: ) = the x and y coordinates where the text
call textFont () again to change it

should be displayed

I0

// Load the font to use (24-point Courier,

// with anti-aliasing turned on)

Aligning Text

PFont f = createFont(“Courier”, 24, true);

= Processing lets you change where text

// Tell Processing to use this font is positioned
// from now on stextAlign() takes a constant as its
input:

setFont(f);

= Possible values: LEFT, RIGHT, CENTER
ltextAli text

// Display text starting at (25, 50) = Call tex ign() before text ()

text(”Hello, world!”, 25, 50); = Fx. teXtAllgn(CENTER);

12




Strings and Things

= The text () command takes a String
as its first argument

= A String holds a sequence of characters

= String is one of the most frequently
used data types in Processing (and Java)

» String has a number of useful helper
methods

I3

= length () — returns the total number of

String Methods

mString() — creates a new String
String s = new String(“Hello!”);
s Shorthand: String s = “Hello!";

® This shorthand only works for String!

characters in the String

14

String Adjustments

mtrim() — returns a new String
with no leading or trailing whitespace

mtoLowerCase( )/toUpperCase()
— return a new copy of the String in
lower/uppercase

» All three methods leave the original
String unchanged

® Java strings are immutable

15

Extracting Data
From Strings

® The positions ina String are
numbered from 0 to (length - |)

mcharAt () — returns the character at
a given position (index)

® indexOf (str) — returns the first
index at which str occurs in the string
(or -1 if it isn’t there)

16




Extracting Data
From Strings, cont’d

String Fquality

= What makes two Strings equal?

msubstring(start,end) — returns a
new String containing the characters
from position start up to (but not
including) end

= Do they have the same length? The
same case? The same characters?

= According to Processing,

®You can also call substring() with
exactly one argument

“abcdef” == “abcdef”

® |n this case, it returns everything from

is false (they are not the same).
the specified index through the end

= What gives?

17 18

Processing 1s

Shallow

®Processing performs shallow comparisons
by default (using the == operator)

Objects & Primitives

® Remember the difference between primitive
(built-in) types and objects = A shallow comparison looks at the value

immediately associated with a variable
®Primitive variables hold an actual value
= This is okay for primitive types
= Object variables (references) only hold the

address of an object! = For objects, this means that we compare

their memory addresses, not their contents!
= This causes problems when we try to

compare two objects = Objects are only “equal” if they live at the

same memory address

19 20




String Fquality

®String has methods to test equality
based on content, not memory location

mequals () — returns true if two
Strings have the same sequence of
characters

u Usage: firstString.equals(secondString)

= equals () requires both strings to have
identical capitalization

21

Don’t Be So

Sensitive!

= Problem: equals () and compareTo( )
are case-sensitive

= Sometimes, we only want to compare two
Strings by length and/or characters

= Processing has two more methods for this

situation:

=equalsIgnoreCase()

s compareToIgnoreCase()

23

Comparing Strings

mcompareTo () — compares two strings
for their relative lexicographical ordering

® case, then alphabetical, then by length
= Usage: firstString.compareTo(secondString)
#This method returns an integer value

Result Positive 0 Negative

Meaning  first > second  first == second first < second

22

Splitting Strings

i Usage: split (string_to_split, delimiter)
delimiter: the marker that separates “words”

i Use split() to break up a String into an array of shorter Strings

NOTE: split () is part of Processing, not the String class!

Ex. split(“abc def ghi jkl mno”, “ ") returns {“abc”, “def”, “ghi”, “jkI", “mno”}




Reading From A File

== Use Processing’s loadStrings () function to read the contents of a text
file

i=  Usage: loadStrings(filename);
== Put the file in your sketch’s “data” folder

== loadStrings() returns an array of Strings

== Each line from the file is a separate String

Getting Online Data

= loadStrings() is also Internet-enabled
:=  Instead of a local filename, pass in a URL instead

= loadStrings () will retrieve the data from the URL and save it to an array of
Strings

= Ex. loadstrings(“http://www.cnn.com/index.html”)

&= If you know what the format of the result is, you can then use String
methods like index0f () and substring() to parse it into usable pieces

Saving Data to a File

== Use Processing’s saveStrings () function

& Usage: saveStrings(filename, array_of_data)
%= array_of data is an array of Strings

== Each array element becomes a new line in the file

== WARNING: If filename already exists, it will be replaced/overwritten!




