
Fundamental
Concepts

ISE 108: Introduction to Programming
Stony Brook University

Outline of Topics

More useful commands

Conditional statements (chapter 5)

Loops (chapter 6)

Functions (chapter 7)

More Commands

Adding Interaction

void mousePressed ()

If you define this function, it will be called
whenever the user clicks the mouse button

void keyPressed ()

If you define this function, it will be called
whenever the user hits a key on the keyboard

Useful Functions
println(expression)

Prints expression to the screen

ex. println(“Hello”); // prints “Hello” (no quotes)

random(range_size)

Returns a random number between 0 and
(range_size - 1)

ex. random(4) returns a number between 0 and 4

Setting Limits
constrain (variable, min_value, max_value)

Restricts the value of variable to fall between
min_value and max_value

constrain() returns the limited value

frameRate (rate)

Controls the rate at which draw() redraws the screen

The default frame rate is 60 frames per second

Conditionals

Flow of Control

Making Decisions

Many programs must behave differently when
presented with different situations

e.g., choosing an action from a menu,
determining what sales tax rate to charge,
etc.

True and False
Values

A boolean expression is one whose value is either true
or false (but not both!)

Ex. a > b or var1 == var2

Boolean (logical) equality operator: ==

Common programming error: using ‘=’ (assignment)
instead of “==” (equality)

Ex. if (x = 5)

Boolean Operations

Processing makes decisions using boolean logic (i.e.,
values of true and false) and operations

Two special keywords (true and false) are used for
this purpose

Relational operators are used to compare two values

Logical operators combine smaller boolean expressions
into a single, larger expression

Relational Operators
Operator Meaning Example

< Less than age < 30

> Greater than height > 6.2

<= Less than or equal to taxable <= 20000

>= Greater than/equal to temp >= 98.6

== Equal to grade == 100

!= Not equal to number != 250

Logical Operators
&& (logical AND)

true only if BOTH operands are true

|| (logical OR)

true if AT LEAST ONE operand is true (inclusive
OR)

! (logical NOT)

true if operand is false and vice versa

The if Statement

General form:

if (condition)

statement (or block of statements) to be
executed if condition is true

Ex.

if (length < 2)

println(“Too short!\n”);

Examples

if (age < 16)
 println(“Too young to drive!\n”);

if (password.equals(“foo”))
 accessGranted = true;

The if-else Statement
Select one of two possible execution paths, based
on the result of a comparison

General format:

if (expression)

statement block 1

else

statement block 2

More on if Statements
An if statement executes its body when (and only
when) the condition is true

If the condition is false, the body is skipped, and
execution picks up at the first statement after the if

By default, the body of an if statement is restricted to
the first statement that follows the “if (condition)”
line

Indentation doesn’t matter

This can lead to trouble...

Empty Statements
A semicolon by itself is a valid (but non-functional)
statement

Common mistake: putting a semicolon immediately
after an if statement:

if (x > 5);

println(“x greater than 5!”);

With the semicolon, the print statement will execute
regardless of the value of x

Compound Statements

if and else only execute a single following
statement

We can get around this by enclosing multiple
statements in braces

The resulting block is called a compound statement

Style suggestion: always use braces around the
body of an if or else clause

Compound Statements

if (hours > 40)
{
 hours = hours - 40;
 overtimePay = hours * 12.0;
 totalPay = (40 * 8.0) + overtimePay;
}

Nested if Statements

A statement block may contain another if
statement

Ex.

if (income > 25000)

if (deductions < 3500)

tax_rate = 1.035;

if-else Chains

if (expression_1)

statement_1

else if (expression_2)

statement_2

else

statement_3

Loops

Iterative Programming

Many programs perform the same task many times

Operations are repeated on different data

Ex. Adding a list of numbers

Ex. Displaying frames of a movie file

Repetitive tasks are specified using loops

Loop Elements

All loop constructs share four basic elements:

1. Initialization

2. Testing the loop condition

3. Loop body (the task to be repeated)

4. Loop update

Initialization

This section of code is used to set starting values

For example, setting a total to 0 initially

This can be done as part of the loop, or separately
before the loop code begins

Loop Tests

Test expressions are used to determine whether the
loop should execute (again)

Tests compare one value/variable with another

If the test evaluates to TRUE, then the loop will
execute another time

Loop Update

This step changes the value(s) of the loop variable(s)
before the loop repeats

Ex. moving to the next item to process

This can be done explicitly as part of the loop, or it
can be done inside the loop body

while Loops
while loops execute as long as the test condition is
true

Order of execution:

1. Initialization

2. Loop condition test

3. Loop body

4. Loop update (then return to 2)

General Form

initialization

while (loop condition test)

{

loop body

loop update

}

while Loop Example

int countDown = 5;

while (countDown >= 0)

{  
 println(countDown + “...”);

 countDown = countDown - 1;  
}

Loop Breakdown

int countDown = 5;

while (countDown >= 0)

{  
 println(countDown + “...”);

 countDown = countDown - 1;  
}

Loop initialization

Loop test

Loop update

Loop body

Loop Output

5...
4...
3...
2...
1...
0...

Another Example

int root = 0;

while (root < 10)  
{

root = root + 1;

println(root + “ * ” + root + “ = ”  
 + (root * root));

}

Loop Output
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25
6 * 6 = 36
7 * 7 = 49
8 * 8 = 64
9 * 9 = 81
10 * 10 = 100

for Loops

for loops execute a fixed number of times

Order of execution:

1. Initialization

2. Loop condition test

3. Loop body

4. Loop update (then return to 2)

General Form
for (initialization ;

 loop condition test ;

 loop update)  
{

loop body

}

for Loop Example

for (int i = 0; i < 10; i = i + 1)

{

println(i);

}

Loop Breakdown

for (int i = 0; i < 10; i = i + 1)

{

println(i);

}

Loop
initialization

Loop
test

Loop
update

Loop
body

Loop Output
0
1
2
3
4
5
6
7
8
9

Aside: Math Shorthand
Processing (like Java) provides “shorthand” for
common arithmetic expressions

Any expression of the form x = x operator value can be
rewritten as x operator = value

ex. i = i + 3 can be rewritten as i += 3

“++” after a variable means “Add 1 to the variable”

“--” is the same, except it subtracts 1

ex. i++ is the same as i = i + 1

Fancier for Loop
Headers

We can include multiple initialization or update
statements in a loop header

Separate each statement with a comma

Ex. for (i = 0, j = 1; i < 5; i++, j--) { }

Loop update statements don’t have to increase by 1

Ex. for (i = 1; i < 101; i = i + 5) { }

Advanced for Loop
Headers

Loop headers can also include calls to methods

Ex. for (int i = 0; i < numPlayers() ; i++)

A for loop can also omit part of the header

The missing piece must be supplied somewhere else

Ex. for (; i < 5; i++) { }

Pathological example: for (; ;) { }

Choosing a Loop Type

For a fixed number of iterations:

for loops are generally considered the way to go

For a variable number of iterations:

while loops can execute 0 or more times

However, each type of loop can be rewritten as the
other type

Nested Loops

The body of a loop can contain any other type of
statement(s)

This includes other loops

If the outer loop executes n times, and the inner loop
executes m times, the body of the inner loop will
execute (n × m) times

Nested Loop Example
for (int i = 0; i < 4; i++)
{
 for (int j = 0; j < 4; j++)
 {
 // print() is like println(), except it doesn’t
 // go to the next line at the end
 print(“*”);
 }
 println(); // go to next line for next row
}

Example Output

Another Example
int numStars;

for (numStars = 1; numStars < 11; numStars++)  
{

for (int i = 0; i < numStars; i++)

print(“*”); // part of inner loop

println(); // part of outer loop

}

Loop Output
*
**

Functions

What is a Function?

Remember that laziness is a virtue (for programmers)

Always try to avoid writing duplicate code

A function (sometimes called a method) lets us group
related statements together so that they can be reused

Synonyms: procedure, or subprogram

Calling a method tells Processing to execute that code

Calling Functions

To call (invoke) a function, write its name,
followed by left and right parentheses

The function’s input (its arguments) should be
placed inside the parentheses

The parentheses are always needed, even if there
is no input

Function calls are terminated by a semicolon

Defining a Function

A function definition consists of a header and the
function body

The header specifies the function’s return type,
name, and parameter list (in that order)

Ex. int doSomething (int value)

The body is a brace-enclosed set of 0 or more
program statements

All About Arguments
Arguments: pieces of data that are passed to a
function

Inside the function, they are called parameters

Different input can produce different results

Parameters can be manipulated, like variables

Primitive type arguments (int, double, boolean)
are passed as copies — changes are not sent back.

Function Example
int multiply (int first, int second) // header  
{

return (first * second); // body

}

// Return type: int

// Function name: multiply

// Arguments: two int variables

Return Types
A function may return a value to whomever called it

This can be any type of value (int, double, etc.)

General form: return value ;

If a function returns a value, that value must be the
same type as what was declared in the header

NOTE: a function ends IMMEDIATELY after
executing a return statement

Return Type Example

int timesThree (int value) // return type: int

{

// the type of the value that is returned must match  
// the type that was declared in the function header

return (value * 3);

}

A Second Example

int nextEvenMultiple (int i, int j)

{

return i + j - i % j;

}

void Functions
A function can also be void

This means that the function does not return any
value to its caller

A void function has void as its return type

void functions may have side effects

This means that the function does something
visible (like printing something to the screen),
but does not explicitly return any value

void Function Example

void printLineOfStars()

{

println(“**********”); // side effect: prints to the screen

}

// NOTE: void functions don’t need a return statement

