
Pixels and Processing

ISE 108: Introduction to Programming

Stony Brook University

Outline of Topics

• Pixels and Coordinate Systems

• Drawing Simple Shapes

• Introduction to the Processing Environment

• Color

Primitive Shapes

Point Line Rectangle Ellipse

Coordinates

• The screen is like a piece of graph paper

• Each cell is a pixel (“picture element”)

• The origin (0, 0) is at the top left

• x-axis: + is to the right, - is to the left

• y-axis: + is down, - is up

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Points

• Use the point() command to draw a single pixel

• point() takes two integers as input values:

• The x and y coordinates of the pixel

• point() draws a point at the indicated location in the current drawing
color

• Use a semicolon to end the command

• e.g., point(3, 4); draws a point at x: 3 and y: 4

Drawing Lines

• To draw a line, use the line()
command

• Tell line() where the line should
begin and end

• Format: 
 
line(start_x, start_y,  
 end_x, end_y);

line(1,0,4,5);

Rectangles

• To draw a rectangle, you need to
know:

1. the coordinates of its top-left
corner

2. its width (in pixels)

3. its height (in pixels)

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9rect (2, 3, 5, 4);

Ellipses

• Ellipses are drawn in the center
of a bounding box (a rectangle
that encloses all of the ellipse’s
points)

• To draw an ellipse, you need to
know:

1.its center coordinates

2.its width in pixels

3.its height in pixels

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

ellipse (3, 3, 5, 5);

Triangles

• Use the triangle() function to draw a triangle on the screen

• triangle() takes six values: the x and y coordinates of each vertex

• ex. triangle (100, 50, 75, 100, 125, 100);

Canvas Size

• By default, Processing only gives you a small amount of drawing space
(known as the “canvas”)

• The size() command tells Processing how much drawing space you want
to use 
 
size (width_in_pixels , height_in_pixels);

• You must set the canvas size before you draw anything!

• This will normally be the first Processing command in any program you
write

The Processing
Sketchpad

• Use the Sketchpad to write
Processing code

The Processing Sketchpad
• To run your code, click the Play button

• A new window will display the result

Adding Color

• By default, Processing draws black lines and white objects on a gray
background

• We can change the color of the background (canvas)

• We can also change the drawing (pen) color, and the fill color

Color Types

• Color comes in two types: grayscale and RGB

• Grayscale is indicated by an integer between 0 (pure black) and 255
(pure white)

• RGB (Red-Green-Blue) uses three integers between 0 and 255 (one
for each color component)

• e.g., 255 red, 125 green, 8 blue = pumpkin orange

• You can also use Processing’s Color Selector (in the Tools menu)

Grayscale and RGB

Grayscale Value Color

40 =

80 =

120 =

160 =

200 =

240 =

Red Green Blue Color

30 30 30 =

100 30 30 =

50 200 50 =

50 50 150 =

120 100 75 =

175 50 255 =

Canvas Color

• Use the background() command to set the color of the canvas

• In the parentheses, put one integer for grayscale color or three (with commas)
for RGB color

• e.g., background (50);

• e.g., background (255, 0, 255);

My First Program

size(500, 500);

background(200, 100, 100);

rect(100, 200, 200, 150);

Other Color Changes
• stroke() changes line color

• e.g., stroke(255, 0, 0);

• fill() changes the color inside a shape

• e.g., fill(153);

• Note 1: do this BEFORE drawing a shape!

• Note 2: Changing the stroke or fill color affects every line or shape you
draw from that point on (at least, until the next color change)

Comments

• Comments are notes that describe how a program works

• They are only useful for humans; the computer ignores them

• To add a comment, insert two consecutive forward slashes (//) in front of
the comment text

• The comment extends from the slashes until the end of the line

• e.g., // This is a comment

