
Working With Data: 
Variables and Expressions

ISE 108: Introduction to Programming 
Stony Brook University

1

Variables
๏ Variables are the “nouns” of a program 

๏ They represent pieces of information 

๏ Variables come in different types: 

๏ int and long store integers 

๏ char stores single characters (‘a’) 

๏ float and double store decimal values

2

Declarations
๏ Processing requires you to declare a variable before you use it 

๏ This tells Processing what type of behavior to expect from 
that variable 

๏ Declare a variable (tell the compiler that you’re going to use it) 
by writing the type, followed by the name: 

int x; // Declares an integer variable x  
double pi; // pi holds a fractional number

3

Variable Scope
๏ Declaring variables comes with a catch: scope 

๏ A variable’s scope is the region of a program in which it 
is defined (visible) 

๏ Scope is restricted to the smallest set of (matched) curly 
braces that surrounds a variable 

๏ This may be just one function, or the entire program

4



Storing Values in Variables
๏ Use a single ‘=’ to store a value in a variable 

๏ “=” translates to “is assigned the value” 

๏ The left gets the value on the right side: 

x = 5; // Stores the integer value 5 in x"

๏ We can combine assignments with declarations: 

char foo = ‘g’;"

๏ 5 and ‘g’ are literals (actual values)

5

Constants
๏ A constant is a value that cannot change 

๏ To declare a constant, use the keyword final: 

final double PI = 3.1415926;"

๏ By convention, constant names are capitalized 

๏ Strings (sequences of characters enclosed in 
double quotes) are automatically constants.

6

Arithmetic
๏ Basic arithmetic (addition, subtraction, multiplication, 

division) uses the normal order of operations 

๏ Dividing two integers only gives you the quotient 

๏ Use modulus (%) to get the remainder 

๏ e.g., 12 / 7 is 1, and 12 % 7 is 5 

๏ The modulus operation works like “clock arithmetic”

7

The Rules of Arithmetic
๏ In Processing, arithmetic follows two basic rules: 

1.Both operands must be the same type 

2.The answer has the same type as the operands 

๏ If the operands are of different types (e.g., int and float), 
then they must be converted to the same type first 

๏ Smaller types are automatically promoted to larger types 

char << int << long << float << double

8



Type Conversion
๏ A value can always be stored in a variable of a larger (further right) type 

๏ Ex. an int can be stored in a float 

๏ If you want to go the other way (to store a value in a smaller type), you 
must explicitly cast (convert) the value to the desired type: 

int x = (int) 3.14159;"

๏ To cast, precede the value with the new type in parentheses 

๏ Casting may (and often does) lose data; the original value will be 
truncated (for example, a decimal will lose the part after the point). 

๏ Note: Casting a value to an integer does not round the resulting value

9

Conversion Examples
double average = 100.0 / 8.0;"

average = 100.0 / 8;"

average = 100 / 8;"

!

100.0 and 8.0 are both doubles; the result (12.5) is the same type as average. 

100.0 and 8 are different types; 8 is promoted to 8.0, and we proceed as before. 

100 and 8 are both integers, so we perform integer division to get 12. This is 
upcast to 12.0, because average is of type double.

10

Conversion Examples
int sumGrades = 100.0 / 8.0"

sumGrades = (int) 100.0 / 8.0"

sumGrades = (int) (100.0 / 8.0)"

!

Both operands are doubles; their quotient (12.5) is also a double. The double- 
to-int cast must be explicit, so the compiler will report an error. 

100.0 (a double) is cast to an int, but 8.0 is still a double (casting is done before 
arithmetic). 100 is promoted back to 100.0, and the problem remains unchanged. 

In the last case, 100.0 and 8.0 are divided first. The result (12.5) is cast from 
double to an int, losing the .5, and is stored in sumGrades as 12 (no rounding!).

11

Conversion Examples
double fiftyPercent = 50 / 100;"

fiftyPercent = 50.0 / 100.0;"

!

50 and 100 are both integers; dividing them produces 0. 0 is 
converted to a double to match fiftyPercent’s type, and 
the result is 0.0. 

50.0 and 100.0 are both doubles; dividing them gives 0.5 (a 
double). This is stored unchanged in fiftyPercent.

12



Built-in Variables
๏ Processing includes a few special variables that can be 

used for user interaction 

๏ mouseX — contains the current mouse x coordinate 

๏ mouseY — contains the current mouse y coordinate 

๏ pmouseX and pmouseY hold the previous coordinates 

๏ key — stores the value of the last key pressed by the user

13

Next Time
๏ Conditional statements 

๏ if...else"

๏ switch statements 

๏ Repetition statements 

๏ for, while, and do...while loops

14


