
Classes and Arrays

ISE 108: Introduction to Programming
Stony Brook University

The Story So Far...

So far, we’ve learned to write small Processing programs

We can use conditionals, loops, and functions

We also need to use (a lot of) variables

As our programs get larger, we need more and more variables

How do we keep track of everything?

Information Overload

We have too much data to keep track of

e.g., ten different shapes need ten different x coordinates

We need some way to:

Bundle related data together

Avoid having to remember a gazillion* variable names

* gazillion: n. Technical term meaning “far too many”

The Solution

Classes

let us treat related pieces of data as a single entity

let us create more sophisticated program “variables”

Arrays

let us store multiple values of the same type as a single
large block

Classes

Objects

An object is a “bundle” of data (variables) and code
(functions)

An object represents some “thing” in our program

Objects are essentially variables that can:

store multiple pieces of information

do things with that information

Objects Are Self-Managing

An object contains all of the functions (methods,
representing “behavior”) that need to operate on its data
(“attributes”)

This is called encapsulation, meaning that an object is
responsible for managing its own data

An object may hide its contents from other parts of the
program

This protects our data from random changes

Basic Terminology

Class: a description of the structure of an object

Think of a class as the blueprint for a type of object

A class defines a new type of variable for your program

Instance: a specific example from a class

e.g. “a car” (class) vs. “that car over there” (instance)

Classes vs. Instances

Every instance of a given class has the same kind of
information, but different actual values

e.g. every student has an ID number, but each student’s ID
number is unique

The Anatomy of a Class

A class contains two types of elements:

Instance data — variables representing an object’s attributes

Instance methods — methods (code) that define an object’s
behaviors

Each class is defined using the keyword “class”

Curly braces enclose the data and method declarations that
make up the class

Class Definition Example
class Example // defines a new “Example” data type
{
! instance variable declarations go here...

! instance method definitions go here...
}

After you define a class, you can use it as a new variable
type in your programs, just like int, double, etc.

In this case, we can now create new “Example” variables

Creating An Object For Use
To create (instantiate) an object, use the keyword new :

MyClass foo = new MyClass();

“new” invokes an object’s constructor

foo is a reference variable

It holds the memory address of a MyClass object

Classes are stored differently in RAM than “primitive” (built-in)
types like int and double

Constructors

A constructor is a special method (function) that is called to
instantiate (“construct”) a new object

Constructors set the initial values of the object’s data

These values may be defined in the constructor or passed
in as arguments when the object is instantiated

More on Constructors

• A constructor has the same name as the class

• A constructor has NO return type

• If (and only if) no constructors are defined, Processing
provides a class with a default constructor

• This constructor takes no parameters and does not
assign any specific values to the object’s variables

Constructor Example

When we create a new Car
object, we need to supply a
value for the constructor:

Car c = new Car(140);

class Car
{
 // Variables
 int currentSpeed;
 int maxSpeed;
 int mileage;

 // Constructor
 Car (int max)
 {
 maxSpeed = max;
 currentSpeed = 0;
 mileage = 0;
 }
}

Elements of a Class

A class holds instance variables and instance methods

“instance”: each object instance has its own copy

Instance variables are declared like normal variables

Instance methods are functions that belong to the object

They are used to operate on instance variables

Access Modifiers

A class may restrict access to its methods and variables

The keyword public means that something is visible and
accessible inside and outside the class

The keyword private means that a variable or method can
only be seen or used by methods inside the class

If we omit the access modifier, Processing lets us use class
elements from the rest of our program

Technically, this is “package” (not public) access

General Access Guidelines

Programming tip: Always make the variables in your classes
private whenever possible

This prevents unexpected changes from outside

Methods should only be public if other parts of the program
may need to call them; otherwise, they should be private
and kept as internal helper methods

Private methods may only be used by other methods in the
same class

Data

Method

Method

Method

Method

Method

Hidden Methods

Public Methods

Data

Method

Method

Method

Public Methods

Hidden Method

Objects communicate

with one another via

their public methods

Object Interactions

Arrays

Arrays

Programs often use large quantities of similar data

Assigning a unique variable (and name) to each piece of
data is tedious

Ex. var1, var2, var3, ...

An array is a collection of many variables of the same type,
all under one name

Arrays can be of any type

Array Storage

a[0] a[1] a[2] a[3] a[4] a[5]

int[] a = new int[6];

Declaring An Array
To declare an array, follow the type with square brackets:

double[] foo;

To create an array, use new and supply a size:

foo = new double[5];

If this looks like what you do for a class, you’re right;
arrays are actually (specialized) objects

The array size must be a positive integer

Array Size

The size of an array is fixed upon creation

The length field returns an array’s size

int[] a = new int[5];

int size = a.length; // size is 5

Note that length has no parentheses!

It’s a field (variable), not a function/method

Examples
Definitions:

char[] c;

int [] value = new int[10];

End Result:

Array object variable c is un-initialized

Array object variable v references a new ten-element list
of integers

Each of the integers is initialized to 0 by default

Array Examples

char[] alphabet = new char[26];

int numPlayers = 5;

int[] scores = new int[numPlayers];

String[] phrases = new String[15];

Creating Arrays

Arrays can be initialized at declaration:

int [] bar = {5, 4, 3, 2, 1};

The number of items in the initialization list sets the size of
the array

In this example, bar has five elements

The array is filled with the values in the initialization list

Array Elements

Individual elements of an array are accessed by using the
array name, followed by an (integer) index value, enclosed
in brackets

Ex. myArray[1]

Indices are numbered starting with 0

e.g., myArray[1] refers to the second element in
myArray

Arrays and Loops
Loops (especially for loops) are the perfect way to
manipulate arrays:

int [] a = new int[5];

for (int i = 0; i < a.length; i = i + 1)

{

! a[i] = i * 2;

}

