Classes and Arrays

ISE 108: Introduction to Programming
Stony Brook University

Information Overload

® We have too much data to keep track of

@ e.g., ten different shapes need ten different x coordinates
@ We need some way to:

@ Bundle related data together

@ Avoid having to remember a gazillion* variable names

* gazillion: n. Technical term meaning “far too many”

The Story So Far...

@ So far, we've learned to write small Processing programs
@ We can use conditionals, loops, and functions

® We also need to use (a lot of) variables

@ As our programs get larger, we need more and more variables

@ How do we keep track of everything?

The Solution

@ Classes

@ let us treat related pieces of data as a single entity

@ let us create more sophisticated program “variables”
@ Arrays

@ let us store multiple values of the same type as a single
large block

Classes

Objects Are Self-Managing

@ An object contains all of the functions (methods,
representing “behavior”) that need to operate on its data
(“attributes”)

@ This is called encapsulation, meaning that an object is
responsible for managing its own data

@ An object may hide its contents from other parts of the
program

@ This protects our data from random changes

Objects

@ An object is a “bundle” of data (variables) and code
(functions)

@ An object represents some “thing” in our program
@ Objects are essentially variables that can:
@ store multiple pieces of information

@ do things with that information

Basic Terminology

@ Class: a description of the structure of an object
@ Think of a class as the blueprint for a type of object

@ A class defines a new type of variable for your program

@ Instance: a specific example from a class

@ e.g. “acar” (class) vs. “that car over there” (instance)

Classes vs. Instances

@ Every instance of a given class has the same kind of
information, but different actual values

@ e.g. every student has an ID number, but each student’s ID
number is unique

The Anatomy of a Class

@ A class contains two types of elements:
@ Instance data — variables representing an object’s attributes

@ |Instance methods — methods (code) that define an object’s
behaviors

® Each class is defined using the keyword “class”

@ Curly braces enclose the data and method declarations that
make up the class

Class Definition Example

class Example // defines a new “Example” data type

{

instance variable declarations go here...
instance method definitions go here...

}

@ After you define a class, you can use it as a new variable
type in your programs, just like int, double, etc.

@ In this case, we can now create new “Example” variables

Creating An Object For Use

@ To create (instantiate) an object, use the keyword new :
MyClass foo = new MyClass();
@ “new” invokes an object’s constructor
e foo is a reference variable
@ It holds the memory address of a MyClass object

@ Classes are stored differently in RAM than “primitive” (built-in)
types like int and double

Constructors More on Constructors

) .)) A constructor has the same name as the class
@ A constructor is a special method (function) that is called to

instantiate (“construct”) a new object - A constructor has NO return type

@ Constructors set the initial values of the object’s data - If (and only if) no constructors are defined, Processing

.) provides a class with a default constructor
@ These values may be defined in the constructor or passed

in as arguments when the object is instantiated - This constructor takes no parameters and does not
assign any specific values to the object’s variables

Constructor Example Elements of a Class

class Car

{
// Variables
int currentSpeed; @ A class holds instance variables and instance methods

int maxSpeed;
int mileage; ® When we create a new Car @ “instance”: each object instance has its own copy

object, we need to supply a
// Constructor value for the constructor: @ Instance variables are declared like normal variables
Car (int max)

{ @ Instance methods are functions that belong to the object

maxSpeed = max; Car c = new Car(140);

currentSpeed = 0; @ They are used to operate on instance variables
mileage = 0;

Access Modifiers

@ A class may restrict access to its methods and variables

@ The keyword public means that something is visible and
accessible inside and outside the class

e The keyword private means that a variable or method can
only be seen or used by methods inside the class

@ |f we omit the access modifier, Processing lets us use class
elements from the rest of our program

@ Technically, this is “package” (not public) access

Obiject Interactions

Public Methods Public

(" Method

General Access Guidelines

® Programming tip: Always make the variables in your classes
private whenever possible

@ This prevents unexpected changes from outside

® Methods should only be public if other parts of the program
may need to call them; otherwise, they should be private
and kept as internal helper methods

@ Private methods may only be used by other methods in the
same class

Arrays

Arrays

@ Programs often use large quantities of similar data

@ Assigning a unique variable (and name) to each piece of
data is tedious

e Ex.varl, var2, var3, ...

® An array is a collection of many variables of the same type,
all under one name

@ Arrays can be of any type

Array Storage

int[] a = new int[6];

a[0] |a[l] a[2] a[3] a[4] a[5]

Declaring An Array

@ To declare an array, follow the type with square brackets:
double[] foo;

@ To create an array, use new and supply a size:
foo = new double[5];

@ |If this looks like what you do for a class, you’'re right;
arrays are actually (specialized) objects

@ The array size must be a positive integer

Array Size

@ The size of an array is fixed upon creation
@ The length field returns an array’s size
int[] a = new int[5];
int size = a.length; // size is 5
@ Note that 1ength has no parentheses!

@ It’'s afield (variable), not a function/method

Examples

@ Definitions:

char[] c;
int [] value = new int[10];

@ End Result:
@ Array object variable c is un-initialized

@ Array object variable v references a new ten-element list
of integers

@ Each of the integers is initialized to 0 by default

Creating Arrays

@ Arrays can be initialized at declaration:
int [] bar = {5, 4, 3, 2, 1};

@ The number of items in the initialization list sets the size of
the array

@ In this example, bar has five elements

@ The array is filled with the values in the initialization list

Array Examples

char[] alphabet = new char[26];

int numPlayers = 5;

int[] scores = new int[numPlayers];

String[] phrases = new String[1l5];

Array Elements

@ |Individual elements of an array are accessed by using the

array name, followed by an (integer) index value, enclosed
in brackets

® Ex.myArray[1l]
@ Indices are numbered starting with O

@ e.g.,myArray[1] refers to the second element in
myArray

Arrays and Loops

@ Loops (especially for loops) are the perfect way to
manipulate arrays:

int [] a
for (int
{

a[i]

new int[5];

= 0; 1 < a.length; i =1 + 1)

