-ARCHING AN

\
|

D SORTING

ISE 208

(Intermediate Programming)

SUNY at Stony Brook

S5

“ARCHING AN

D SORTING

» Searching and sorting are fundamental operations in

computer programming

» Searching and sorting go hand in hand

« Sorted data is much easier to search

LINEAR SEARCH

* Examine each element in turn to see If it's the one
you're looking for

« On average, you have to examine half of the data set to
find what you're looking for

* Works even if the list is unsorted

» Takes time proportional to O(n) (linear)

* The time needed increases at the same rate as the size
of the data set increases

LIN

AR S

"ARCH CO

public boolean search (int [] list, int value)

{

for (inti = 0;i < listlength; i++)

{

it (hst[1] == value)
return true: // we found our value

)

return false;

)

BINARY SEARCH

» Method: choose an element at random (usually the
middle) and decide whether to search the left or right half

* At each decision point, the space to be searched is cut in
half

* Requires sorted data to work properly
* Very efficient: only needs logy(n) comparisons

* Twice as much data only needs one more step

PSEUDOCOD

It (range contains only one element):

Look for desired value
Else:
|. Get midpoint of range

2. Determine which half of the range is likely to contain
the desired value

3. Repeat the binary search on just that half of the range

BINARY S

* Ex. Find 29

-ARCH

« Start: [10, 13, 14,29, 37]

+ Examine [4:[10, 13][14][29, 37]

+ Find 29: 710, 13, 14] [29] [37]

-XAMPL

BINARY SEARCH CO

// lterative binary search algorithm
/] Search list from indices first-last

public int binSearch (int [] list, int value)

{
int first = O;
last = listlength - |;
int position = -1;
boolean found = false:

while (found && first <= last)

{
int middle = (first + last) / 2;

it (hstfmiddle] == value)
{

found = true;
position = middle;

else If (listfmiddle] > value) // search left

{
last = middle - |;
j
else // search right half
{
first = middle + |:
}

/I Return item position or - | if not found
return position;

10

SORTING TECHNIQUES

- Many sorting techniques exist: bubble sort, insertion sort,
selection sort, mergesort, quicksort, shell sort, radix sort,

etc.

* These techniques differ in their efficiency

» Different sorting techniques take different amounts of
time (and memory/disk space) to sort the same data

» Some sorting algorithms are better (faster) than others
for larger data sets

11

BUBBL

- SORT

* Method: compare pairs of adjacent items, and swap them

i they are "out of order”

* Elements “bubble’ to their proper places

» At the end of each pass, the largest remaining element is

in Its proper place

* This is trivial to implement, but very inefficient

* Each pass may only sort a single value

* For N values, we need (N-1) passes

12

PS

DOCO

e [et N be the number of elements in the data set

e Repeat N-| times:

e Repeat N-| times:

e ITA[X] > A[x*1], swap them

13

BUBBLE SORT

Start: [29, 10, 14,37, 1 3]

After |st pass: [10, 14,29, 13, 37]
After 2nd pass: [10, 14, 13,29, 3/]
After 3rd pass: [10, |3, 14,29, 37]

End: [10, 13, 14,29, 37]

- XAMPL

14

BUBBL

- SORT CO

public void bubbleSort (int [] list)

{

for (int 1= 0;i < listlength-1;i++)

{

for (int k = 0;

{
if (list[k] >

k < listlength-1; k++)

list[k+17)

/I Swap list[k] and list[k+1]

15

INSERTION SORT

* Method: select one element at a time and insert it Into
its proper sorted position

* Begin by dividing the array into two regions: sorted and
unsorted

* For each pass, move the first unsorted item into Its
proper position In the sorted region

* Slightly more efficient than bubble sort, since it swaps
fewer elements per round

16

PSEUDOCOD

|. A[O] 1s sorted; Al |]-A[N-1] are unsorted

2. Repeat N times:

nextltem = first unsorted element

2. Shift sorted elements > nextltem over one position

(AX] = AD1)

3. Insert nextltem into correct position

17

INSERTION SORT

+ Start:[29 [10, 14,37, 13]
« Move 10:[10,29 [14,37, 13"

« Move 14:[10, 14,29 [37, 13"

+ Move 37:[10, 14,29,37 [13"
+ Move 13:7 10, 13,14,29,37][]

*End:[10, 13, 14,29,37]

- XAMPL

18

INSERTION SORT COD

public void insertionSort(int [] list)

{
for (int unsorted = |; unsorted < list.length; unsorted++)
{
int nextlitem = listfunsorted];
int log;
/I Shift larger sorted elements to the right
for (loc = unsorted; (loc > 0) && (list[loc- 1] > nextltem); loc--)
{
list[loc] = list[loc-1];
)
/I Insert nextltem into sorted position
list[loc] = nextltem;
)
)

19

SE

—CTION SORT

* Repeatedly search for the largest unsorted item, and
put It Into Its sorted position

* Again, we divide the data set into unsorted and sorted
regions (the sorted region goes at the end)

+ On each pass, swap the largest unsorted item with the
last unsorted element

* This Is more efficient than bubble and insertion sort;
it only needs one exchange per round

20

PSEUDOCOD

|. Repeat N-1| times:
|. Find the largest (unsorted) element
2. Swap Allast] with Aflargest]

3. Mark the unsorted region as being one element smaller

21

SELECTION SORT EXAMPLE

Start: [29, 10, 14,37, 13][]

After Ist pass:[29, 10, 14, 13][37]
After 2nd pass:[|3, 10, 4][29,37]
After Srd pass: [13, 10][14,29,37]
After 4th pass:[10][|3, 14,29,37]
End:[][10, I3, 14,29,37]

Blue values are unsorted: black values are sorted

22

SELECTION SORT COD

private int iIndexOflargest(int [] A, int size)

{
int currindex, largestSofrar = O;
for (currindex = |; currindex < size; currindex++)
{

it (A[currindex] > AflargestSoFar])
largestSofar = currindex;
)

return largestSofar;

i

23

SELECTION SORT CO

public void selsort (int [] A)

{
for (last = Alength-1;last >= [; last--)

{
int L = indexOflargest(A, last+1);
/I Swap A[L] and Allast]

i
i

= (4)

24

RADIX SORT

* Method: Form groups (based on digits in the same place),
then combine those groups

* l.e, all tems with 3 in the tens place

» This requires d iterations, where d is the number of digits
in the largest element

* Worst-case running time: O(dn)

25

PS

-U

for (| = d down to |):

DOCO

|, Initialize 10 groups to empty

2. for (I = O through N-1):

|. Place A[l] at the end of group K

2. Increment Kth counter

3. Replace A with group O + group | + etc.

26

AN ILLUSTRATION

Start: 0123,2154,0222,0004, 0283, 1560, 1061, 2150
Pass |: 1560, 2150, 1061,0222,0123,0283, 2154, 0004
Pass 2: 0004,0222,0123,2150,2154, 1560, 1061, 0283
Pass 3: 0004, 1061,0123,2150,2154,0222,0283, 1560

Pass 4: 0004,0123,0222,0283, 1061, 1560, 2150, 2154

27

X TRACTING DIGITS

- How do we extract the dth digit of an integer?
» Use a combination of / and %

* Ones digitn % |0

* Tens digit: (n/ 10) % 10

* Hundreds digit: (n/ 100) % 10

28

=X TRACTION COD

/I Extracts the dth digit from val
// ones digit = |, tens digit = 2, etc.
private int extract (int val, int d)

{

nt div = 1;

for (inti1 = I;1 <d;i++)
div *= [0;

return (val / div) % 10;
)

29

