
Advanced Graphics:
Rotation, 3D, and Scaling

ISE 108: Introduction to Programming
Stony Brook University

List of Topics

• Rotation

• Translation: Moving the origin

• Working in Three Dimensions

• Scaling

• Creating your own polygons

• Grouping transformations

Rotation and
Translation

Rotation

• Use rotate() to rotate (spin) a shape

• rotation is clockwise

• rotate() takes one argument: an angle (in
radians)

• Use the radians() command to translate
degrees into radians (2! radians = 360°)

• ex. rotate(radians(45));

Rotation: The Catch

• Rotation moves a shape around the origin

• The origin (coordinates (0, 0)) defaults to
the top-left corner of the window

• This means that rotated objects “swing
down” instead of spinning around their
center

• Solution: move the origin!

Translation

• Translation shifts the origin from the top left corner
to a different location

• Use the translate() function to determine the
new position of the origin

• translate() takes an x-offset and a y-offset

• ex. translate(50, 0) moves origin 50 px right

• Note: this changes where every shape is drawn!

• The origin resets to the top left when draw() restarts

Translation and
Rotation

size(300, 300);

background(50);

fill(150, 200, 150);

translate(150, 150);

rotate(radians(45));

rect(-50, -50, 100, 100); Note: the new origin is at
the center of the shape!

Working in 3D

Adding A Third Dimension

• The third dimension runs along the Z axis

• +Z: out of the screen

• -Z: into the screen

• To make a 3D sketch, we add
an extra argument to size():

size(width, height, P3D);

• “P3D”: use Processing’s 3D renderer

Image credit: http://polymathprogrammer.com/2008/09/01/cartesian-coordinates-and-transformation-matrices/

Translation in 3D

• Translate also accommodates three dimensions

• Just add a third argument to translate():

• translate(50, 100, -30) shifts the origin 50
pixels right, 100 pixels down, and 30 pixels
“away”

• NOTE: 3D translation doesn’t look different
from 2D unless we also rotate the sketch!

Rotation in 3D

• We can rotate a shape around all three axes

• By default, shapes rotate around the Z axis
(which points out of the screen)

• Use rotateX(), rotateY(), and rotateZ()
to specify which axis to rotate around

• rotateZ() is identical to rotate()

3D Shapes

• Processing provides two built-in 3D shapes

• Box — a 3D rectangle

• Syntax: box (width, height, depth)

• Sphere — a 3D circle/ellipse

• Syntax: sphere (radius)

• Use noStroke() to turn off the “facets”/lines
between the pieces that make up the sphere

Stacking
Transformations

Combining Rotations

• Suppose that we want to rotate two shapes
independently of one another

• Problem: rotate() and translate() are
relative to the window’s previous coordinates

• Calling rotate() again causes the second
object to rotate around the first, not the origin

• To solve this, we need to “reset” the window’s
state between rotations, to start “fresh”

Welcome to the Matrix

• Processing uses a matrix (a table of numbers) to
store information about the coordinate system

• Every rotation/translation updates the matrix

• We can save and restore the state of the matrix at
any point

• This lets us “undo” one transformation before we
apply the next

Brief Interlude: Stacks

• A stack stores data in
Last-In, First-Out order

• Push: add a new item
to the top of the stack

• Pop: remove the item
at the top of the stack

• Processing uses a stack
to save copies of the
coordinate matrix

Image source: http://static.dezeen.com/uploads/2008/04/shay_alkalay_stack_1800mm_o.jpg

Repeating History...

• To prevent one transformation from affecting
the rest, we need to reset the coordinate matrix
after working with each shape

• General strategy:

1. Save current state of matrix

2. Perform translation/rotation operations

3. Restore the old version of the matrix

4. Repeat steps 1–3 for the next shape

Matrix Operations

• Use pushMatrix() to save the current state of
the coordinate matrix

• Use popMatrix() to restore the coordinate
matrix to its last saved state

• You must have an equal number of
pushMatrix() and popMatrix() operations

• The stack has an unlimited storage capacity

Scaling and
Polygons

Scaling Images

• Use the scale() function to change the size of
any objects onscreen

• scale() takes a floating-point argument
representing the percentage to scale by

• 1.0 = 100%, 3.0 = 300%, 0.5 = 50%, etc.

• Use two or three arguments to scale by different
amounts in those directions/dimensions

• e.g., scale(1.0, 2.0, 3.0) stretches an object 200%
vertically and 300% in depth

Drawing Your Own Shapes

• Processing allows us to create our own polygons

• Use the vertex() command to set one point

• vertex() takes x, y, and (optional) z coordinates

• Start the definition by calling beginShape()
• End with a call to endShape()

• use endShape(CLOSE) to join the first and last
vertices

Simple Polygon Example

• Drawing a square using vertex():

beginShape();
vertex(50, 50); // top left
vertex(150, 50); // top right
vertex(150, 150); // lower right
vertex(50, 150); // lower left
endShape(CLOSE);

Advanced Polygon
Tricks

• Use curveVertex() instead of vertex() to join
points with curved lines

• beginShape() can take an optional “mode” argument

• This argument affects how vertices are connected

• Modes: TRIANGLES, TRIANGLE_FAN,
TRIANGLE_STRIP, QUADS, QUAD_STRIP, POINTS,
LINES

see http://processing.org/reference/beginShape_.html

Polygon Modes

• Supplying an argument to beginShape() tells
Processing how to treat the vertices it gets

• “TRIANGLES”/“QUADS”: Every group of 3 or 4
vertex points make up a triangle/quadrangle

• Adding “_STRIP”: triangles/quadrangles are
connected by intermediate shapes

• TRIANGLE_FAN: triangles are positioned
around a central point (a common vertex)

