
SEARCHING AND SORTING

ISE 208
(Intermediate Programming)

SUNY at Stony Brook

1

SEARCHING AND SORTING
• Searching and sorting are fundamental operations in

computer programming

• Searching and sorting go hand in hand

• Sorted data is much easier to search

2

LINEAR SEARCH
• Examine each element in turn to see if it’s the one

you’re looking for

• On average, you have to examine half of the data set to
find what you’re looking for

• Works even if the list is unsorted

• Takes time proportional to O(n) (linear)

• The time needed increases at the same rate as the size
of the data set increases

3

LINEAR SEARCH CODE

public boolean search (int [] list, int value)
{
 for (int i = 0; i < list.length; i++)
 {
 if (list[i] == value)
 return true; // we found our value
 }

 return false;
}

4

BINARY SEARCH

• Method: choose an element at random (usually the
middle) and decide whether to search the left or right half

• At each decision point, the space to be searched is cut in
half

• Requires sorted data to work properly

• Very efficient: only needs log2(n) comparisons

• Twice as much data only needs one more step

5

PSEUDOCODE
If (range contains only one element):

Look for desired value

Else:

1. Get midpoint of range

2. Determine which half of the range is likely to contain
the desired value

3. Repeat the binary search on just that half of the range

6

BINARY SEARCH EXAMPLE

• Ex. Find 29

• Start: [10, 13, 14, 29, 37]

• Examine 14: [10, 13] [14] [29, 37]

• Find 29: [10, 13, 14] [29] [37]

7

BINARY SEARCH CODE

// Iterative binary search algorithm
// Search list from indices first-last

public int binSearch (int [] list, int value)
{
 int first = 0;
 last = list.length - 1;
 int position = -1;
 boolean found = false;

8

while (!found && first <= last)
{
 int middle = (first + last) / 2;

 if (list[middle] == value)
 {
 found = true;
 position = middle;
 }

9

 else if (list[middle] > value) // search left
 {
 last = middle - 1;
 }
 else // search right half
 {
 first = middle + 1;
 }

 // Return item position or -1 if not found
 return position;
}

10

SORTING TECHNIQUES

• Many sorting techniques exist: bubble sort, insertion sort,
selection sort, mergesort, quicksort, shell sort, radix sort,
etc.

• These techniques differ in their efficiency

• Different sorting techniques take different amounts of
time (and memory/disk space) to sort the same data

• Some sorting algorithms are better (faster) than others
for larger data sets

11

BUBBLE SORT

• Method: compare pairs of adjacent items, and swap them
if they are “out of order”

• Elements “bubble” to their proper places

• At the end of each pass, the largest remaining element is
in its proper place

• This is trivial to implement, but very inefficient

• Each pass may only sort a single value

• For N values, we need (N-1) passes
12

PSEUDOCODE

• Let N be the number of elements in the data set

• Repeat N-1 times:

• Repeat N-1 times:

• if A[x] > A[x+1], swap them

13

BUBBLE SORT EXAMPLE

Start: [29, 10, 14, 37, 13]

After 1st pass: [10, 14, 29, 13, 37]

After 2nd pass: [10, 14, 13, 29, 37]

After 3rd pass: [10, 13, 14, 29, 37]

End: [10, 13, 14, 29, 37]

14

BUBBLE SORT CODE

public void bubbleSort (int [] list)
{
 for (int i = 0; i < list.length-1; i++)
 {
 for (int k = 0; k < list.length-1; k++)
 {
 if (list[k] > list[k+1])
 // Swap list[k] and list[k+1]
 }
 }
}

15

INSERTION SORT

• Method: select one element at a time and insert it into
its proper sorted position

• Begin by dividing the array into two regions: sorted and
unsorted

• For each pass, move the first unsorted item into its
proper position in the sorted region

• Slightly more efficient than bubble sort, since it swaps
fewer elements per round

16

PSEUDOCODE

1. A[0] is sorted; A[1]-A[N-1] are unsorted

2. Repeat N times:

1. nextItem = first unsorted element

2. Shift sorted elements > nextItem over one position
(A[x] = A[x-1])

3. Insert nextItem into correct position

17

INSERTION SORT EXAMPLE

• Start: [29][10, 14, 37, 13]

• Move 10: [10, 29][14, 37, 13]

• Move 14: [10, 14, 29][37, 13]

• Move 37: [10, 14, 29, 37][13]

• Move 13: [10, 13, 14, 29, 37][]

• End: [10, 13, 14, 29, 37]

18

INSERTION SORT CODE
public void insertionSort(int [] list)
{
 for (int unsorted = 1; unsorted < list.length; unsorted++)
 {
 int nextItem = list[unsorted];
 int loc;

 // Shift larger sorted elements to the right
 for (loc = unsorted; (loc > 0) && (list[loc-1] > nextItem); loc--)
 {
 list[loc] = list[loc-1];
 }

 // Insert nextItem into sorted position
 list[loc] = nextItem;
 }
}

19

SELECTION SORT

• Repeatedly search for the largest unsorted item, and
put it into its sorted position

• Again, we divide the data set into unsorted and sorted
regions (the sorted region goes at the end)

• On each pass, swap the largest unsorted item with the
last unsorted element

• This is more efficient than bubble and insertion sort;
it only needs one exchange per round

20

PSEUDOCODE

1. Repeat N-1 times:

1. Find the largest (unsorted) element

2. Swap A[last] with A[largest]

3. Mark the unsorted region as being one element smaller

21

SELECTION SORT EXAMPLE
Start: [29, 10, 14, 37, 13] []

After 1st pass: [29, 10, 14, 13] [37]

After 2nd pass: [13, 10, 14] [29, 37]

After 3rd pass: [13, 10] [14, 29, 37]

After 4th pass: [10] [13, 14, 29, 37]

End: [] [10, 13, 14, 29, 37]

Blue values are unsorted; black values are sorted
22

SELECTION SORT CODE

private int indexOfLargest(int [] A, int size)
{
 int currIndex, largestSoFar = 0;

 for (currIndex = 1; currIndex < size; currIndex++)
 {
 if (A[currIndex] > A[largestSoFar])
 largestSoFar = currIndex;
 }

 return largestSoFar ;
}

23

SELECTION SORT CODE (2)

public void selSort (int [] A)
{
 for (last = A.length-1; last >= 1; last--)
 {
 int L = indexOfLargest(A, last+1);
 // Swap A[L] and A[last]
 }
}

24

RADIX SORT

• Method: Form groups (based on digits in the same place),
then combine those groups

• i.e., all items with 3 in the tens place

• This requires d iterations, where d is the number of digits
in the largest element

• Worst-case running time: O(dn)

25

PSEUDOCODE

for (J = d down to 1):

1. Initialize 10 groups to empty

2. for (I = 0 through N-1):

1. Place A[I] at the end of group K

2. Increment Kth counter

3. Replace A with group 0 + group 1 + etc.

26

AN ILLUSTRATION

Start: 0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

Pass 1: 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004

Pass 2: 0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283

Pass 3: 0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560

Pass 4: 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

27

EXTRACTING DIGITS

• How do we extract the dth digit of an integer?

• Use a combination of / and %

• Ones digit: n % 10

• Tens digit: (n / 10) % 10

• Hundreds digit: (n / 100) % 10

28

EXTRACTION CODE

// Extracts the dth digit from val
// ones digit = 1, tens digit = 2, etc.
private int extract (int val, int d)
{
 int div = 1;

 for (int i = 1; i < d; i++)
 div *= 10;

 return (val / div) % 10;
}

29

