
Cascading Style Sheets
CSE/ISE 102: Introduction to Web Design (Section 02)

Stony Brook University

Overview of Topics

• CSS Basics

• Formatting Text

• Colors and Backgrounds

• Working with the Box Model

• Page Layout with CSS

• Transitions and Animations

CSS Fundamentals

Why Use Style Sheets?

• Precise type and layout controls

• Less work — one style sheet can control
an entire site's appearance

• More accessible sites — HTML can focus
on meaningful semantic markup

• Reliable browser support

Style Sheets: 1–2–3

1. Mark up your document in HTML

2. Write style rules for different elements

3. Attach the style rules to your document

Document Markup

• Markup creates the
structure of the
document

• Choose elements that
describe content
meaning, not its
appearance

Structure

Presentation

Behavior

Writing Style Rules

• A rule is a style instruction that describes
how an element should be displayed

• Each rule selects an element and declares
how it should look

• A declaration is made up of a property
and its value

• Declarations go inside curly brackets

h1 { color: green; }
 p { font-size: small;
 font-family: sans-serif;
 }

selector { property : value; } selector {
 property1 : value1;
 property2 : value2;
 property3 : value3;
 }

declaration

declaration block

Attaching Styles

• Three techniques:

1. External style sheets (text file with a .css
extension)

2. Embedded style sheets (<style> tags in
the document head)

3. Inline styles

Aside: CSS Comments

• CSS comment syntax uses /* and */ to
surround comment text:

/* this is a comment */

• Comments may span multiple lines

External Style Sheets

• An external style sheet is a plain text
document containing at least one style rule

• it may NOT include any HTML tags

• it should have a .css suffix

• We can link to an external style sheet in
two ways: link and @import

Using link

• Use a link element in the document
head:
<link rel="stylesheet"
 href="/path/to/sheet.css">

• rel always has the value "stylesheet"
when linking to a CSS style sheet

• A document may have multiple links in it

Importing Styles

• Use an @import rule in your <style>
element:

@import url("path/style.css")

• @import must come before any selectors

• An external style sheet may import other
style sheets for a modular structure

Embedded Style Sheets

• Style rules are placed inside <style> tags
in the document head

• Only apply to the current document

<style>
 p { font-size: small; }
</style>

Inline Styles

• Apply to a single element

• Can be used to override styles from an
embedded or external style sheet

• Use the style attribute:

<h1 style="color: red;">Contact</h1>

Big CSS Concepts

• Inheritance

• Conflicting Styles

• The Box Model

• Grouped Selectors

Inheritance

• Styled HTML elements pass down certain
style properties to their "inner" elements

• e.g., em elements inherit p properties

• Think of the document tree as a family tree

• the elements inside a given element are
its descendants

Conflicting Styles

• We can apply several style sheets to the
same document

• different weights apply to various sources
of style information

Which Style Prevails?

• When several style sources vie for control
of a given element, style information
"cascades" down until it is overridden

• Who wins depends on the presence of
various style sheets, specificity, and rule
order

• first choose a style sheet, then look at
the rule level

Style Sheet Hierarchy
• Browser default settings

• User style settings (reader style sheets)

• Linked external style sheets

• Imported style sheets

• Embedded style sheets

• Inline style information

• Author-specified !important style rules

• User-specified !important style rules

Specificity

• Use the selector type to determine who
wins when two or more style rules conflict

• more-specific selectors have more weight

• We'll talk more about this in a bit...

Rule Order

• If there are conflicts between style rules of
identical weight, later rules override earlier
ones:

p { color: red; }
p { color: blue; }
p { color: green; }
/* green is last; it wins */

Assigning Importance

• Add the !important indicator just after
the property value (before the semicolon)
to prevent that rule from being overridden:

p { color: blue !important; }

• !important rules can ONLY be
overridden by !important rules in a
reader style sheet

The Box Model

• Browsers see every page element as being
contained in a little rectangular box

• we apply properties to and can
reposition these boxes on the page

• Block element boxes expand to fill the
window width

• Inline boxes only encompass their own text

Grouped Selectors

• We can combine style rules to apply the
same properties to multiple elements

• use commas to separate the selectors

h1, h2, p {border: 1px
 solid blue; }

Formatting Text

List of Topics

• Font-related properties

• Web fonts and font stacks

• Text line settings and text treatments

• Letter and word spacing

• Selector types and specificity

• Styles for lists

Font Properties

• font-family

• font-size

• font-weight

• font-style

• font-variant

• font (shortcut property)

Specifying a Font Name

• Use the font-family property to specify a
font or list of fonts (font stack) by name

• All font names (except generic families)
must be capitalized

• Use commas to separate multiple names

• Names that include spaces must appear
in quotation marks

body { font-family: Arial; }

var { font-family: Courier,
 monospace; }

p { font-family: "Duru Sans",
 Verdana, sans-serif;}

Font Stacks

• Browsers can only display fonts they have
access to

• If the browser can't find a specified font, it
uses its default font instead

• Use a font stack to provide an ordered list
of backup fonts

Web Fonts

• Can be self-hosted (in multiple formats for
multiple browser types) or use an
embedding service

• Use the @font-face rule in your
stylesheet to define font information
(including the URL) for later use with a
font-family property

Generic Font Families

• Available in all browsers

• Types: serif, sans-serif, monospace, cursive,
fantasy

Font Size

• Can be specified in several ways:

• at a specific size using CSS length units

• at a percentage value (e.g., 150%)

• using an absolute keyword: xx-small, x-
small, small, medium, large, x-large, xx-
large

• using a relative keyword: larger/smaller

Measurement Units

• em — relative unit of measurement (width
of a capital 'M')

• set body element to font-size:
100% and then use ems to resize text
afterward (e.g., 1.5em)

Font Size Keywords

• Default font size is medium

• xx-small, x-small, etc. are scaled in relation
to each other (default size is 16 pixels)

• Can be imprecise and unpredictable across
multiple browsers

Font Weight (Boldness)

• Can be a descriptive term or a numeric
value:

• normal, bold, bolder, lighter

• 100, 200, 300, 400, 500, 600, 700, 800, 900

• 600+ is usually bold text

Font Style and Variant

• font-style can be normal, italic, or
oblique (slanted, not true italics)

• font-variant can be either normal or
small-caps

The font Shortcut

• Use the font property to combine all of the
previous properties into one rule:

{ font: style weight variant
 size/line-height font-family; }

• The property values MUST be supplied in
this order!

font Shortcut
Shortcuts

• At minimum, you need font size and family,
in that order

• other values are optional and may appear
in any order prior to size

p { font: 1em sans-serif; }

Line Height

• If used, line height immediately follows font
size and specifies the height of the text line

• preceded/separated by a slash

e.g., 1.5em/1.8em

Changing Text Color

• The value of the color property can be a
predefined color name or an RGB value

• Predefined colors: black, white, purple,
lime, navy, aqua, silver, maroon, fuchsia,
olive, blue, orange, gray, red, green,
yellow, teal (plus more in CSS 3)

• color technically changes the foreground
of an element (and its border)

More Selectors

• Descendant selectors: selects an element
based on its relation to another element

• spaced list of elements (e.g., li em)

• ID selectors: use # to target elements by
id values (e.g., #abc123)

• Class selectors: use . to target by class
values (e.g., .special or p.special)

Specificity (again)

• List of selector types (most specific to least
specific):

• ID selectors

• Class selectors

• Contextual selectors (e.g., descendants)

• Individual element selectors

Text Line Adjustments

• line-height: can be a number
(multiplier), a percentage, or a length (em)
measurement

• text-indent: indents the first line of a
block (can also create hanging indents)

• text-align: horizontal block alignment:
left, right, center, justify

Decoration and
Transformation

• text-decoration: affects lines around
text (like link underlines)

•none, underline, overline,
line-through

• text-transform: affects capitalization

•none, capitalize, lowercase,
uppercase

Text Spacing

•letter-spacing

•word-spacing

Text Shadows

• text-shadow takes three or four values:

• horizontal offset

• vertical offset

• blur radius (optional, can be 0+)

• shadow color

• Can apply multiple shadows at once

Changing List Bullets

• list-style-type: selects the type of
marker before each list item

• none, disc, circle, square, decimal, decimal-
leading-zero, lower-alpha, upper-alpha,
lower-roman, upper-roman, lower-greek

• list-style-position: inside or
outside the content area

Your Own List Bullets

• Use list-style-image to specify a URL for
your preferred image bullet

list-style-image:
 url(/images/rainbow.gif);

• In case the image doesn't display, the
list-style-type is set to disc by
default

