
CSS Animation
CSE/ISE 102: Introduction to Web Design and Programming

Stony Brook University

Overview of Topics
• CSS Transitions

• CSS Transforms

• CSS Animation

• Reference: Robbins, Chapter 17

Transitions

Transitions
• Transitions allow style changes to fade smoothly

from one to another

• “tweening” fills in the frames between abrupt
changes between states

• This CSS feature is still in flux, so browser prefixes
(-webkit-, -moz-, -o-, -ms-) are needed

Transition Basics
• We need to know five things:

• Which CSS property to change

• How long the transition should take (the duration)

• How the transition accelerates (its timing function)

• Whether there should be a pause (delay) before
starting

• What will trigger the transition (e.g., a state change)

Relevant CSS Properties
• transition-property

• transition-duration

• measured in seconds (s) or milliseconds (ms)

• transition-delay

• also measured in seconds or milliseconds

• transition-timing-function

Timing Functions
• ease

• starts slowly, accelerates quickly, then slows down at the end (default)

• ease-in

• starts slowly, then speeds up

• ease-out

• starts fast, then slows down

• ease-in-out

• similar to ease with less acceleration in the middle

Timing Functions (II)
• linear

• consistent speed

• steps(#, start|end)

• divides change into steps, specifies whether change occurs at
beginning or end of each step

• step-start

• changes in one step at the start of the duration time

• step-end

• changes in one step at the end of the duration

a.smooth 
{ 
 background-color: mediumblue; 
 transition-property: background-color;  
 transition-duration: 0.3s;  
}

a.smooth:hover 
{ 
 background-color: red;  
}

Transition
details

Transition trigger

transition Shorthand
• Use the transition property to combine all of

these properties into a single declaration:  
 
transition: property duration timing-function delay;

• If you provide two time values, the duration must be
listed first

• e.g.,  
 
transition: background-color 0.3s ease-in-out 0.2s;

Multiple Transitions
• Use commas to separate multiple values for each property: 
 
transition-property: background-color, color,
letter-spacing;

• Values are matched up according to their relative positions in the list

• This wraps around if one list has fewer values than the others

• This can be done for the shorthand property as well:  
 
transition: background-color 0.3s ease-out,  
 color 2s ease-in,  
 letter-spacing 0.3s ease-out;

Universal Transitions

• Use “all” for transition-property to apply the
same transition effects regardless of which
property might change  
 
transition: all 0.2s ease-in-out;

Transforms

CSS3 Transforms
• We can rotate, relocate, resize, and skew HTML

elements in 2D and 3D space

• We’ll focus on 2D transformations for the moment

• Transforms work on all major browsers with the
standard browser prefixes

Transformation Types
• Rotation

• Translation

• Scaling

• Skewing

• Matrix transformations (we won’t cover these)

The transform Property

• Format:  
 
transform: function(s);

• When an element transforms, its element box
keeps its original position (like with relative
positioning)

Rotation
• The rotate() function takes an angle specified in

positive or negative degrees  
 
transform: rotate(-10deg);

• By default, the object rotates around its center

• We can change this…

transform-origin
• Use the transform-origin property to set the origin point for

a transformation

• Options: percentage | length | left | center | right | top | bottom

• Use two keywords/values for transform-origin

• Examples (all three are equivalent):

• transform-origin: center top;

• transform-origin: 50% 0%;

• transform-origin: 150px 0;

Translation
• Translation transforms the position of an element

• Comes in three forms:

• translateX(length) — horizontal axis

• translateY(length) — vertical axis

• translate(translateX, translateY) — both axes

• if you only supply one argument to translate(),
it will only translate along the X axis

Scaling
• Scaling changes the size of an element

• Three forms (argument is a unitless number):

• scaleX() — horizontal scaling

• scaleY() — vertical scaling

• scale(x, y) — scales in both directions

• A single argument will be applied to both directions

• Example: transform: scale(2, .5);

Skewing
• Skewing changes the angle of the horizontal or vertical axis (or

both) by a specified number of degrees

• Single arguments to skew() are treated like translate()

• Three forms:

• skewX() — modifies horizontal axis

• skewY() — modifies vertical axis

• skew(x, y) — modifies both axes

• Example: transform: skew(15deg, 30deg);

Applying Multiple Transforms
• You can apply multiple transforms to an element by supplying

multiple functions to the transform property: 
 
transform: rotate(-5deg) scale(1.5)
translate(50px,30px);

• Order matters: translate, rotate gives a different result than
rotate, translate

• If you want to add a new transform to a different state (i.e., a
hover state), you need to repeat all of the original transforms in
addition to the new one

• otherwise, the previous (general) transforms are lost

Smooth Transforms

• We can combine transitions and transforms

• Just use transform as the transition property:  
 
img { transition: transform 0.3s
linear; }

3D Transforms
• CSS3 also includes a way to add space and

perspective to a page through 3D transformations

• We won’t go into excessive detail on this, but we’ll
briefly describe one basic example

• See the Robbins book for links to more detail…

Perspective
• The perspective property tells the browser that

an element’s children should behave as though
they are in a 3D space

• The value is a positive integer that specifies a
distance from the element’s origin on the Z axis

• good values range from 300–1500

• e.g., perspective: 600;

More Perspective Properties

• perspective-origin: left | center | right |
top | bottom | length | percentage

• specifies the position of your eyes relative to the
transformed elements

• backface-visibility: visible | hidden

• determines whether the reverse side of the
element is visible when it spins around

3D Transform Functions
• translate3d()

• translateZ()

• scale3d()

• scaleZ()

• rotate3d()

• rotateX()

• rotateY()

• rotateZ()

Animation

Keyframe Animation
• Keyframe animation lets you specify multiple states along

the path of a transition or animation

• each keyframe is a “point along the way” that specifies
the beginning or end of a segment of animation

• CSS transitions are two-keyframe animations

• Animation is a complex topic; we will only discuss a
simple example here

• See the book for links to good tutorials

The Basic Process

• Start by defining your keyframes (animation
segments) with a @keyframes rule

• Then add animation properties to the elements that
will be animated in each keyframe

• Let’s see an example…

Basic Keyframe Syntax

@keyframes animation-name
{
 keyframe { property: value; }
 keyframe { property: value; }
}

Establishing The Keyframes

@keyframes colors
{
 0% { background-color: red; }
 20% { background-color: orange; }
 40% { background-color: yellow; }
 60% { background-color: green; }
 80% { background-color: blue; }
 100% { background-color: purple; }
}

Adding Animation Properties
• These are very similar to the transition properties we’ve already seen:

• which animation to use, how long it should take, how it should
accelerate, whether to pause before it starts

• Other properties:

• how many times it should repeat (animation-iteration-count)

• whether it plays forward, in reverse, or alternate directions
(animation-direction)

• whether it should be running or paused (animation-play-state)

• A shorthand animation property is also available

#magic
{
 animation-name: colors;
 animation-duration: 5s;
 animation-timing-function: linear;
 animation-iteration-count: infinite;
 animation-direction: alternate;
}

or:

#magic
{
 animation: colors 5s linear infinite
alternate;
}

Next Time

• More CSS Techniques

• Robbins, Chapter 18

• Introduction to JavaScript

• Robbins, Chapters 19–20

