
CSS Techniques
CSE/ISE 102: Introduction to Web Design and Programming

Stony Brook University

Topics We’ll Cover
• CSS Reset

• Image Replacement

• CSS Sprites

• Styling Tables

• Basic Responsive Web Design

• Web Fonts
Reference: Robbins, Chapter 18

CSS Reset

A Clean Slate

• Remember that browsers have their own built-in
stylesheets (user-agent style sheets)

• These style sheets’ settings vary from browser to
browser, and can affect your own styles through
inheritance

Starting Fresh
• A CSS reset is a collection of style rules that

override all user agent styles and provide a neutral
starting point

• One example is Eric Meyer’s “Reset CSS” tool,
available at 
http://meyerweb.com/eric/tools/css/reset/

• Just place a copy of these styles at the start of
your own style sheet

Image Replacement

When Text Isn’t Enough…

• Before Web fonts, Web designers needed to fall
back to images when they wanted text in a font
fancier than Times or Helvetica

• What if a Web font isn’t sufficient for your needs?

• e.g., a company logo or icon-based links

Wholesale Replacement

• Completely replacing text with an image isn’t a
great idea

• it affects accessibility and usability

• it hurts search engines’ ability to index your page

A CSS-Based Solution

• Use an image as the element’s background

• Keep the text, but use CSS to shift it out of the way
so that it’s invisible to the user

• Screen readers and search engines will still see it

The Kellum Technique
• Uses text-indent to push the text content all the way to the

right and out of sight 
 
h1#logo {  
 /* image dimensions */  
 width: 450px;  
 height: 80px;  
 background: url(image.png) no-repeat;  
 text-indent: 100%; /* shift text */  
 white-space: nowrap; /* hide long text */  
 /* hide anything that falls outside the h1  
 element box */  
 overflow: hidden;  
}

CSS Sprites

Improving Performance
• Every external element in a Web page (stylesheet,

images, etc.) generates a separate HTTP request

• If we can reduce the number of these requests, we
can improve the performance of a Web site

• One way to do this is to combine images into a
single larger image

• display small parts of the large sprite image

Sample Markup:

 Twitter
 Facebook
 Google+
 LinkedIn

CSS Markup:

.hide {
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
}

li a {
 width: 29px;
 height: 18px;
 background-image: url(social.png);
}

li a.twitter { background-position: 0 0; }
li a.fb { background-position: 0 -20px; }
li a.gplus { background-position: 0 -40px; }
li a.linkedin { background-position: 0 -60px; }

Styling Tables

Table Styling

• Most table styling can be done with CSS properties
that we’ve already covered

• There are a few additional table-centered CSS
properties that can be helpful

• Specifically, these deal with borders

Border Properties
• border-spacing: length length

• specifies how much horizontal and vertical space
to insert between the borders of adjacent cells

• border-collapse: separate | collapse

• borders of adjacent cells “collapse” and only one
border is drawn (intervening space is removed)

Separated Borders Example

table {
 border-collapse: separate;
 border-spacing: 15px 5px;
 border: none;
}

td {
 border: 2px solid purple;
}

Collapsed Borders Example

table {
 border-collapse: collapse;
 border: none;
}

td {
 border: 2px solid purple;
}

Empty Cells
• You can hide the borders of empty cells in tables

with separated borders

• Empty cells may contain carriage returns and
spaces only (no text, images, or non-breaking
spaces)

• empty-cells: show | hide

Responsive Web
Design

Responsive Web Design

• Uses CSS to adapt a page’s layout based on the
screen size of the viewing device

• For example, one-column layout for a smartphone,
wider margins on a tablet, and multiple columns for
a desktop/laptop (or landscape tablet)

Core Components
• Fluid layout

• Flexible images

• CSS media queries

• Also includes the viewport meta element

Viewports
• Mobile browsers render Web pages on a canvas

called the viewport, and then shrink that viewport
down to fit the device screen width

• e.g., iPhones use a 980px viewport shrunk down
to 320px

• As developers, we can control the size of the
viewport: 
 
<meta name=“viewport” content=“width=device-width,
initial-scale=1”>

Fluid Layouts
• Use percentage values rather than fixed widths for

elements, so elements resize proportionally

• It isn’t possible to account for every device’s
screen dimensions, so Web designers generally
target a few major classes

• Fluid layouts handle the in-between sizes

Making Images Flexible
• This is easy: 
 
img {  
 max-width: 100%;  
}

• This causes images to scale proportionally to the
width of their container

• Just make sure your tags don’t have width
or height attributes, or it won’t work correctly!

Media Queries

• Allow us to deliver different styles based on the
media type: print, speech, handheld,
braille, projection, screen, tty, tv
(or all)

• Media queries can also evaluate specific device
features, like viewport width, screen width,
orientation, or screen resolution

Features You Can Query
width orientation color grid

height aspect-ratio color-index

device-width device-
aspect-ratio

monochrome

device-
height resolution scan

Media Query Format
• @media target-media-type [and (media feature and

value being tested)]*  
 
@media screen and (min-width: 480px;)  
{  
 /* style rules for devices that pass
this test */  
}  
 
@media screen and (max-width: 700px) and
(orientation: landscape;)  
{ … }

Media Queries in the
Document Head

• We can also use media queries to conditionally
load CSS stylesheets based on media properties

• Use the media attribute in the link element: 
 
<link rel=“stylesheet”  
href=“2column-styles.css”
media=“screen and (min-width: 780px)”>

A Mobile-First Strategy
• Use a form of progressive enhancement:

• order your styles from smallest device to largest/
most capable device

• Mobile-first media queries tend to begin with the
min- prefix

• Baseline styles come first, followed by small device
styles, then enhanced styles for larger browsers

Tricky Problems
• How do we choose breakpoints?

• one option is to choose based on pixel dimensions of popular devices

• How do we make images responsive?

• don’t want to load hi-res images on slow mobile connections

• One size doesn’t fit all

• JavaScript can be used to load content conditionally

• Other limitations

• Sometimes, it may be better to build separate mobile and desktop sites

Web Fonts

Web Font Options

• There are two ways to provide specific fonts to your
users:

• Host your own Web fonts

• Use a font embedding service

Self-Hosting Steps
• Find a font

• be careful about licensing for Web usage!

• Save the font in multiple formats

• one way is to use Font Squirrel’s @font-face Generator

• Upload your font(s) to your server

• they usually go in the same directory as your CSS
files

Web Font Code

@font-face {
font-family: ‘Font_name’;
src: url(‘myfont.eot’) format(‘embedded-opentype’),
url(‘myfont.woff’) format(‘woff’),
url(‘myfont.ttf’) format(‘truetype’),
url(‘myfont.svg’) format(‘svg’);
}

p { font-family: Font_name; }

Use a Font Embedding
Service

• These companies/services sometimes charge
money, but they handle all of the preceding hassle
for you

• Google Web Fonts, Adobe Typekit, fonts.com

