
CGI and Perl
CSE/ISE 102: Intro to Web Design (section 02)
Stony Brook University

What is Perl?
Practical Extraction and Report Language

developed in 1987 by Larry Wall

a programming/scripting language

A perl script consists of a sequence of commands

these commands are executed sequentially by
the Perl interpreter

What is CGI?
The Common Gateway Interface

controls the way a Web server interacts with
external programs (scripts)

CGI programs can be written in any language

This is only one of the ways a Web server can
apply customized processing to user data

e.g., ASP, PHP, Java servlets, server modules

Form Processing

Web Server

Web BrowserCGI Program

Form

Query
Response

The HTTP Protocol

Hypertext Transfer Protocol

Governs how the Web server and the client
exchange information

Uses TCP/IP for a reliable bidirectional
communication channel

HTTP Event Sequence
1.Connection: client opens a connection to a server

2.Query: client sends HTTP request to server

3.Processing: server receives and processes request

4.Response: server sends an HTTP response to
client containing requested resource or result

5.Transaction finished: connection may be closed or
kept open for a follow-up request

HTTP Message Format

initial line (different for query and response)
HeaderKey1: value1
HeaderKey2: value2

Optional message body containing query/response
(Amount and type of data in the body are specified
in headers)

The Query Line

Query line

query method name, a server-side path (URI),
and HTTP version number

GET /path/to/file/index.html HTTP/1.1

POST /cgi-bin/script.cgi HTTP/1.1

HEAD /path/to/file/index.html HTTP/1.1

The Response Line
Version number, status
code, and text
description of status

HTTP/1.1 200 OK

HTTP/1.1 404
Not Found

There are other status
codes as well

Sample POST Query

POST /cgi-bin/register-user.cgi HTTP/1.1
HOST: www.SymbolicNet.org
From: jdoe@great.enterprise.com
User-Agent: Netscape 6.2
Content-Type: application/x-www-form-urlencoded
Content-Length: 132

name=John+Doe&address=678+Main+Street&...

CGI Program Outline

1.Determine request method and receive input data

2.Decode and check input data

3.Perform tasks

4.Produce output (usually as an HTML document)

Output Formats

HTML

Content-Type: text/html
(empty line)
HTML page

URL

Location: url

Sparky & CGI
First, we need to set up your Sparky account

add a new directory called “cgi-bin” to your
www directory

In all HTML forms, you will reference your CGI
programs using the URL:

http://www.sinc.sunysb.edu/cgi-bin/cgiwrap/
rmckenna/???.cgi

instead of rmckenna use your Sparky login name

– instead of ??? use the name of the cgi script

File Permissions
Use the Unix command 'chmod' to set file
permissions

owner, group, and other/world

Each type of permission is a number in octal
that corresponds to the sum of the permissions
desired

4 = read, 2 = write, 1 = execute

e.g., chmod 755 myFile.txt

CGI Script Permissions

Your CGI scripts should have permissions 755

This lets you (the owner) read, modify, and execute
them, but everyone else can only read and execute
them

in particular, this lets the Web server execute
your scripts

Testing Your Scripts
To test your scripts before deploying them, run
them from the Unix command line:

perl hello.cgi

Put form data after the script name:

perl hello.cgi name=Mike email=foo@bar.com

See what output your script produces

A Toy CGI Program

Consists of two parts:

An HTML form

A CGI script that receives/processes form data

Our sample CGI script will be written in Perl

<form method="post" action="http://www.sinc.sunysb.edu/cgi-
bin/cgiwrap/???/hello.cgi">
 <table width="400">
 <tr> <td><label for="name">Full Name:</label></td>
 <td><input id="name" name="name" size="35" /></td>
 </tr>
 <tr> <td><label for="email">Email:</label></td>
 <td><input id="email" name="email" size="35" /></td>
 </tr>
 <tr> <td></td>
 <td><input type="submit" value="Send" /></td>
 </tr>
 </table>
</form>

#!/usr/bin/perl
hello.cgi -- a toy CGI program

use CGI qw(:standard); ## cgi perl module

var $name = param('name');
var $email = param('email');

This indicates that the Perl interpreter
should be used to process this script

Use # to indicate the
start of a comment

The Perl module CGI makes it
easy to write Perl CGI scripts

These lines declare two variables and
assign them values from the form data

send response to standard output
print "Content-type: text/html\r\n\r\n";
print <<END;
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Hello</title>
</head>
<body>
<h1>Hello, $name</h1>
<p>The e-mail address you submitted is</p>
<p>$email</p>
</body>
</html>
END

This tells the script to
print out everything until
it sees the label "END"

We replace the variable names with
their actual values in the output

\r\n represents a newline; we
use two of them to add a blank
line between the content type
and the body of the response

CGI Environment Variables

Allow the the Web server to communicate with the
CGI program

these are set when the program starts to run

SERVER_NAME, SERVER_ADDR, PATH,
GATEWAY_INTERFACE, SERVR_ADMIN,
SERVER_SIGNATURE, DOCUMENT_ROOT,
SERVER_SOFTWARE

Per-Request Variables
SERVER_PORT, SERVER_PROTOCOL, TZ,
REQUEST_URI, REQUEST_METHOD,
CONTENT_LENGTH, CONTENT_TYPE,
QUERY_STRING, SCRIPT_NAME,
SCRIPT_FILENAME, REMOTE_ADDR

There are more, but these are the most commonly-
used ones

To access these in Perl, use $ENV{var_name}

A Quick Perl Tutorial

Script Basics
Perl scripts should be written using a plain text
editor (TextWrangler, Notepad, Emacs, vim, pico)

Perl scripts normally use a .pl extension

Each Perl statement ends with a semicolon

Statements execute sequentially

Perl Variables
Three types: scalar, array (list), and association
array (hash)

Scalar variables have a $ prefix, and hold a single
value of any type

$var = 'a string'; # a quoted string

$x = 12;

$abc = "$var$x"; # 'a string12'

Single vs. Double Quotes
Single quotes indicate a string of characters

contents are printed literally

Double quotes also indicate a string

substitutions are made for variable names

Use backslashes to include literal quotes

\' and \" produce ' and " respectively

Arrays
Use @ in front of an array variable

Put starting values in a parenthesized list

@arr = ("aa", "bb", "cc", "dd");

Use $ to assign values inside an array

Positions are numbered starting with 0

$arr[2] = 76; # store 76 in third position

Assign an array to a scalar to get its length

Aside: Perl Output

Use print to display output

print does not add a newline at the end

Use \n to add a newline to output:

print "$myVar\n";

Perl Hashes
A hash is an array with an even number of
elements (key-value pairs)

Notation: (key1 => value1, key2 => value2, etc.)

keys serve as indices for the values

%asso = ("a" => 7, "b" => 11);

print "$asso['a']\n" # prints 7

$asso{'c'} = 13; # adds 13 to asso

Arithmetic and String
Operators
Standard arithmetic: + - * / ** %

$a = $b . $c; # concatenates b and c as strings

$a = $b x $c; # repeats $b $c times

Use = to assign values

Boolean operators: == != eq ne && || !

Conditional Statements
if (test)
{ ... }
else # optional
{ ... }

elsif is also available:

if (test) { ... }
elsif (test2) { ... }
else { ... }

Conditional Execution

Add a modifier at the end of a statement to make
its execution conditional

e.g., statement if (test);

e.g., statement unless (test);

Standard I/O in Perl

STDIN = standard input (keyboard)

abbreviated as <>

STDOUT = standard output (to screen)

A Perl CGI script receives data by reading STDIN

read(STDIN, $input, num_characters});

More Perl I/O
We can read one line at a time from STDIN:

$var = <STDIN>;

$var = <>;

This leaves the newline at the end

Use 'chomp' to get rid of trailing newlines:

chomp($var);

Iterations

Four forms: foreach, while, do-while, and for

while (test condition) { statements }

do { statements } while { condition };

for (initialization; test; update) { statements }

We'll skip foreach loops for now

Perl Subroutines
Start with the sub keyword

sub name
{
 a sequence of statements
}

Declare subroutines before using them

predeclare them using 'sub name;'

Call subroutines by their name, followed by ()

Subroutines and Values

Input arguments are stored in a special array
named @_

Use 'return' to send back a value

e.g., return $answer;

this also immediately terminates the subroutine

Next Time

More Perl examples

