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Abstract
This paper describes a general and powerful framework for efficient
runtime invariant checking. The framework supports (1) declarative
specification of arbitrary invariants using high-level queries, with
easy use of information from any data in the execution, (2) power-
ful analysis and transformations for automatic generationof instru-
mentation for efficient incremental checking of invariants, and (3)
convenient mechanisms for reporting errors, debugging, and taking
preventive or remedial actions, as well as recording history data for
use in queries. We demonstrate the advantages and effectiveness of
the framework through implementations and case studies with ab-
stract syntax tree transformations, authentication in a SMB client,
and the BitTorrent peer-to-peer file distribution protocol.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Class invariants; D.2.4
[Software Engineering]: Software/Program Verification—Assertion
checkers; D.2.13 [Software Engineering]: Reusable Software;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Invariants

General Terms Design, Languages, Performance, Verification

Keywords Alias analysis, Incrementalization, Program Transfor-
mation, Runtime Verification

1. Introduction
Program safety, security, and general correctness properties depend
on all kinds of invariants holding during program execution. Even
though static analysis can verify many invariants, many important
invariants are still too difficult to verify automatically using static
analysis. Therefore, it is critical to use dynamic techniques to check
during program execution that these invariants hold. This is known
as runtime invariant checking. It is challenging for at least three
reasons:

1. invariants that relate information at multiple program points
are difficult to specify and to verify at any one point in the
execution,
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2. the runtime overhead from invariant checking must be mini-
mized, and

3. imminent violations of critical invariants must be detected be-
fore they occur, and appropriate actions taken in response.

This paper describes a general and powerful framework for
efficient runtime invariant checking. The framework supports (1)
declarative specification of arbitrary invariants using high-level
queries, with easy use of information from any data in the ex-
ecution, (2) powerful analysis and transformations for automatic
generation of instrumentation for efficient incremental checking
of invariants, and (3) convenient mechanisms for reportingerrors,
debugging, and taking preventive or remedial actions, as well as
recording history data for use in queries. The transformations are
built on InvTS rules [20], which describe how to incrementally
maintain invariants.

We also describe a number of case studies that demonstrate
the advantages of our framework and the effectiveness of ourim-
plementation. The implementation is for Python. The experiments
include checking invariants about (1) abstract syntax tree(AST)
transformations on programs of varying sizes between 400 and
16000 AST nodes, (2) Kerberos authentication used by a SMB
client, and (3) a network protocol for distributing files in BitTorrent.
All the invariants of interest can be expressed easily in ourframe-
work, and performance results show that our incremental checking
scales well on large applications and complex invariants.

Much research has been done on runtime invariant checking,
including a large variety of languages for specifying the invari-
ants and methods for efficient instrumentation, as discussed in
Section 5. To the best of our knowledge, no previous work both
supports the generality of the kinds of invariants that our frame-
work supports and achieves the efficiency that our implementation
method achieves.

The rest of the paper is organized as follows. Section 2 gives
an overview of our framework and describes the language for
specifying invariants and actions. Section 3 describes analysis and
transformations for incrementally checking the invariants. Section
4 presents our experiments. Section 5 discusses related work.

2. Framework
This section presents our framework for the specification ofinvari-
ants and the actions to be taken when they are violated. Invariants
are expressed as boolean conditions involving variables quantified
over collections. Violations of an invariant correspond totuples
containing values of those variables for which the condition is false.
We formulate runtime invariant checking as evaluating queries that
return sets of such tuples. The basic form of an invariant checking
rule in our framework is



foreach (v1 in S1, ... ,vk in Sk: condition):
action

whereS1 throughSk are collections (sets, dicts and other collec-
tions that do not allow duplicates and that have constant-time mem-
bership tests).v1 throughvk are quantified over setsS1 throughSk,
respectively. The set of tuples of values ofv1 throughvk such that
conditionholds is called thequery result. action is a sequence of
statements to be executed for each violation of the invariant, i.e.,
for each tuple in the query result.

For example, the following rule may be used to check that
theusage count field of each instance of theFile class is non-
negative.

foreach (o in extent(File): o.usage_count < 0):
report("Error: File ", o, " has negative",

" usage_count.")
stop()

For every classC, extent(C) is a special set defined by our frame-
work to contain the set of currently existing objects of typeC. The
report andstop functions are two functions in the subject pro-
gramming language (Python):report takes any number of argu-
ments and prints the concatenation of their string representations;
stop stops the program and drops into a debugger, allowing the
user to examine the state of the program at the point at which the
invariant was violated.

While it is easy to see how to efficiently check simple invariants
like the one above (by inserting checks at all assignments tothe
usage count field), it becomes more difficult for even slightly
more complex invariants. For example, consider a program that
manipulates ASTs. We want to check that no node has an edge
to itself. Assume that AST nodes are instances of theNode class,
which has achildren field. The invariant can be checked using
the rule:

foreach (o in extent(Node): o in o.children):
report("Error: ", o, " has a self-edge.")
stop()

Checking this invariant efficiently is difficult, because aliasing im-
plies that it can potentially be violated by any statement that adds
an object to a collection, as in this scenario:x=o.children; ...;
x.add(o). Manually writing code to detect such bugs is tedious:
one must intercept all calls to theadd method of all instances of
set, determine whether the target object equals thechildren field
of some instance ofNode, etc. In our framework, the user writes the
simple rule above, and our system takes care of the rest, generating
correct and efficient code for it.

Queries that involve multiple variables typically involvejoin
conditions, which relate the values of the variables. For example,
suppose the ASTs in the previous example should also satisfythe
invariant that every node has at most one incoming edge. Thiscan
be checked using the rule:

foreach (n in extent(Node), m in extent(Node),
c in extent(Node): c in n.children and
c in m.children and n!=m):

report("Error: ", c, "is a child of both ",
m, " and ", n, ".")

stop()

Again, it is easy to write this rule in our framework, but it isdif-
ficult to manually write code that efficiently checks this invariant
at runtime, since this requires maintaining auxiliary datastructures
with information about edges, in addition to dealing with the alias-
ing issue discussed above.

Some invariants cannot be expressed using queries over extents
and existing sets in the program. For example, consider a commu-

nication protocol. A query cannot refer to the set of all packets sent
by the program, unless the program happens to maintain that set. It
is not an extent, because packet objects are removed from theex-
tent by garbage collection. To support such queries, our framework
supports rules that add code throughout the program. This feature
is similar to aspect-oriented programming, and it can be used to
insert code that maintains additional sets.

foreach (query) :
action

(de (in scope (field |method)? declaration)∗ )?
(at update

(if condition)?
(de (in scope (field |method)? declaration)∗ )?
(do (before maint)? (instead maint)? (after maint)? )?

)∗

Figure 1. General form of an invariant checking rule.

The general form of an invariant checking rule is shown in Fig-
ure 1. The syntax of the new clauses is taken from InvTS [20],
where they are used in rules that describe how to maintain invari-
ants; this is why we useupdate andmaint as suggestive names
for the code patterns in theat anddo clauses, but they are not lim-
ited to matching updates and specifying maintenance code. Theat
clause contains a code patternupdate , which may contain subject-
language code and meta-variables. Names of meta-variablesstart
with “$”. For each part of the code in the subject program that
matches theupdatepattern in theat clause, if theconditionin the
if clause is satisfied, then thedeclarations in thede (mnemonic
for “declaration”) clause are inserted into the program in the spec-
ified scope (while thede clause is usually used to declare and ini-
tialize variables, classes, or fields, it can be used to insert arbitrary
code at a specified location) and themaint code in thedo clause
is insertedbefore or after the matched code, as specified, or, if
instead is used in thedo clause, the matched code is replaced
with the code in thedo clause. The condition in theif clause is
built from standard logical connectives and functions defined for
the subject language. For example,class (expr) returns the class
in whichexpr appears, andtype (expr) returns the type ofexpr.
In the de clause,scopecan beglobal or the name of a class,
method, or module.

Continuing the above example, the following rule could be used
to check an invariant about packets that is expressed in terms of a
set$sent_packets containing all sent packets (a specific example
appears in Section 4). The meta-variable$sent_packets gets
instantiated with a fresh program variable when the programis
transformed.

foreach (...: ... $sent_packets ...):
report("Error : ...")
stop()

de in global:
$sent_packets=set()

at $x.send($packet)
if extends(type($x),socket)
do before:

global $sent_packets
$sent_packets.add($packet)

3. Analysis and transformations
The straightforward way to implement the framework described
above is to compute the result of every query from scratch at every
program point. This is clearly correct, yet very slow, especially if
the query involves large collections. A better way is to compute



each query result at the program points that can update the result
of the query. This is faster, yet still requires repeated evaluation of
the query. A better approach is to efficiently maintain (i.e., update)
the result of the query whenever a collection or object the query
depends on changes.

This requires two steps: (1) generating maintenance code that
properly maintains the query results in the face of updates to the
data the query depends on, and, (2) applying the maintenancecode
at all places where the query result might change. The rest ofthe
section uses “set” instead of “collection” as the method applies
(with very minor modifications) to any collection that contains ob-
jects, does not allow duplicates, and has constant-time membership
testing.

Step 1 is accomplished by compiling the query into an InvTS
rule [20], which then transforms the subject program so thatit in-
crementally maintains the query result. InvTS (the Invariant-Driven
Transformation System) is a program transformation systemthat is
geared towards source-to-source transformations that maintain in-
variants.

Step 2 is performed by InvTS itself. To maintain the result
of a query, InvTS inserts the maintenance code from step 1 at
every location that updates the variables the query dependson.
The straightforward way is to insert maintenance code at every
statement in the program, preceded by a runtime check of whether
the statement actually updates the data the query depends on. This
slows down the transformed program even when no such updates
occur, due to the evaluation of the runtime check at every statement.
InvTS uses control-flow, data-flow, type, and alias information to
evaluate as many of these checks as possible at compile time,to
reduce the runtime overhead of maintaining the query result.

Generating maintenance code. As InvTS alone cannot generate
the code to maintain a query result, we give a method that, fora
class of queries, generates maintenance code (in the form ofInvTS
at/if/de/do clauses) that incrementally maintains the result of
these queries.

We generate efficient maintenance code for queries of the form
(v1 in S1, ...,vk in Sk: condition), whereconditionis a conjunc-
tion and each conjunct is either (1) a join condition of the form
e1 op e2, whereop is ==, !=, in, or not in, andei is v or v.f ,
wherev is a variable andf is a field, or (2) a boolean expression
whose value depends only on the objects bound tov1, . . . ,vk, the
fields of these objects, and immutable objects.

Three kinds of updates can affect the result of a query: adding
an object to a set, removing an object from a set, and changing
the value of a field on an object. We decompose more complicated
updates into these simple updates. We further simplify the problem
by replacing field updates (for both scalar and set fields) with code
that removes an object from all sets containing it, updates the field,
and re-adds it to all sets. This transformation requires maintaining
an auxiliary map from each object to the sets containing it.

With this simplification, the query result can increase onlywhen
an object is added to any of the setsS1, . . . , Sk, and the query
result can decrease only when objects are removed from thesesets.
Since the action is executed only when the result set increases, this
means that we only need to handle the addition case appropriately
to update the query result. However, during removal we may need
to update auxiliary maps.

Handling element addition. To handle addition of an object to a
set, we run the query with the correspondingv variable bound to the
object being added. We then generate statements corresponding to
each of the clauses (enumeration, predicate, and join) in the query.
The code is generated in the following order:

1. For a predicate with all variables bound, an if-statementcheck-
ing the predicate is generated.

2. For an enumeration of the formv in S wherev and S are
both bound, an if-statement that performs a membership test
is generated.

3. For a join condition with both variables bound, an if-statement
that checks whether the join condition is satisfied is generated.

4. For an equality or set-membership join with exactly one vari-
able bound, a for-statement that iterates over the entry corre-
sponding to the bound variable in a hash-join map is generated.

5. For an enumeration where onlyS is unbound, a for-statement
that iterates over the elements ofS is generated.

If a clause does not match one of the conditions in this list, then
it cannot be generated yet. Each generated for-statement binds a
variable, which can cause statements to become generable orto rise
in priority. As all variables can be bound through thefor statement,
eventually all clauses will be generated. The generated InvTS code
has the form of additionalat, if, de, anddo clauses that,at each
element addition,do the above-described maintenance.

Handling joins. For each join, we maintain a hashmap, which
we call a hash-join auxiliary map. For example, for the join
v1.parent==v2.name, if v1 is bound, andv2 iterates overS2,
we introduce a hashmap with domainS2 that mapso.name to o.
Maintaining these mappings requires the generation of additional
code which must be run in response to the addition and removal
of elements ofS2 and changes too.name. This code must be run
before the maintenance code that handles element addition.Thus,
either newat/if/de/do clauses are created, or existing ones are
modified so that the new maintenance code is prepended to the
appropriatedo clauses.

Auxiliary clauses. Theat, if, de anddo clauses have the same
syntax and meaning as in InvTS. Thus they are copied into the
InvTS rule being generated.

Type analysis. Our system uses static type analysis to reduce the
number of runtime checks. If a variable of a known type is being
updated, and variables (or fields) of this type are not used inthe
query, then the update cannot affect the result of the query,and the
corresponding runtime check can be eliminated.

Our type system expands on Python’s type system by making it
more precise. We introduce types that represent constants,abstract
values such as lists of constant lengths, and unions of two or
more types. This higher precision, plus static analysis of the types,
in contrast to Python’s dynamic type analysis, allows InvTSto
evaluate a large number of checks statically. In our experiments,
this reduces overhead by a factor of two or more in most cases,
based on Table 1 in Section 4. For example, for “BitTorrent -
No duplicate data”, this reduces CPU usage from 3.9% with type
analysis disabled, to 3.3% with type analysis enabled; given the
CPU usage of 2.7% for the program running without any checks,
this reduces the overhead of invariant verification from 44%to
22%. For the other BitTorrent experiment, the overhead is reduced
from 125% to 28%.

Alias analysis. InvTS also uses alias analysis to reduce the num-
ber of runtime checks, as an update to a variable that is not aliased
to a variable in the query cannot affect the query result. Clearly,
more precise alias analysis allows more runtime checks to beelimi-
nated. We use a flow-sensitive interprocedural may-alias algorithm,
in contrast to simpler but less precise flow-insensitive algorithms
such as Andersen’s.

The alias analysis algorithm we use is based on the intrapro-
cedural, flow-sensitive may-alias analysis by Goyal [10]. Goyal’s
algorithm is intraprocedural, works on C, and has a running time
of O(n3). Thus, it had to be extended to handle Python, and to



work interprocedurally. This resulted in a worst-vase complexity of
O(n4), although in practice, for all programs we analyzed, the run-
ning time increased quadratically with the size of the program. In
our experiment “InvTS - No own child”, alias analysis reduces the
overhead from 100% (Overhead of “No Alias Analysis” compared
to “No Check”) to 62% (Overhead of “Incremental” compared to
“No Check”), as shown in Table 1.

4. Experiments
To demonstrate that our technique can efficiently verify invari-
ants, we have applied it to invariants from multiple domains: ab-
stract syntax tree transformations, authentication, and afile distri-
bution protocol. For each invariant, we compare the performance
of the program without any invariant checking; with invariants be-
ing checked incrementally using the method described in this pa-
per; and with invariants checked in a non-incremental manner by
re-evaluating the query from scratch each time an update occurs.

All experiments were performed using Python 2.5.1 on Win-
dows Vista, running on a Core 2 Duo (Q6600@3.0GHz) machine
with 8GB of memory, of which 6GB were free.

4.1 AST transformations

An abstract syntax tree (AST) should satisfy several invariants. For
our first two experiments, we check that no AST node is its own
child, and that each AST node is the child of at most one parent.

For these experiments, we apply InvTS to itself to create
checked-InvTS, a version of InvTS that checks to ensure thatpro-
gram transformations do not violate the AST invariants. Checked-
InvTS is then run with a rule-set that transforms subject programs
into static single-assignment (SSA) form. Note that in thiscase,
we are checking the correctness of checked-InvTS, rather than the
programs it is applied to.

Not own child. Recall from Section 2 that the following rule
detects violations of the invariant “a node is not a child of itself”.

foreach (o in extent(Node): o in o.children):
report("Error: ", o, " has a self-edge.")
stop()

Figure 2 shows that checking this invariant cause a constant
factor slowdown. The overhead is close to 70%. About half of this
overhead is the cost of maintaining extents, while the otherhalf is
the cost of maintaining invariants.

We do not give the running time of the non-incremental instru-
mentation, as not even the smallest experiment was able to com-
plete in the time limit of 20 minutes. Since the query is run each
time an AST node is created or updated, the non-incremental ver-
sion incurs an asymptotic slowdown. Incremental instrumentation
eliminates this asymptotic penalty, rendering invariant checking
practical.

No shared child. In an AST, no two parents may refer to the same
child. The following rule checks for violations of this invariant:

foreach (n in extent(Node), m in extent(Node),
c in extent(Node): c in n.children and
c in m.children and n!=m):

report("Error: ", c, "is a child of both ",
m, " and ", n, ".")

stop()

As this invariant contains multiple join conditions (c in m.children,
c in n.children, n!=m), hash-join maps are used to evaluate it
efficiently.

Figure 2 shows that incrementally checking this invariant in-
creases the running time by less than 95%. In contrast, the non-
incremental instrumentation would be cubic in the number ofnodes

currently alive in the program, as it iterates over three extents of
nodes. This leads us to the estimate that, in the best case, the non-
incrementally instrumented program is O(#node3) worse than the
uninstrumented one. It is not a surprise that all experiments with
non-incremental instrumentation timed out. When we manually in-
troduced a bug that assigned the same child to multiple parents,
checked-InvTS detected the violation.
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Figure 2. Running times of InvTS normalized to the running time
of the non-instrumented version.

Overall, these experiments show that verifying invariantsat run-
time can be efficient (with overhead smaller than 95%) for even
complex queries that involve multiple joins and membershiptests.
We also see that when joins used by the query have a high selectiv-
ity, as these do, the running time of the instrumented program is not
very dependent on the query, but more so on the number of classes
for which we maintain extents.

4.2 Authentication

We performed two experiments involving the Kerberos authenti-
cation used by pysmb, a SMB client written in Python. The first
checks that all packets sent are authenticated; the second checks
that authentication does not occur more frequently than necessary.

Require valid ticket. Our first experiment checks that we do not
send packets to hosts that have an invalid Kerberos ticket associated
with them. This invariant needs to remain true until the packet is
actually sent. To find violations of it, we keep a set of packets being
sent, and report an error if a packet in the set is associated with an
invalid ticket.

foreach (sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip ):

report("Sending ", sp, " with invalid ticket!")
stop()

de in global:
$sending_packets=set()

at $x.send($p):
if subclass(type($x),asyncore.dispatcher):
de in class type($x) in function handle_write($arg):

if $arg in $sending_packets:
$sending_packets.remove($arg)

do after:
if $p not in $sending_packets:

$sending_packets.append($p)

This rule tracks all sends of data over asynchronous sockets, and
stops the program when a packet was sent to a server with an invalid



Kerberos ticket. Thede and do clauses work in the following
manner: When asend method call is encountered, the packet being
sent is added to the$sending packets queue. It is removed from
there once the packet is actually sent, which may not be necessarily
immediate. This is detected by intercepting thehandle write
callback in the class subclassingasyncore.dispatcher. This
callback is called by Python when a packet is actually sent out over
the given socket.

When we ran this on pysmb, while transferring a 10GB file over
a 100Mbit/sec connection, the average CPU load increased from
3.6% to 11.7%. The throughput remained the same, because the
program was IO-bound in both cases. The increase is due to thejoin
and the fact that many Kerberos tickets may match an IP address. A
straightforward implementation increased CPU usage to 97%, and
reduced the throughput of the program by 73%, as pysmb became
CPU-bound. The times taken by the program to transfer the file
were 1302 seconds for the uninstrumented version, 1351 seconds
for the incrementally instrumented version, and 6321 seconds for
the non-incrementally instrumented version.

Repeated authentication. It is inefficient for a program to re-
quest tickets from the Kerberos server long before the currently
valid ticket times out. Thus, a useful invariant to check is that a
successful authentication is not repeated until the resultant ticket is
about to time out. A ticket times out when there was no activity re-
lating to that ticket for 300 seconds, i.e., no data was sent to the host
the ticket was issued for for the last 300 seconds. Thus the invariant
is: there are no two valid tickets such that they are both referring
to the same host, are both valid, and are much less thantimeout
(i.e., 300 seconds) apart. We define much less as 10 seconds less,
as the MIT Kerberos client requests a new ticket 10 seconds before
the current one times out. To verify this invariant, we need to keep
track of Kerberos tickets and of SMB activity.

The invariant is expressed using a nested query, with the inner
query computing the latest packet sent to a given host, and the
outer query doing a join on all pairs of currently existing Kerberos
tickets. The max aggregate is maintained using a heap.

foreach (k_old in extent(KerberosTicket) ,
k_new in extent(KerberosTicket):
k_old.valid and k_new.valid and
k_old.issue_time<k_new.issue_time and
k_old.ip==k_new.ip and
k_new.issue_time-max([p.time

for p in $sent_packets
if p.target_ip==k_new.ip and

p.time < k_new.issue_time])
< 300-10):

report ("Reauthenticated to host ", k_new.ip )
stop()

de in global:
$sent_packets=set()

at $x.send($p)
if type($x)==asyncore.dispatcher
do after:

$sent_packets.add($p)

When run on pysmb, while transferring a 10GB file over a
100Mbit/sec connection, the average CPU load increased from
3.6% to 17.9%, mainly due to the need to maintain a heap per IP
address, and an additional join over the previous example. Using
specific domain knowledge, the heap could be avoided: we could
just keep track of the latest packet sent to each IP address. This
works because time is monotonic. A rule modified in such a way is
less easily adapted towards other uses, though. Note that even with
the maintenance of the heap, the instrumented program is still IO
bound, not CPU bound. Checking invariants in a non-incremental

manner makes it CPU bound: it results in a 96.9% CPU load, and
the running time increases from 1302 to 8750 seconds.

The pysmb examples show that instrumenting complex pro-
grams in ways not anticipated by their creators is easily done with
our framework due to the ability to specify complex program trans-
formations, such as maintaining the set of sent packets, or the set of
packets waiting to be sent. It also demonstrates that complex con-
ditions, including nested queries, are supported by this framework,
and their use does not cause excessive overhead.

4.3 File distribution protocol

BitTorrent (http://download.bittorrent.com/dl/) is a peer-to-peer file
distribution protocol. When multiple peers download the same file
concurrently, they can relay data to each other, making it possi-
ble for the file source to support very large numbers of download-
ers with only a modest increase in its load. Each peer downloads
chunks of a file from (likely different) peers, and then reassem-
bles the original file from the chunks. The BitTorrent protocol is
relatively complex, so we use our method to instrument an imple-
mentation and check it for potential errors.

No duplicate data. Receiving the same piece of data from two
sources too often may mean that the client is using bandwidthinef-
ficiently. We check for this using a rule that detects when thesame
data is received from two or more distinct sources (identified by IP
address), and logs the event without stopping the program. The log
could be analyzed later to determine whether the duplication is due
to a bug or misconfiguration.

foreach (p1 in $in_queue, p2 in $in_queue:
p1.source_ip!=p2.source_ip and
p1.payload==p2.payload):

report("Receiving same data from peers ",
p1.source_ip, " and ", p2.source_ip)

de in global:
# A queue of incoming packets.
# It supports O(1) membership tests,
# holding at most 100000 packets
$in_queue=queue(max_length=100000)

at $x.type=$s
if $s=="incoming" and type($x)==Packet
do after:

if $x not in $in_queue:
$in_queue.append($x)

Experiments involved receiving a 10GB file from 30 peers, over
a 100Mbit/sec connection. We measured CPU load to determinethe
impact of the runtime checking. The average CPU load increased
from 28.3% for the original program to 36.1% for the instrumented
program. The small increase is due to the high selectivity ofthe
p1.payload==p2.payload join condition. Just like with pysmb,
both versions of the program are IO-bound.

No packet modification in transit. To verify that the correct data
is being sent between peers, we check the following invariant: a
packet sent from one peer must be received by another peer without
a change in the payload.

We check this invariant by creating a server to which peers send
summaries of the packets they send and receive. These packets are
put into a set on the server. We write a query that detects when
packets of the same chunk have a different payload, by comparing
the MD5 hashes of the payloads.

The server maintains a setrec_set containing all packets sent
and received by BitTorrent peers. The following rule checksthe
invariant:

foreach ($from in self.rec_set, $to in self.rec_set:



No Check Incremental No Type Analysis No Alias Analysis Non-Incremental
pysmb - Require valid ticket 3.6% (1302s) 11.7% (1351s) 19.7% (1819s) 14.1% (1601s) 97.3% (6321s)
pysmb - Repeated authentication 3.6% (1302s) 17.9% (1535s) 31.7% (2011s) 23.3% (1943s) 96.9% (8750s)
BitTorrent - No duplicate data 28.3% (1771s) 36.1% (1779s) 63.8% (1790s) 36.3% (1830s) 99.8% (3210s)
BitTorrent - No packet modification 2.7% (1783s) 3.3% (1687s) 3.9% (1763s) 3.4% (1805s) 93.1% (1801s)
InvTS - No shared child 13s 25s 349s 25s >1200s
InvTS - No own child 13s 21s 312s 26s >1200s

Table 1. CPU utilization (if IO-bound) and wall time taken for experiments under differing optimizations.

$from!=$to and $from.source!=None and
$from.target!=None and
$from.source==$to.source and
$from.target==$to.target and
$from.chunk==$to.chunk and
$from.chunk!=None and
$from.sent and $to.received and
$from.md5!=$to.md5 and $from.md5!=None):

report ("Packet sent from ", $from.source,
" to ", $from.target, " changed in transit!")

stop()

We use two InvTS rules to modify the BitTorrent program to
send the information needed for invariant verification to the server.
The rules state that a socket should be opened to the server once per
program, and that anytime a packet is written to any socket, or read
from any socket, the packet (minus the body) should be sent tothe
server. The rule for handlingsend is the same as the rule below for
handlingreceive, with receive replaced withsend.

at $x.receive($p)
if type($x)==asyncore.dispatcher
de in global:

import socket
#Open a socket to server on 192.168.17.46:636
$check_socket=socket.open_udp(192.168.17.46,636)
in global in function(myreceive(socket,packet)):

global $check_socket
# For efficiency, do not sent the payload
$body=packet.body
$arg.body=None
$check_socket.send(packet)
packet.body=$body

do instead:
myreceive($x, $p)

After applying the query and rules to the BitTorrent client and
our server, we benchmarked the CPU utilization of the clients
and the server (which were running on the same computer). With
5 BitTorrent clients and the server running, the CPU utilization
increased from 73 to 78 percent. When the clients were measured
in isolation, the CPU utilization of a single client (with the other
4 clients and the server running on another system) was 11%, vs.
10% for the untransformed client. The server, when run on thetest
machine (with the 5 clients running on a different machine) utilized
3.3% of the CPU with the instrumentation enabled, versus 2.7%
with no instrumentation.

On a reliable connection we found no problems. When we sim-
ulated a bad connection by randomly injecting changes into some
packets, we found the errors before the BitTorrent error detection
algorithm, which operates on bigger chunks.

Effect of optimizations. Table 1 shows the CPU utilizations
and running times of the pysmb and BitTorrent examples under
different implementation options. It is easy to see that thenon-
incremental implementation is far worse than any other version.

Disabling type or alias analysis also produces a noticeableslow-
down.

5. Related work and conclusion
This paper touches two areas: runtime invariant verification [8], and
incremental query result maintenance.

There are several systems for runtime checking of temporal
properties. These include Java-MaC [15], JPAX [13] , JNuke [1],
and EAGLE [4]. These systems express the properties in a linear
temporal logic (LTL) or a related rule languages.

Our system does not support writing invariants in LTL, al-
though, as our system supports comprehensions, extents, and joins,
a subset of LTL can be emulated. The pysmb example does so by
maintaining history and specifying queries over it. While this may
incur a performance penalty compared to systems specifically de-
signed to test LTL-based invariants, it is not a very significant per-
formance penalty (As seen in Section 4, the overhead is consis-
tently under 100%).

The category into which our system fits best is tools that use a
side-effect free subset of their subject language, extended with var-
ious operators such as quantifiers or set operations, to specify in-
variants. Such invariant specification languages include JML [19],
Spec# [3], and Jahob [17]. For JML and Spec#, there are tools that
allow the user to combine/compile an invariant and a subjectpro-
gram into a compiled program that, at runtime, checks whether the
specified invariant holds. These tools include Boogie [2] for Spec#
and jmlc [7], jass [5], jmle [16], and DITTO [24] for JML. A run-
time verifier for Jahob is under development [28].

Spec# does not support comprehensions[28]; or extents. As
such, it cannot easily encode the invariants we wish to verify. JML
supports set comprehensions, quantifiers, and other features. It does
not natively support extents [18]. Jahob supports both comprehen-
sions and extents (as a subset of theAliveVariables set). The
language presented in this paper supports both set comprehensions
and extents. It is worth noting that support for extents is difficult
to emulate without support for liveness testing, because garbage
collection must be taken into account.

The JML compilers jmlc, jmle, and jass all support a large sub-
set of JML, including comprehensions. But, they evaluate compre-
hensions in a straightforward manner, by recomputing them when-
ever they are encountered. In contrast, our system incrementally
maintains the value of set comprehensions. DITTO provides in-
cremental maintenance of some JML expressions, but it does not
incrementally maintain set comprehensions [24].

JQL [27] extends Java to support both comprehensions and ex-
tents, to support querying over collections. Recent work onJQL
adds incremental maintenance of JQL queries in the face of up-
dates to the data they depend on. The fact that our system is de-
signed with only invariant verification in mind allows us to more
efficiently maintain invariants. For example, it is easier for us to
handle removal of elements from the sets that the query depends
on. We support a marginally larger set of conditions on queries: we
can incrementally maintain query results for queries that contain a



condition of the forma in b.f. Also, theat andde clauses allow
us to do program transformations that maintain datastructures that
would be unavailable to a pure query language, such as a set ofall
previously sent packets.

Potanin et al. [23] query snapshots of object graphs, but perform
the queries non-incrementally. PQL [21] queries over past states of
the program, but not over extents. It uses BDDs to compute query
results, but not incrementally.

Aspect-oriented programming can be used to check invariants.
The user can directly write pointcuts and advice to check an invari-
ant and take appropriate action on violations [14, 25]. As wehave
shown in Section 3, for even moderately complex invariants this
is tedious and error-prone. Alternatively, the user can write a tool
that generates pointcuts and advice from a specification [26, 6, 9].
These tools are task-specific, so the user will likely have towrite
such a tool for his particular task. This is non-trivial, especially if
the user wants to create a tool that will generate advice thatincre-
mentally verifies invariants. Our system lets the programmer avoid
manually writing pointcuts and advices that incrementallymaintain
invariants, as well as absolving him of the responsibility of writing
a system that generates such pointcuts and advices. Instead, it lets
him concentrate on the task of specifying invariants.

There is a large amount of work on incremental maintenance of
invariants, e.g, [11, 22, 12, 20, 24]. From these, especially relevant
to this paper is our system InvTS [20], which applies rules that
incrementally maintain query results. We use InvTS to applyrules
generated from queries in debugging rules. The advantage ofInvTS
is its utilization of static analysis to reduce runtime overhead, as
described in Section 3.

Using our framework for other languages such as Java and C
requires implementing the framework as described in Section 3,
including in particular implementing the type and alias analysis
algorithms for the desired language. As a proof of concept, we
have extended InvTS to transform GCC C, where we implemented
our interprocedural alias analysis and used GCC’s built-intype
analysis. Future work includes refinements and experimentsfor our
InvTS implementation for GCC C.
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