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Abstract. We introduce a method to form and maintain a flock of
drones only based on relative distance measurements. This means our
approach is able to work in GPS-denied environments. It is fully dis-
tributed and therefore does not need any information exchange between
the individual drones. Relative distance measurements to other drones
and information about its own relative movement are used to estimate
the current state of the environment. This makes it possible to perform
lookahead and estimate the next state for any potential next movement.
A distributed cost function is then used to determine the best next ac-
tion in every time step. Using a high-fidelity simulation environment, we
show that our approach is able to form and maintain a flock for a set of
drones.

Keywords: Drones - Quadcopters - Flock - Swarm - Distributed con-
troller.

1 Introduction

Flocking is a fundamental flight-formation problem. Birds flock for a variety
of reasons, including foraging for food, protection from predators, communal
warmth, and for mating purposes. Starling flocks can also perform high-speed
pinpoint maneuvers, such as a 180° turn [1]. Some types of flocks in nature have
distinct leaders, such as queen bees, and queen ants. Other swarms are formed
by animals that do not have a permanently defined leadership, such as starlings
or herrings. Although flocking is a well-studied problem mathematically [19, 15,
8,7], its realization using actual drones is not nearly as mature (but see [26,23]).

Drone swarms, a quintessential example of a multi-agent system, can carry
out tasks that cannot be accomplished by individual drones alone [5]. They can,
for example, collectively carry a heavy load while still being much more agile
than a single larger drone [16,13]. In search-and-rescue applications, a swarm
can explore unknown terrain by covering individual paths that jointly cover
the entire area [9,3,17]. While flocking provides a number of advantages over
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individual flight, it also poses a significant challenge: the need for a distributed
control mechanism that can maintain flock formation and its stability [18]. These
collective maneuvers can be expressed as the problem of minimizing a positional
cost function, i.e., a cost function that depends on the positions of the drones
(and possibly information about their environment). In our formulation, every
agent is identical, which means there is no designated leader.
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Fig. 1. Our distributed controller forms and maintains a flock based on relative dis-
tance measurements to other agents of the flock. The target location is shown in blue.
Distance measurements for drone ¢ to other drones and to the target location are shown
in orange.

To work with such a positional cost function, an absolute localization system
is needed. This can be an optical or radio-based system for indoor applications
or GPS-based localization for outdoor scenarios. In this work, we study the
problem for scenarios that lack an absolute localization system (GPS-denied
environments). We only have the ability to measure the distance to other drones
and to measure the acceleration and rotational velocity of the own drone using
an onboard Inertial Measurement Unit (IMU). For flock formation, we observe
that the positional cost function can be replaced by a function based solely on
relative distances. This obviates the need for absolute localization. We propose
a method to simultaneously learn properties of the environment (inter-agent
distance changes), while at the same time maintaining the flock formation solely
on relative distance information.

In this paper, we address the following Challenge Problem: Design a dis-
tributed controller that forms and maintains a flock based solely on inter-agent
distance measurements.

To solve this problem, we introduce a method to estimate changes of the
environment based on the observed changes for previous movements and there-
after use this information to minimize the cost-function over a set of candidate
positions. We build upon our previous work that introduced Spatial Predictive
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Control (SPC) [4] to select the best next action from the set of candidate po-
sitions. However we have a substantially different problem here, since we have
limited observation capability: in the previous work [4], absolute positions of all
the drones were available; whereas in this work we can only measure relative
distances. This also changes our possibilities how to apply SPC: whereas in the
previous work it was possible to optimize the direction based on the cost func-
tion’s gradient, we need to do a search on possible candidate positions in all
directions in this work.

Our agent’s observations consist of its own acceleration in three-dimensional
space, rotational velocity along three axes, and the relative distance to other
agents, as well as the distance to a fixed target location (as shown in Figure 1).
(The target location is currently only used to counteract drifting tendencies
of the whole flock.) There is no communication or central coordination, which
makes our approach fully distributed. Our flocking objective is formulated as a
cost function (see Section 2.2) which is based on these distance measurements.
The corresponding action of each agent is a relative spatial vector, to which the
drone should move, to minimize its cost function’s value.

Paper Outline: Section 2 describes our cost function for flocking with tar-
get seeking and related performance metrics. Section 3 introduces our method
to represent environmental knowledge and thereafter describes our distributed
flocking controller. Section 4 presents the results of our experimental evaluation.
Section 5 considers related work. Section 6 offers our concluding remarks.

2 Drone Flocking

This section starts with background on flocking, introduces our cost function for
flocking with target seeking, and then presents metrics to assess the quality of
a flocking controller.

2.1 What is a Flock?

A set of agents, D, is in a flock formation if the distance between every pair
of agents is range bounded; that is, the drones are neither too close to each
other nor too far apart. Our approach to flock formation is based on defining a
cost function such that the agents form a flock when the cost is minimized. The
requirement that the inter-agent distance is range bounded is encoded as the
first two terms of our cost function, namely the cohesion and separation terms
shown in the next section. Note that the Reynolds rules for forming a flock [19]
also include a term for aligning the drone’s velocities, apart from the cohesion
and separation terms. By not including velocity alignment term, we potentially
allow a few more behaviors, such as circling drones, but some of those behaviors
are eliminated by our third term, namely the target seeking term.
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Fig. 2. Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance (not imple-
mented in our method yet).

2.2 Cost Function

Consider drones ¢ and j, where ¢,5 € D. Let d;;, when it appears in the local
cost function of drone i, denote the distance between drone ¢ and drone j as
it appears to drone i; this may differ from the actual distance due to sensing
error. Similarly [; denotes the distance between drone i and the fixed target
location pyq,-. In all cases, distances are measured from the drone’s center of
the mass. Let 7g4rone denote the radius of each drone (specifically the radius of
the circumscribed sphere including propellers). In our formulation for the cost
function, drone ¢ has access to distances of only a subset H; C D of drones,
namely its local neighbors. Hence, we define a local cost function, parameterized
by 4, which uses only the distances to drones in H;. However for now we only
consider the case for global neighborhood, which is H; = D. We plan to extend
our experiments also to local neighborhood as future work (see Section 6). Let
dp, denote the tuple of distances from drone 4 to drones in H;. The cost function
¢ we use in this paper is defined for every drone i € D as in Equation (1).

C(deli) = CCOh(dHi) + Csep(dHi) + ctar(li) (1)

The value of the cohesion term increases as drones drift apart, and the separa-
tion term increases as drones get closer. Each term has a weight, denoted by a
subscripted w.
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Cohesion term:

1
Ceon(dH;) = Weoh * 17| : Z di;? (2)

JEH;

Separation term:

1 1
CSEP(dHi) = Wsep * | ‘ ’ ~ 2 (3)
B JEH; maw(dij - 2rdronea 0)
Here 0 denotes a very small positive value. The function max(.,0) ensures the
denominator remains nonzero, especially because sensor noise can cause distance
measurements to have errors.

To prevent the flock from moving in random directions, we currently use a target
seeking term with a fixed target location, denoted by piq,, for the entire flock.
Here [; denotes the distance between the center of drone ¢ and the fixed target
location piqr-

Target seeking term:
Ctar(li) = Wtar * li2 (4)

With only cohesion and separation, the whole flock would form and move in
random directions and random locations in absolute world coordinates. This
would make it of limited use in any real-world scenario. Our target seeking term
avoids this behaviour. All drones use the same target location; thus, this last
term assumes shared global knowledge of the target. The control algorithm will
still be fully distributed. A way to avoid having a fixed target location would be
to designate one of the drones as the leader of the flock. This leader could be
equipped with additional sensors to get information about its absolute position,
allowing it to employ a different control scheme. We leave that investigation for
future work.

2.3 Flock-Formation Quality metrics

We define two quality metrics to assess the quality of the flock formation achieved
by a flocking controller. To compute these quality metrics, we assume to have ac-
cess to full ground truth information about the absolute positions of the drones.
The position (center of mass) of drone ¢ is denoted by p;.

Collision avoidance: To avoid collisions, the distance between all pairs of drones
distance(D) must remain above a specified threshold distances,. We define
the metric for the minimum distance between any pair of drones as follows:

distance(D) = min i — Dj 5
istance(D) = _min_ [l ~ by )
distance(D) > distanceyp, (6)

We set distancein, = 2 - Tdrone + Tsafety, Where rgqpery is a safety margin.
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Compactness: Compactness of the flock is determined by the flock radius. Radius
is defined as the maximum distance of any drone from the centroid of the flock:

ZjED P

D] i (7)

radius(D) = max
ieD

The drones are said to be in a compact flock formation if radius(D) stays below
some threshold radiusy,; otherwise the drones are too far apart, not forming
a flock.

radius(D) < radiuss, (8)

The value for radius, is picked based on the drone model and other parameters

governing the flock formation problem. We set it to radiusep, = L \é;%"“, where

we use the drone radius rg4.one to incorporate the physical size and multiply by
a factor F.

3 Distributed Flocking Controller using Relative
Distances

In our distributed approach to flock formation, each drone picks the best action
at every time step. The action here is a target displacement vector. Each drone
picks the optimal displacement vector for itself by looking ahead in different spa-
tial directions and finding a location that would minimize the cost if this drone
moved there. To perform this search, each drone needs capability to estimate the
relative distances to other drones when it moves to different potential target lo-
cations. To perform this estimation, each drone stores some measurements from
past time steps, which is described in Section 3.1. Thereafter, Section 3.2 shows
how this stored knowledge is used by each drone to estimate relative distances
of other drones for different possible displacements of itself.

3.1 Environmental knowledge representation

We describe the procedure from the perspective of Drone i. The “environment”
for Drone i consists of the current distances to the neighboring drones (and the
fixed target), as this is all the information Drone i needs to evaluate the cost
function. To represent the knowledge of the environment, Drone i keeps two
matrices, a (k x 3)-matrix N and a (k x (|D|+1))-matrix P for some k > 3. The
j-th row of N is a displacement vector for Drone i. The j-th row of P is a vector
of change in distances of every other drone and the target to Drone ¢ (as seen by
Drone ¢ when it moved by displacement vector in j-th row of N). In particular,
P;; is the change in distance of Drone j (or target if j = |D| + 1) as seen by
Drone 7 when it moved by the vector N;,. The notation N;, denotes the [-th row
vector of matrix N. Let us see how the matrices N and P are generated.

Each drone is capable of measuring its own acceleration vector in three dimen-
sions a;. By integration, the velocity vector ¥; can be derived. Drone i constructs
the matrices NV and P as follows:
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1. Save the observations of time instant t. Let d;;: denote the distances to
Drone j, and let [;; denote the distance to the fixed target, at this time
instant ¢ (as obtained from the sensors).

diju =dij | j € Hit (9)
lig=1; |t (10)

2. Integrate velocity vector to keep track of its own position changes, which
gives the displacement vector w;:

¢
0 = / o dt (11)
t—At
3. If the norm of the change in position is larger than a threshold ||u;|| > sy,
calculate the changes in distances as follows:

dij = diji — diji—at (12)
li=diy—dit—nt (13)

Here d;j,t—a¢ denotes the observed distance of Drone j at the previous time
instant ¢ — At. If the length of the displacement vector is smaller than the
threshold, we go back to Step (1).

4. Add the displacement vector u; of Drone i as a row vector in matrix N and
add the vector (d;1,...,d;p|,l;) as a row vector in matrix P. Note that we
have assumed here that the neighborhood H; of Drone i is the full set D,

but the details can be easily adapted to the case when H; C D.

5. The process starts again at (1) and we thus keep adding rows to the matrices
N and P.

In this way, the matrix P reflects the available knowledge of how the distances to
other drones and to the target change when Drone ¢ moves along vector ;. Note
that this data gets stale as time progresses, and the newly added rows clearly
have more relevant and current information compared to the rows added earlier.
Furthermore note that u; is obtained by double integration and therefore it is
prone to acceleration sensing errors, and also numerical errors. This influence is
however limited, since integration times At are also small.

When the procedure above is followed, the matrices NV and P keep getting
bigger. Let N;, denote the [-th row vector of matrix N. Let N, Ny, N¢. denote
three displacement (row) vectors taken from the (most recent rows in) matrix
N such that they are linearly independent — that is, they are all different from
each other (Ny. # Npi # Ney), nonzero (Ng. # (1 Ny # 6, Ny # 6), and not
in a common plane ((Ng. X Ny, ) - New # 0). These three vectors form a basis in
the three-dimensional space. Using a basis transform it is therefore possible to
estimate the change for distances for any movement vector 4. Specifically, if

@ =MAg Naw+ Ap - Npw + A - N (14)
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then we can compute the estimated change in distances of each of the other
drones, d(u), and the target, {(@) for this displacement @ as follows:

(d(@),1(@)) = Aa - Pa+ X+ P+ Ac - Pe (15)

(addition and multiplication in Equation (15) are applied element-wise on the
vectors).

We have shown how the three vectors Ny., Np«, Nes can be used to infer the
expected change for any displacement vector @ for Drone i. To ensure that three
different vectors with meaningful data are present, our controller employs some
optimizations in addition to the procedure described above. A special startup
procedure with random movements is used to collect initial data. The three vec-
tors (Ngx, Nps, Nes) and their associated data in P are continuously updated to
avoid outdated information. However, a vector is only considered if the threshold
Sthr 18 exceeded within a certain time limit. This avoids updates when the drone
is moving very slowly over longer time-periods. To get the best quality of the
prediction for any displacement @, it is desirable to have the vectors (Ng., Nps,
N¢.) ideally, but not necessarily, orthogonal to each other. This also influences
which row (vector) gets replaced in the matrices N and P. As soon as one of the
vectors gets outdated, a random movement in an orthogonal direction might be
triggered to enhance the knowledge representation.

3.2 Distributed flocking controller

We now describe our control approach based on the cost function introduced
in Section 2.2 and on the environmental knowledge representation described in
Section 3.1.

The set of candidate positions () is defined as follows:

T

Q=3 1v|lre{-€q 0,60ty € {—€q,0,eq0}, 2 € {—€q,0,¢q} (16)
z

This gives a set of 27 points on a equally spaced three dimensional grid. The
spacing distance of this grid is eg. Over this set @) the best action gpeqt is
searched by minimizing the cost function c:

neat = arqgergin{f/’(@(q)@(@)} (17)

If two candidate positions g; and ¢o both have the same minimum value for the
cost function ¢, our implementation of argmin takes the last one based on the
implementation of the enumeration. The function d;(q) estimates the distances
to drones, where lAZ(q) estimates the distance to the target, if the action ¢ is
applied. For each ¢ € Q, the vector d;(¢q) (and the value 1;(q)) is calculated
by first computing the estimates of the change vector d;(q), and the change
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1;(¢) using Equation 15. Now the distances can be estimated by just adding the
estimated change to the currently measured distances d;, and I;:

di(q) = dix + di(q) (18)
Li(q) =L + L;(q) (19)

Each drone minimizes its local cost function (Eq. 17) in order to recompute the
desired set-point at every time step. As we similarly did in [4], this set-point is
then handed off to a low-level controller that controls the thrust of the drone’s
motors so that it steers towards this set-point.

4 Experiments

We evaluated our method using simulation experiments. The goal of the exper-
iments was to investigate and demonstrate the ability to form and maintain a
stable flock while holding position at a target location.

pa
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z
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Fig. 3. The ROS-node of the SPC controller for drone 7 receives distance measurements
to neighboring drones and control messages (e.g. swarm target location, start/stop
command). It outputs the set-point for the internal low level controller.
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4.1 Simulation Experiments

As a simulation framework, we use crazys [21], which is based on the Gazebo [12]
physics and visualization engine and the Robotic Operating System (ROS) [24].
Our algorithm is implemented in C++ as a separate ROS node. As shown in
Figure 3, it receives the measured distances to neighboring drones, and control
messages, such as the target location or a stop command, from the human op-
erator. It calculates the best next action according to Equations (16)-(19). The
parameter €g is determined empirically and fixed throughout the whole simu-
lation. Auxiliary functions, like hovering at the starting position, and landing
after the experiments are finished, are also implemented in this node.

In order to evaluate the control mechanism and its implementation, we fixed
the target location, as described above. This avoids drifting behaviour of the
whole flock, which could not be detected by relative distance measurements in
any way. Simulations were done with flocks of size |D|=5, 9, and 15. Figure 4
shows a screenshot of a simulation with 5 drones. All simulations use global
neighborhood (H; = D) for now.

Fig. 4. Screenshot of the end of the simulation with 5 drones. Shown from four different
camera views after the flock reached its target. The green dot indicates the target
location. The blue dots visualize the next action which is supplied to the lower level
controller.
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Fig. 5. Quality metrics for simulation with 5 drones. Threshold distance:n, for colli-
sion avoidance is satisfied most of the time. After settling in, the swarm radius remains
below the threshold radius¢p,, thus showing the ability to form a compact flock in the
simulation. (Quality metric recordings start at ¢ = 19 s after initialization procedure.)

4.2 Results

Early results show that our approach is able to properly form and maintain
a flock with only relative position measurements. Figure 5 shows performance
metrics over time for a simulation with 5 drones. The analysis of the quality
metrics for collision avoidance, and compactness show that our control approach
successfully maintains a stable flock (threshold distancey, is only violated
for very short moments). Note that these results are already obtained before
extensive controller tuning. Using carefully adjusted values for weop and wsep
should lead to even better results and maintain the threshold throughout the
whole simulation.

5 RELATED WORK

Reynolds [19] was the first to propose a flocking model, using cohesion, sep-
aration, and velocity alignment force terms to compute agent accelerations.
Reynolds’ model was extensively studied [10] and adapted for different applica-
tion areas [6]. Alternative flocking models are considered in [18], [15], [14], [22],
[25], and [20]. In all these approaches, absolute position measurements and/or
inter-agent communication were available. In our work, we only work with rela-
tive distance measurements and a fully distributed formulation.

In addition to these largely theoretical approaches, in [26] and [23], flocking
controllers are implemented and tested on real hardware. However, the approach
of [23] involves the use of nonlinear model-predictive control (NMPC). In con-
trast to our work, [26] also requires the velocity of neighboring drones.
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6 CONCLUSIONS

We introduced a method to control a flock only based on relative position mea-
surements to neighboring drones, and demonstrated its utility on the drone flock-
ing problem. We performed simulation experiments using a physics engine with a
detailed drone model. Our results demonstrated the ability to form and maintain
a flock, and hold its position on a target location.

Future work

As we currently have only intermediate results of the experiments with limited
number of agents, we plan to do more extensive testing with a wide set of different
scenarios, including larger number of drones, and local neighborhood (H; C
D). Neighborhood might be defined by euclidean distance, or alternatively by
topological distance, as introduced in [2]. As further directions of future work,
we plan to extend our approach with obstacle avoidance capabilities. We also
plan to test it for moving target locations and various path tracking scenarios. To
prepare for the transfer to real hardware we plan to introduce sensor noise in the
simulation and test the robustness of our method to cope with such disturbances.
As next goal it should then be implemented on real drones, specifically, Crazyflie
2.1-quadcopters [11].
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