
Abductive Analysis of Administrative Policies in
Rule-based Access Control

Puneet Gupta, Scott D. Stoller, and Zhongyuan Xu

Department of Computer Science, Stony Brook University, USA

In large organizations, the access control policy is managed by multiple users
(administrators). An administrative policy specifies how each user may change
the policy. The consequences of an administrative policy are often non-obvious,
because sequences of changes by different users may interact in unexpected
ways. Administrative policy analysis helps by answering questions such as user-
permission reachability, which asks whether specified users can together change
the policy in a way that achieves a specified goal, namely, granting a specified
permission to a specified user.

This paper presents a rule-based access control policy language, a rule-based
administrative policy model that controls addition and removal of rules and
facts, and a symbolic analysis algorithm for answering reachability queries. The
algorithm can analyze policy rules that refer to sets of facts (e.g., information
about users) that are not known at analysis time. The algorithm does this by
computing conditions on the initial set of facts under which the specified goal is
reachable by actions of the specified users.

1 Introduction

The increasingly complex security policies required by applications in large or-
ganizations cannot be expressed in a precise and robust way using access-control
lists or role-based access control (RBAC). This has led to the development
of attribute-based access control frameworks with rule-based policy languages.
These frameworks allow policies to be expressed at a higher level of abstraction,
making the policies more concise and easier to administer.

In large organizations, access control policies are managed by multiple users
(administrators). An administrative framework (also called administrative model)
is used to express policies that specify how each user may change the access con-
trol policy. Several administrative frameworks have been proposed for role-based
access control, starting with the classic ARBAC97 model [6]. Fully understand-
ing the implications of an administrative policy can be difficult, due to unantic-
ipated interactions between interleaved sequences of changes by different users.
This motivated research on analysis of administrative policies. For example, anal-
ysis algorithms for ARBAC97 and variants thereof can answer questions such as
user-permission reachability, which asks whether changes by specified users can
lead to a policy in which a specified user has a specified permission [5, 4, 7].

There is little work on administrative frameworks for rule-based access con-
trol [1, 3], and it considers only addition and removal of facts, not rules.

This paper defines a rule-based access control policy language, with a rule-
based administrative framework that controls addition and removal of both facts
and rules. We call this policy framework ACAR (Access Control and Administra-
tion using Rules). It allows administrative policies to be expressed concisely and
at a desirable level of abstraction. Nevertheless, fully understanding the implica-
tions of a rule-based administrative policy in ACAR is even more difficult than
fully understanding the implications of an ARBAC policy, because in addition
to considering interactions between interleaved sequences of changes by differ-
ent administrators, one must consider possible chains of inferences using rules
in each intermediate policy. This paper presents a symbolic analysis algorithm
for answering atom-reachability queries for ACAR policies, i.e., for determining
whether changes by specified administrators can lead to a policy in which some
instance of a specified atom, called the goal, is derivable. To the best of our
knowledge, this is the first analysis algorithm for a rule-based policy framework
that considers changes to the rules as well as changes to the facts.

It is often desirable to be able to analyze rule-based policies with incomplete
knowledge of the facts in the initial policy. For example, a database containing
those facts might not exist yet (if the policy is part of a system that has not been
deployed), or it might be unavailable to the policy engineer due to confidentiality
restrictions. Even if some database of initial facts exists and is available to the
policy engineer, more general analysis results that hold under limited assump-
tions about the initial facts are often preferable to results that hold for only
one given set of initial facts, e.g., because the policy might be deployed in many
systems with different initial facts.

There are two ways to handle this. In the deductive approach, the user spec-
ifies assumptions—in the form of constraints—about the initial policy, and the
analysis algorithm determines whether the goal is reachable under those con-
straints. However, formulating appropriate constraints might be difficult, and
might require multiple iterations of analysis and feedback. We adopt an abduc-
tive approach, in which the analysis algorithm determines conditions on the set of
facts in the initial policy under which the given goal is reachable. This approach
is inspired by Becker and Nanz’s abductive policy analysis for a rule-based policy
language [2], and our algorithm builds on their tabling-based policy evaluation
algorithm. The main difference between their work and ours is that they analyze
a fixed access control policy: they do not consider any administrative framework
or any changes to the rules or facts in the access control policy. Also, they do not
consider constructors or negation, while our policy language allows constructors
and allows negation applied to extensional predicates.

Our analysis algorithm may diverge on some policies. This is expected, be-
cause Becker and Nanz’s abductive algorithm (which solves a simpler problem)
may diverge, and because reachability for ACAR is undecidable. Undecidability
of this problem is a corollary of our proof in [7] that user-permission reacha-
bility is undecidable for ARBAC97 extended with parameters, since ARBAC97
policies can be encoded in ACAR in a straightforward way. Identifying classes
of policies for which the algorithm is guaranteed to terminate is a direction for

future work; for now, we note that the algorithm terminates for the case stud-
ies we have considered so far, including a non-trivial fragment of a policy for a
healthcare network. Also, the current version of the algorithm is incomplete (it
“gives up” in some cases), but the algorithm can be extended to eliminate this
incompleteness, following the approach sketched in Section 5.3; for now, we note
that the current version of the algorithm already succeeds (does not “give up”)
for some non-trivial policies, including our healthcare network case study.

2 Policy Framework

Policy Language The policy language is a rule-based language with construc-
tors (functors) and negation (denoted “!”). Predicates are classified as inten-
sional or extensional. Intensional predicates are defined by rules. Extensional
predicates are defined by facts. Constructors are used to construct terms repre-
senting operations, rules (being added or removed by administrative operations),
parameterized roles, etc. The grammar ensures that negation is applied only to
extensional predicates; this is why we distinguish intensional and extensional
predicates. The grammar appears below. p ranges over predicates, c ranges over
constructors (functors), and v ranges over variables. The grammar is parameter-
ized by the sets of predicates, variables, and constructors; these sets may be finite
or countable. Predicates and constructors start with a lowercase letter; variables
start with an uppercase letter. Constants are represented as constructors with
arity zero; the empty parentheses are elided. Subscripts in and ex are mnemonic
for intensional and extensional, respectively. A term or atom is ground if it does
not contain any variables. A substitution θ is ground, denoted ground(θ), if it
maps variables to ground terms. A policy is a set of rules and facts.

term ::= v | c(term∗)
atomex ::= pex (term∗)
atomin ::= pin(term∗)

literal ::= atomex | !atomex | atomin

rule ::= atomin :- literal∗

fact ::= ground instance of atomex

The distinguished predicate permit(user, operation) specifies permissions,
including permissions for administrative operations, as discussed below.

Administrative Framework The administrative framework defines an API
for modifying policies. Specifically, the operations in the API are addRule(rule),
removeRule(rule), addFact(atomex), and removeFact(atomex). Let AdminOp =
{addRule, removeRule, addFact, removeFact}. In addition, the framework de-
fines how permission to perform those operations are controlled. These permis-
sions are expressed using the permit predicate but given a special interpretation,
as described below.

A permission rule is a rule whose conclusion has the form permit(...). For
an operation op, an op permission rule is a rule whose conclusion has the form
permit(..., op(...)) . An administrative permission rule is an op permission
rule with op ∈ AdminOp. In a well-formed policy, the argument to addFact and
removeFact must be an extensional atom (it does not need to be ground).

A rule is safe if it satisfies the following conditions. (1) Every variable that
appears in the conclusion outside the arguments of addRule and removeRule

also appears in a positive premise. (2) Every variable that appears in a negative
premise also appears in a positive premise. (3) In every occurrence of permit,
the second argument is a constructor term, not a variable. (4) addRule and
removeRule do not appear outside the second argument of permit in the con-
clusion. A policy is safe if all rules in the policy are safe.

Policy Semantics. The semantics [[P]] of a policy P is the least fixed-point
of FP , defined by FP (I) = {aθ | (a :- a1, . . . , am, !b1, . . . , !bn) ∈ P ∧ (∀i ∈
[1..m] : aiθ ∈ I) ∧ (∀i ∈ [1..n] : biθ 6∈ I)}. To simplify notation, this definition
assumes that the positive premises appear before the negative premises; this
does not affect the semantics. Intuitively, [[P]] contains all atoms deducible from
P . Atoms in the semantics are ground except that arguments of addRule and
removeRule may contain variables. Limiting negation to extensional predicates
ensures that FP is monotonic. By the Knaster-Tarski theorem, the least fixed
point of FP can be calculated by repeatedly applying FP starting from the empty
set. Safety of the policy implies that, during this calculation, whenever bi 6∈ I is
evaluated, bi is ground; this simplifies the semantics of negation. We sometimes
write P ` a (read “P derives a”) to mean a ∈ [[P]].

Fixed Administrative Policy. Our goal in this paper is to analyze a changing
access control policy subject to a fixed administrative policy. Therefore, we con-
sider policies that satisfy the fixed administrative policy requirement, which says
that administrative permission rules cannot be added or removed, except that
addFact administrative permission rules can be added. We allow this exception
because it is useful in practice and can be accommodated easily.

We formalize this requirement as follows. A higher-order administrative per-
mission rule is an administrative permission rule whose conclusion has the form
permit(. . . , op(permit(. . . , op′(. . .))) with op ∈ AdminOp and op′ ∈ AdminOp;
in other words, it is a rule that permits addition and removal of administrative
permission rules. A rule satisfies the fixed administrative policy requirement if
either it is not a higher-order administrative permission rule or it is an ad-
ministrative permission rule having the above form with op = addRule and
op′ = addFact. A policy satisfies this requirement if all of the rules in it do.

Even in a policy with no higher-order administrative permission rules, the
available administrative permissions may vary, because addition and removal of
other rules and facts may change the truth values of the premises of administra-
tive permission rules.

Administrative Policy Semantics. The above semantics is for a fixed policy.
We specify the semantics of administrative operations and administrative per-
missions by defining a transition relation T between policies, such that 〈P, U :
Op, P ′)〉 ∈ T iff policy P permits user U to perform administrative operation
Op thereby changing the policy from P to P ′.

Rule R is at least as strict as rule R′ if (1) R and R′ have the same conclusion,
and (2) the set of premises of R is a superset of the set of premises of R′.

〈P,U : addRule(R), P ∪ {R}〉 ∈ T if there exists a rule R′ such that (1) R
is at least as strict as R′, (2) P ` permit(U, addRule(R′)), (3) R 6∈ P , (4) R
satisfies the fixed administrative policy requirement, and (5) R satisfies the safe
policy requirement. Note that R′ may be a partially or completely instantiated
version of the argument of addRule in the addRule permission rule used to
satisfy condition (2); this follows from the definition of `. Thus, an administrator
adding a rule may specialize the “rule pattern” in the argument of addRule by
instantiating some of the variables in it and by adding premises to it. We call
the argument of addRule or removeRule a “rule pattern”, even though it is
generated by the same grammar as rules, to emphasize that it can be specialized
in these ways, giving the administrator significant flexibility to customize the
rules, without giving the administrator additional authority.

〈P,U : removeRule(R), P \ {R}〉 ∈ T if there exists a rule R′ such that R is
as least as strict as R′, P ` permit(U, removeRule(R′)), and R ∈ P .

〈(P,U : addFact(a), P ∪ {a}〉 ∈ T if P ` permit(U, addFact(a)) and a 6∈ P .

〈(P,U : removeFact(a), P \ {a}〉 ∈ T if P ` permit(U, removeFact(a)) and
a ∈ P .

Case Study: Healthcare Network. As a case study, we wrote a policy with
about 50 rules for a healthcare network (HCN). The HCN policy defines a HCN
policy officer (hcn po) role that can add rules that give the facility policy offi-
cer (facility po) role for each constituent healthcare facility appropriate per-
missions to manage the facility’s policy. We consider policies for two kinds of
facilities: hospitals and substance abuse facilities.

For example, the rule below allows the facility po to add rules that allow
the hr manager to appoint a member of a workgroup as head of that workgroup:

permit(User, addRule(permit(HRM,

addFact(memberOf(Head, wgHead(WG, Fac))))

:- hasActivated(HRM, hr manager(Fac)),

!memberOf(HRM, workgroup(WG, Fac, WGtype))

memberOf(Head, workgroup(WG, Fac, WGtype))))

:- hasActivated(User, facility po(Fac))

where memberOf(U,R) holds if user U is a member of role R, hasActivated(U,R)
holds if U has activated R, WG is the workgroup name, Fac is the facility name,
and WGtype is team or ward. The negative premise prevents a hr manager from
appointing a head for a workgroup to which he or she belongs.

At Stony Brook Hospital (sb hosp), a member of facility po(sb hosp)
might use this permission to add the following rule, which allows hr manager(
sb hosp) to appoint a team member as the team head, with the additional
premise that the user is a clinician at sb hosp with any specialty Spcty.

permit(HRM, addFact(memberOf(Head, wgHead(WG, sb_hosp))))

:- hasActivated(HRM, hr manager(sb_hosp)),

!memberOf(HRM, workgroup(WG, sb hosp, team))

memberOf(Head, workgroup(WG, sb_hosp, team)),

memberOf(Head, clinician(sb_hosp, Spcty))

At Stony Brook Substance Abuse Facility (sb saf), facility po(sb saf) might
add a similar rule except with a stricter additional premise, requiring the team
head to have specialty psychiatry.

3 Abductive Reachability

This section defines abductive atom-reachability queries and their solutions.

Let a and b denote atoms, L denote a literal, and ~L denote a sequence of
literals. An atom a is subsumed by an atom b, denoted a � b, iff there exists
a substitution θ such that a = bθ. For an atom a and a set A of atoms, let
[[a]] = {a′ | a′ � a} and [[A]] =

⋃
a∈A [[a]].

A specification of abducible atoms is a set A of extensional atoms. An atom
a is abducible with respect to A if a ∈ [[A]].

A goal is an atom.

Given an initial policy P0 and a set U0 of users (the active administrators),
the state graph for P0 and U0, denoted SG(P0, U0), contains policies reachable
from P0 by actions of users in U0. Specifically, SG(P0, U0) is the least graph
(N,E) such that (1) P0 ∈ N and (2) 〈P,U : Op, P ′〉 ∈ E and P ′ ∈ N if
P ∈ N ∧ U ∈ U0 ∧ 〈P,U : Op, P ′〉 ∈ T .

An abductive atom-reachability query is a tuple 〈P0, U0, A,G0〉, where P0 is
a policy (the initial policy), U0 is a set of users (the users trying to reach the
goal), A is a specification of abducible atoms, and G0 is a goal. Informally, P0

contains rules and facts that are definitely present in the initial state, and [[A]]
contains facts that might be present in the initial state. Other facts are definitely
not present in the initial state and, since we make the closed world assumption,
are considered to be false.

A ground solution to an abductive atom-reachability query 〈P0, U0, A,G0〉 is
a tuple 〈∆,G〉 such that ∆ is a ground subset of [[A]], G is a ground instance
of G0, and SG(P0 ∪∆,U0) contains a policy P such that P ` G. Informally, a
ground solution 〈∆,G〉 indicates that a policy P in which G holds is reachable
from P0 ∪∆ through administrative actions of users in U0.

A minimal-residue ground solution to a query is a ground solution 〈∆,G〉
such that, for all ∆′ ⊂ ∆, 〈∆′, G〉 is not a ground solution to the query.

A tuple disequality has the form 〈t1 . . . , tn〉 6= 〈t′1, . . . , t′n〉, where the ti and
t′i are terms.

A complete solution to an abductive atom-reachability query 〈P0, U0, A,G0〉
is a set S of tuples of the form 〈∆,G,D〉, where ∆ is a set of atoms (not neces-
sarily ground), G is an atom (not necessarily ground), and D is a set (interpreted
as a conjunction) of tuple disequalities over the variables in ∆ and G, such that
(1) Soundness: S represents ground solutions to the query, i.e.,

⋃
s∈S [[s]] ⊆ Sgnd ,

where [[〈∆,G,D〉]] = {〈∆θ,Gθ〉 | ground(θ) ∧Dθ = true} and Sgnd is the set of
ground solutions to the query, and (2) Completeness: S represents all minimal-
residue ground solutions to the query, i.e.,

⋃
s∈S [[s]] ⊇ Smin-gnd , where Smin-gnd

is the set of minimal-residue ground solutions to the query.

Transition Rules:

(root) ({〈G〉}]N,Ans,Wait)→ (N ∪N ′,Ans,Wait)
if N ′ = generateP (G)

(ans) ({n}]N,Ans,Wait)→ (N ∪N ′,Ans[G 7→ Ans(G) ∪ {n}],Wait)
if n is an answer node with index G
6 ∃n′ ∈ Ans(G) : n � n′
N ′ =

⋃
n′′∈Wait(G)

resolve(n′′, n)

(goal1) ({n}]N,Ans,Wait)→ (N ∪N ′,Ans,Wait [Q′ 7→Wait(Q′) ∪ {n}])
if n is a goal node with current subgoal Q
∃Q′ ∈ dom(Ans) : Q � Q′

N ′ =
⋃

n′∈Ans(Q′) resolve(n, n′)

(goal2) ({n}]N,Ans,Wait)→ (N ∪ {〈Q〉},Ans[Q 7→ ∅],Wait [Q 7→ {n}])
if n is a goal node with current subgoal Q
∀Q′ ∈ dom(Ans) : Q 6� Q′

Auxiliary Definitions:

〈G; [];S;~c;R;∆〉 � 〈G; [];S′;~c′;R′;∆′〉 iff |∆| ≥ |∆′| ∧ (∃θ . S = S′θ ∧∆ ⊇ ∆′θ)

for an answer node n = 〈 ; [];Q′; ; ;∆′〉, and Q′′ and ∆′′ fresh renamings of Q′ and ∆′,

resolve(〈G; [Q, ~Q];S;~c;R;∆〉, n) =

{n′} if unifiable(Q,Q′′)

where θ = mostGeneralUnifier(Q,Q′′)

n′ = 〈G; ~Qθ;Sθ; [~c;n];R;∆θ ∪∆′′θ〉
∅ otherwise

generateP,A(G) =
⋃

(Q←~Q)∈P resolve(〈G; [Q, ~Q];Q; [];Q← ~Q; ∅〉, 〈G; [];G; []; ; ∅〉)
∪ (if G ∈ [[A]] then {〈G; [];G; []; abduction; {G}〉} else ∅)

Fig. 1. Becker and Nanz’s algorithm for tabled policy evaluation with proof construc-
tion and abduction.

4 Becker and Nanz’s Algorithm for Tabled Policy
Evaluation with Proof Construction and Abduction

This section briefly presents Becker and Nanz’s algorithm for tabled policy eval-
uation extended with proof construction and abduction [2]. This section is based
closely on the presentation in their paper.

Becker and Nanz’s algorithm appears in Figure 1. It defines a transition
system, in which each state is a tuple of the form (N,Ans,Wait), where N is a
set of nodes, Ans is an answer table, and Wait is a wait table, as defined below,
and where the transitions between states are defined by the transition rules in
the upper half of the figure. Disjoint union] is used for pattern matching on
sets: N matches N1]N2 iff N = N1 ∪N2 and N1 ∩N2 = ∅.

A node is either a root node 〈G〉, where G is an atom, or a tuple of the

form 〈G; ~Q;S;~c;R;∆〉, where G is an atom called the index (the goal whose

derivation this node is part of), ~Q is a list of subgoals that remain to be solved

in the derivation of the goal, S is the partial answer (the instance of G that
can be derived using the derivation that this node is part of), ~c is the list of
child nodes of this node, R is the rule used to derive this node from its children
in the derivation of S, and ∆ is the residue (the set of atoms abduced in this
derivation). Note that, in the definition of generate, we use “abduction” as
the name of the rule used to derive an abduced fact. If the list Q of subgoals
is empty, the node is called an answer node with answer S. Otherwise, it is
called a goal node, and the first atom in Q is its current subgoal. Each answer
node is the root of a proof tree; goal nodes (representing queries) are not in

proof trees. Selectors for components of nodes are: for n = 〈G; ~Q;S;~c;R;∆〉,
index(n) = G, subgoals(n) = ~Q, pAns(n) = S, children(n) = ~c, rule(n) = R,
and residue(n) = ∆.

An answer table is a partial function from atoms to sets of answer nodes.
The set Ans(G) contains all answer nodes for the goal G found so far.

A wait table is a partial function from atoms to sets of goal nodes. The set
Wait(G) contains all those nodes whose current subgoal is waiting for answers
from 〈G〉. Whenever a new answer for 〈G〉 is produced, the computation of these
waiting nodes is resumed.

The auxiliary definitions in the lower half of Figure 1 define the subsumption
relation � on nodes and the resolve and generate functions. Intuitively, if
n � n′ (read “n is subsumed by n′”), then the answer node n provides no more
information than n′, so n can be discarded. resolve(n, n′) takes a goal node n
and an answer node n′ and combines the current subgoal of n with the answer
provided by n′ to produce a new node with fewer subgoals. generateP,A(G)
generates a set of nodes for a query 〈G〉 by resolving G against the rules of
policy P , and by abducing G if G is abducible with respect to A. Constructors
are not considered in [2], but the algorithm can handle them if the functions for
matching and unification are extended appropriately. .

The initial state for goal G is ({〈G〉}, {G 7→ ∅}, {G 7→ ∅}). A state S is a final
state iff there is no state S′ and such that S → S′. Given a goal G, start with
the initial state for G and apply transition rules repeatedly until a final state is
reached. In that final state, Ans(G) represents all derivable instances of G.

5 Analysis Algorithm

The algorithm has three phases. Phase 1 transforms the policy to eliminate
addRule and removeRule. Phase 2 is a modified version of Becker and Nanz’s
tabling algorithm described above; it produces candidate solutions. Recall that
their algorithm attempts to derive a goal from a fixed policy. We modify the
tabling algorithm, and transform its input, to enable it to compute sets of policy
updates (i.e., administrative operations) needed to derive the goal. However,
modifying the tabling algorithm to incorporate a notion of time (i.e., a notion
of the order in which updates to the policy are performed, and of the resulting
sequence of intermediate policies) would require extensive changes, so we do
not do that. Instead, we introduce a third phase that checks all conditions that
depend on the order in which administrative operations are performed. These

conditions relate to negation, because in the absence of negation, removals are
unnecessary, and additions can be done in any order consistent with the logical
dependencies that the tabling algorithm already takes into account.

5.1 Phase 1: Elimination of addRule and removeRule

The policy P ′ obtained by elimination of addRule and removeRule from a policy
P is not completely equivalent to P—in particular, the state graphs SG(P,U0)
and SG(P ′, U0) differ, and some kinds of properties, such as availability of per-
missions, are not preserved. However, P ′ is equivalent to P in the weaker sense
that using P ′ in place of P in an abductive atom-reachability query does not
change the answer to the query. Informally, this is because the answer to such
a query depends only on the “upper bounds” of the derivable facts in reachable
policies, not on the exact sets of derivable facts in each reachable policy, and
this transformation preserves those upper bounds.

Elimination of removeRule. The policy elimRmRule(P) is obtained from P
by simply deleting all removeRule permission rules (recall that safety allows
removeRule to appear only in the conclusion of such rules). This eliminates
transitions that remove rules defining intensional predicates, and hence elimi-
nates transitions that make intensional predicates smaller. Since negation can-
not be applied to intensional predicates, making intensional predicates smaller
never makes more facts (including instances of the goal) derivable. Therefore,
every instance of the goal that is derivable in some policy reachable from P
is derivable in some policy reachable from elimRmRule(P). Conversely, since
SG(elimRmRule(P0), U0) is a subgraph of SG(P0, U0), every instance of the goal
that is derivable in some policy reachable from elimRmRule(P) is derivable in
some policy reachable from P . Therefore, the elimRmRule transformation does
not affect the answer to abductive atom-reachability queries.

Elimination of addRule. We eliminate addRule by replacing addRule permis-
sion rules (recall that safety allows addRule to appear only in the conclusion of
such rules) with new rules that use addFact to “simulate” the effect of addRule.
Specifically, the policy elimAddRule(P) is obtained from P as follows. Let R

be an addRule permission rule permit(U, addRule(L :- ~L1)) :- ~L2 in P . Rule
R is replaced with two rules. One rule is the rule pattern in the argument of
addRule, extended with an additional premise using a fresh extensional pred-
icate auxR that is unique to the rule: L :- ~L1, auxR(~X), where the vector of

variables ~X is ~X = vars(L :- ~L1) ∩ (vars({U}) ∪ vars(~L2)). The other is an
addFact permission rule that allows the user to add facts to this new predicate:
permit(U, addFact(auxR(~X))) :- ~L2. The auxiliary predicate auxR keeps track
of which instances of the rule pattern have been added. Recall from Section 2
that users are permitted to instantiate variables in the rule pattern when adding
a rule. Note that users must instantiate variables that appear in the rest of the
addRule permission rule, i.e., in vars({U})∪ vars(~L2), because if those variables
are not grounded, the permit fact necessary to add the rule will not be derivable
using rule R. Therefore, each fact in auxR records the values of those variables.

In other words, an addRule transition t in SG(P0, U0) in which the user adds

an instance of the rule pattern with ~X instantiated with ~c is “simulated” in
SG(elimAddRule(P0), U0) by an addFact transition t that adds auxR(~c).

Note that SG(P0, U0) also contains transitions t′ that are similar to t except
that the user performs additional specialization of the rule pattern by instan-
tiating additional variables in the rule pattern or adding premises to it. Those
transitions are eliminated by this transformation, in other words, there are no
corresponding transitions in SG(elimAddRule(P0), U0). This is sound, because
those transitions lead to policies in which the intensional predicate p that ap-
pears in literal L (i.e., L is p(. . .)) is smaller, and as argued above, since negation
cannot be applied to intensional predicates, eliminating transitions that lead to
smaller intensional predicates does not affect the answer to abductive atom-
reachability queries.

Applying this transformation to a policy satisfying the fixed administrative
policy requirement produces a policy containing no higher-order administrative
permission rules.

From the above arguments, we conclude: For every policy P0, set U0 of users,
and atom a not in excludedAtoms, SG(P0, U0) contains a policy P with a ∈ [[P]]
iff SG(elimAddRule(elimRmRule(P0)), U0) contains a policy P ′ with a ∈ [[P ′]],
where excludedAtoms is the set of atoms of the form permit(. . . , addRule(. . .)),
permit(. . . , removeRule(. . .)), auxR(. . .), or permit(. . . , addFact(auxR(. . .))).
From this, it is easy to show that answers to abductive atom-reachability queries
are preserved by this transformation. Subsequent phases of the algorithm analyze
the policy elimAddRule(elimRmRule(P0)).

5.2 Phase 2: Tabled Policy Evaluation

Phase 2 is a modified version of Becker and Nanz’s algorithm. It considers three
ways to satisfy a positive subgoal: through an inference rule, through addition
of a fact (using an addFact permission rule), and through abduction (i.e., by
assumption that the subgoal holds in the initial policy and still holds when the
rule containing it as a premise is evaluated).

To allow the algorithm to explore addition of facts as a way to satisfy posi-
tive subgoals, without directly modifying the algorithm, we transform addFact

permission rules into ordinary inference rules. Specifically, each addFact permis-
sion rule permit(U, addFact(a)) :- ~L is replaced with the rule a :- ~L, u0(U).
The transformation also introduces a new extensional predicate u0 and, for each
u ∈ U0, the fact u0(u) is added to the policy. This transformation changes the
meaning of the policy: the transformed rule means that a necessarily holds when
~L holds, while the original addFact permission rule means that a might (or

might not) be added by an administrator when ~L holds. This difference is signif-
icant if a appears negatively in a premise of some rule. This change in meaning
is acceptable in phase 2, because phase 2 does not attempt to detect conflicts
between negative subgoals and added facts. This change in the meanings of rules
used in phase 2 does not affect the detection of such conflicts in phase 3.

The algorithm considers two ways to satisfy a negative subgoal: through
removal of a fact (using a removeFact permission rule) and through abduction
(i.e., by assumption that the negative subgoal holds in the initial policy and still
holds when the rule containing it as a premise is evaluated).

To allow the algorithm to explore removal of facts as a way to satisfy negative
subgoals, removeFact permission rules are transformed into ordinary inference
rules with negative conclusions. Specifically, each removeFact permission rule
permit(U, removeFact(a)) :- ~L is replaced with the rule !a :- ~L, u0(U).

Let elimAddRmFact(P) denote the policy obtained from P by transforming
addFact and removeFact rules as described above. An administrative node (or
“admin node”, for short) is a node n such that rule(n) is a transformed addFact

or removeFact permission rule. isAdmin(n) holds iff n is an administrative node.
The algorithm can abduce a negative extensional literal !a when this is con-

sistent with the initial policy, in other words, when a is not in P0. To enable
this, in the definition of generate, we replace “G ∈ [[A]]” with “G ∈ [[A]]∨ (∃a ∈
Atomex . a 6∈ P0 ∧ G is !a)”, where Atomex is the set of extensional atoms. If a is
not ground, disequalities in dinit in phase 3 will ensure that the solution includes
only instances of a that are not in P0.

The tabling algorithm treats the negation symbol “!” as part of the predicate
name; in other words, it treats p and !p as unrelated predicates. Phase 3 interprets
“!” as negation and checks appropriate consistency conditions.

The tabling algorithm explores all derivations for a goal except that the sub-
sumption check in transition rule (ans) in Figure 1 prevents use of the derivation
represented by answer node n from being added to the answer table and thereby
used as a sub-derivation of a larger derivation if the partial answer in n is sub-
sumed by the partial answer in an answer node n′ that is already in the answer
table. However, the larger derivation that uses n′ as a derivation of a subgoal
might turn out to be infeasible (i.e., have unsatisfiable ordering constraints) in
phase 3, while the larger derivation that uses n as a derivation of that subgoal
might turn out to be feasible. We adopt the simplest approach to overcome this
problem: we replace the subsumption relation � in transition rule (ans) with the
α-equality relation =α, causing the tabling algorithm to explore all derivations
of goals. α-equality means equality modulo renaming of variables that do not
appear in the top-level goal G0.

An undesired side-effect of this change is that the algorithm may get stuck in a
cycle in which it repeatedly uses some derivation of a goal as a sub-derivation of a
larger derivation of the same goal. Exploring the latter derivation is unnecessary,
because it will be subjected in phase 3 to the same or more constraints as the for-
mer derivation. Therefore, we modify the definition of resolve as follows, so that
the algorithm does not generate a node n′ corresponding to the latter derivation:
we replace unifiable(Q,Q′′) with unifiable(Q,Q′′) ∧ noCyclicDeriv(n′), where

noCyclicDeriv(n′) =6 ∃d ∈ proof(n′). isAns(d)
∧ 〈index(d),pAns(d), residue(d)〉 =α 〈index(n′),pAns(n′), residue(n′)〉

where the proof of a node n, denoted proof(n), is the set of nodes in the proof
graph rooted at node n, i.e., proof(n) = {n} ∪

⋃
n′∈children(n) proof(n′), and

where isAns(n) holds iff n is an answer node. noCyclicDeriv(n′) does not check
whether rule(n′) = rule(d) or subgoals(n′) = subgoals(d), because exploration
of n′ is unnecessary, by the above argument, regardless of the values of rule(n′)
and subgoals(n′).

We extend the algorithm to store the partial answer substitution, denoted
θpa(n), in each node n. This is the substitution that, when applied to index(n),
produces pAns(n). In the generate function, the θpa component in both nodes
passed to resolve is the empty substitution. In the resolve function, θpa(n′) is
θ ◦ θfr ◦ θpa(n1), where θfr is the substitution that performs the fresh renaming
of Q′ and ∆′, and n1 denotes the first argument to resolve.

In summary, given an abductive atom-reachability query of the form in Sec-
tion 3, phase 2 applies the tabling algorithm, modified as described above, to the
policy elimAddRmFact(elimAddRule(elimRmRule(P0))) with the given goal G0

and specification A of abducible atoms.

5.3 Phase 3: Ordering Constraints

Phase 3 considers constraints on the execution order of administrative opera-
tions. The ordering must ensure that, for each administrative node or goal node
n, (a) each administrative operation n′ used to derive n occurs before n (this is a
“dependence constraint”) and its effect is not undone by a conflicting operation
that occurs between n′ and n (this is an “interference-freedom constraint”), and
(b) each assumption about the initial policy on which n relies is not undone by
an operation that occurs before n (this is an “interference-freedom constraint”).

The overall ordering constraint is represented as a Boolean combination of
labeled ordering edges. A labeled ordering edge is a tuple 〈n, n′, D〉, where the
label D is a conjunction of tuple disequalities or false, with the interpretation:
n must precede n′, unless D holds. if D holds, then n and n′ operate on distinct
atoms, so they commute, so the relative order of n and n′ is unimportant.

Pseudocode for phase 3 appears in Figures 2 and 3. The algorithm generates
the overall ordering constraint, puts the Boolean expression in DNF, and checks,
for each clause c, whether the generated ordering constraints can be satisfied, i.e.,
whether they are acyclic. If so, the disequalities labeling the ordering constraints
do not need to be included in the solution. However, if the generated ordering
constraints are cyclic, then the algorithm removes a minimal set of ordering
constraints to make the remaining ordering constraints acyclic, and includes the
disequalities that label the removed ordering constraints in the solution. After
constraints have been checked, negative literals are removed from the residue;
this is acceptable, because the problem definition asks for a representation of
only minimal-residue ground solutions, not all ground solutions The algorithm
can easily be extended to return a plan (a sequence of administrative operations
that leads to the goal) for each solution.

Repeated Administrative Operations. Tabling re-uses nodes, including, in
our setting, administrative nodes. This makes the analysis more efficient and
avoids unnecessary repetition of administrative operations in plans. However, in
some cases, administrative operations need to be repeated; for example, it might

be necessary to add a fact, remove it, and then add it again, in order to reach the
goal. The current version of our algorithm cannot generate plans with repeated
administrative operations, but it does identify when repeated operations might
be necessary, using the function mightNeedRepeatedOp, and returns a message
indicating this. Specifically, mightNeedRepeatedOp(c, ng) returns true if some
node n in c is a child of multiple nodes in proof(ng); in such cases, it might
be necessary to replace n with multiple nodes, one for each parent, in order to
satisfy the ordering constraints. To achieve this, the algorithm can be modified
so that, if mightNeedRepeatedOp returns true, the algorithm re-runs phases 2
and 3 but this time constructs new answer nodes, instead of re-using tabled
answers, for the nodes identified by mightNeedRepeatedOp as possibly needing
to be repeated.

5.4 Implementation and Experience.

We implemented the analysis algorithm in 5000 lines of OCaml and applied it to
part of the policy PHCN for our healthcare network case study with 30 admin-
istrative permission rules. We included facts about a few prototypical users in
PHCN: fpo1, a member of facility po(sb hosp); clin1, a clinician at sb hosp;
and user1, a user with no roles. A sample abductive atom-reachability query
that we evaluated has P0 = PHCN, U0 = {fpo1, user1}, A = {memberOf(User,
workgroup(WG, sb hosp, team))}, and G0 = memberOf(GoalUser, wgHead(

cardioTeam, sb hosp)). The analysis takes about 1.5 seconds, generates 2352
nodes, and returns five solutions. For example, one solution has partial answer
memberOf(GoalUser, wgHead(cardioTeam, sb hosp)), residue {memberOf(
GoalUser, workgroup(cardioTeam, sb hosp, team))}, and tuple disequality
〈GoalUser〉 6= 〈fpo1〉. The disequality reflects that fpo1 can appoint himself
to the hr manager(sb hosp) role, can then appoint himself and other users as
members of cardioTeam, and can then appoint other users as team head, but
cannot then appoint himself as team head, due to the negative premise in the
sample rules at the end of Section 2.

References

1. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: Proc.
22nd IEEE Computer Security Foundations Symposium (CSF). pp. 203–217 (2009)

2. Becker, M.Y., Nanz, S.: The role of abduction in declarative authorization poli-
cies. In: Proc. 10th International Symposium on Practical Aspects of Declarative
Languages (PADL 2008). pp. 84–99. Springer-Verlag (2008)

3. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Transactions on Information and System Security 13(3) (2010)

4. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards formal veri-
fication of role-based access control policies. IEEE Transactions on Dependable and
Secure Computing 5(4), 242–255 (2008)

5. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM Trans-
actions on Information and System Security 9(4), 391–420 (Nov 2006)

solutions = ∅
for each node ng ∈ Ans(G)

// consistency constraint: disequalities that ensure consistency of initial state,
// i.e., positive literals are distinct from negative literals.
dinit =

∧
{args(a) 6= args(b) | a ∈ facts(P0) ∪ residue(ng) ∧ !b ∈ residue(ng) ∧ unifiable(a, b)}

if ¬satisfiable(dinit)
continue

endif
O = orderingConstraints(ng)
if (∃ clause c in O. the ordering constraints in c are acyclic)

// the ordering constraints for ng are satisfiable without imposing disequalities.
// intersect residue with Atomex (the extensional atoms) to remove negative literals.
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , dinit〉}

else
// the ordering constraints for ng are not satisfiable in general, but might
// be satisfiable if disequalities are imposed to ensure that some
// administrative operations operate on distinct atoms and therefore commute.
for each clause c in O

if mightNeedRepeatedOp(c, ng)
// the current version of the algorithm does not support repeated operations
return “repeated operations might be needed”

endif
Dord = ∅
// c is a conjunction (treated as a set) of labeled ordering constraints.
// remove some ordering constraints F from c to make the remaining ordering
// constraints acyclic, and insert in Dord the conjunction d of dinit and the
// disequalities labeling the removed ordering constraints.
Cyc = set of all cycles in ordering constraints for clause c
FAS = {F | F contains one edge selected from each cycle in Cyc}
// smFAS is the set of ⊆-minimal feedback arc sets (FASs) for clause c
smFAS = {F ∈ FAS | 6 ∃F ′ ∈ FAS . F ′ ⊂ F}
for each F in smFAS
d = dinit ∧

∧
{d′ | 〈n1, n2, d

′〉 ∈ F}
if satisfiable(d) ∧ ¬(∃d′ ∈ Dord. d

′ ⊆ d)
Dord = Dord ∪ {d}

endif
endfor
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d〉 | d ∈ Dord}

endfor
endif

endfor
return solutions

Fig. 2. Pseudo-code for Phase 3.

6. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and Systems Security
2(1), 105–135 (Feb 1999)

function orderingConstraints(ng)
θ = θpa(ng)
// dependence constraint: an admin node ns that supports n must occur before n.
Odep =

∧
{〈ns, n, false〉 | n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ ns ∈ adminSupport(n)}

// all of the constraints below are interference-freedom constraints.
// a removeFact node nr that removes a supporting initial fact of a node n must occur
// after n.
Orm-init =

∧
{〈n, nr, args(a)θ 6= args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ proof(ng) ∧ isRmFact(nr)
∧ n 6= nr ∧ a ∈ supportingInitFact(n) ∧ unifiable(!a,pAns(nr))}

// an addFact node na that adds a fact whose negation is a supporting initial fact
// of a node n must occur after n.
Oadd-init =

∧
{〈n, na, args(a)θ 6= args(pAns(na))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ proof(ng) ∧ isAddFact(na)
∧ n 6= na ∧ !a ∈ supportingInitFact(n) ∧ unifiable(a,pAns(na))}

// an addFact node na that adds a supporting removed fact of a node n must occur
// either before the removal of that fact or after n.
Oadd-rmvd =∧
{〈na, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ adminSupport(n) ∧ isRmFact(nr)
∧ na ∈ proof(ng) ∧ isAddFact(na) ∧ n 6= na ∧ unifiable(!pAns(na),pAns(nr))}

// a removeFact node nr that removes a supporting added fact of a node n must occur
// either before the addition of that fact or after n
Orm-added =∧
{〈nr, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ adminSupport(n) ∧ isAddFact(na)
∧ nr ∈ proof(ng) ∧ isRmFact(nr) ∧ n 6= nr ∧ unifiable(!pAns(na),pAns(nr))}

// conjoin all ordering constraints and convert the formula to disjunctive normal form.
O = DNF(Odep ∧Orm-init ∧Oadd-init ∧Oadd-rmvd ∧Orm-added)
// for each clause c of O, merge labeled ordering constraints for the same pair of nodes.
for each clause c in O

while there exist n1, n2, D,D
′ such that c contains 〈n1, n2, D〉 and 〈n1, n2, D

′〉
replace 〈n1, n2, D〉 and 〈n1, n2, D

′〉 with 〈n1, n2, D ∧D′〉 in c
endwhile

endfor
return O

args(a) = a tuple containing the arguments of atom a

support(n) = {n′ ∈ proof(n) | isAns(n′) ∧ n′ 6= n
¬∃na.isAdmin(na) ∧ descendant(n, na) ∧ descendant(na, n

′)}
adminSupport(n) = {n′ ∈ support(n) | isAdmin(n′)}
supportingInitFact(n) = {pAns(n′) | n′ ∈ support(n)

∧ (rule(n′) ∈ facts(P0) ∨ rule(n′) = abduction)}

Fig. 3. Ordering constraints for an answer node ng.

7. Stoller, S.D., Yang, P., Gofman, M., Ramakrishnan, C.R.: Symbolic reachability
analysis for parameterized administrative role based access control. Computers &
Security 30(2-3), 148–164 (March-May 2011)

