
A Distributed Simplex Architecture
for Multi-Agent Systems⋆

Usama Mehmoodb, Shouvik Roya, Amol Damarea, Radu Grosuc, Scott A.
Smolkaa, Scott D. Stollera

aStony Brook University, Stony Brook, NY, USA
bInformation Technology University, Lahore, Pakistan

cTechnische Universitat Wien, Wein, Austria

Abstract

We present the Distributed Simplex Architecture (DSA), a new runtime assurance
technique that provides safety guarantees for multi-agent systems (MASs). DSA
is inspired by the Simplex control architecture of Sha et al., but with some signif-
icant differences. The traditional Simplex approach is limited to single-agent sys-
tems or a MAS with a centralized control scheme. DSA addresses this limitation
by extending the scope of Simplex to include MASs under distributed control. In
DSA, each agent runs a local instance of traditional Simplex such that the preser-
vation of safety in the local instances implies safety for the entire MAS. Control
Barrier Functions (CBFs) play a critical role. They are used to define DSA’s core
components—the baseline controller and the decision module’s logic for switch-
ing between advanced and baseline control—and they provide the basis for the
proof of safety. We present a general proof of safety for DSA, provided the CBF-
related optimization problem solved by the baseline controller is feasible (has a
solution) at each time step for which the baseline controller is in control. We also
propose a novel extension to the switching logic designed to avoid states in which
this optimization problem is infeasible. Finally, we present experimental results
for several case studies, including flocking with collision avoidance, safe naviga-
tion of ground rovers through way-points, and safe operation of a microgrid.

Keywords: Runtime assurance, Simplex control architecture, Control Barrier
Functions, Distributed flocking.

⋆This work is supported in part by NSF awards OIA-2040599, ITE-2134840, CCF-1918225,
CCF-1954837, CPS-1446832 and ONR award N000142012751.

Preprint submitted to Journal of Systems Architecture December 1, 2022

Process

Advanced
Controller

(AC)

Baseline
Controller

(BC)

Decision
Module
(DM)

Agent i Si,2

Si,m

Si,1

DSA

Rest of
Network

DSA

Agent i
DSA

Agent k

DSA

Agent j

DSA

Agent l

Figure 1: Architectural overview of DSA. Agents are homogeneous and operate under DSA con-
trol; the figure zooms in on DSA components for agent i. Sensed state of agent i’s jth neighbor
denoted as Si,j . AC, BC, and DM take as input the state of the agent and its neighbors.

1. Introduction

A multi-agent system (MAS) is a group of autonomous, intelligent agents that
work together to solve tasks and carry out missions. MAS applications include
the design of power systems and smart-grids [1, 2], autonomous control of robotic
swarms for monitoring, disaster management, military battle systems, etc. [3], and
sensor networks [4]. Many MAS applications are safety-critical. It is therefore
paramount that MAS control strategies ensure safety.

In this paper, we present the Distributed Simplex Architecture (DSA), a new
runtime assurance technique that provides safety guarantees for MASs under dis-
tributed control. DSA is inspired by Sha et al.’s Simplex Architecture [5, 6], but
differs from it in significant ways. The Simplex Architecture provides runtime
assurance of safety by switching control from an unverified (hence potentially
unsafe) advanced controller (AC) to a verified-safe baseline controller (BC), if
the action produced by the AC could result in a safety violation in the near fu-
ture. The switching logic is implemented in a verified decision module (DM). The
applicability of the traditional Simplex Architecture is limited to systems with a
centralized control architecture.

DSA, illustrated in Fig. 1, addresses this limitation by re-engineering the tra-
ditional Simplex architecture to widen its scope to include MASs. Also, as in [7],
it implements reverse switching by reverting control back to the AC when it is
safe to do so.

In DSA, for each agent, there is a verified-safe BC and a verified switching
logic such that if all agents operate under DSA, then safety of the MAS is guaran-
teed. The BC and DM along with the AC are distributed and depend only on local
information. We note that each agent needs to acquire, either through sensing
or direct communication, the partial state of other agents in its locality. The ex-
act state variables that need to be shared depend on the workings of the advanced

2

controller and the nature of the safety constraints. DSA itself is distributed in that
it involves one local instance of traditional Simplex per agent such that the con-
junction of their respective safety properties yields the desired safety property for
the entire MAS. For example, consider our flocking case study, where a group of
robotic agents is moving cohesively, and we want to establish collision-freedom
for the entire MAS. This can be accomplished in a distributed manner by showing
that each local instance of Simplex, say for agent i, ensures collision-freedom for
agent i and its neighboring agents.

DSA allows agents to switch their mode of operation independently. At any
given time, some agents may be operating in AC mode while others are operating
in BC mode. Our approach to the design of the BC and DM leverages Control
Barrier Functions (CBFs), which have been used to synthesize safe controllers
[8, 9, 10], and are closely related to Barrier Certificates used for safety verification
of closed dynamical systems [11, 12]. A CBF is a mapping from the system’s (i.e.,
plant’s) state space to a real number, with its zero level-set partitioning the state
space into safe and unsafe regions. If certain inequalities on the derivative of the
CBF in the direction of the state trajectories (also known as Lie derivative) are
satisfied, then the corresponding control actions are considered safe (admissible).

In DSA, the BC is designed as an optimal controller with the goal of increasing
a utility function based on the Lie derivatives of the CBFs. As CBFs are a measure
of the safety of a state, optimizing for control actions with higher Lie-derivative
values provides a direct way to make the state safer. The safety of the BC is further
guaranteed by constraining the control action to remain in a set of admissible
actions that satisfy certain inequalities on the Lie derivatives of the CBFs.

CBFs are also used in the design of the switching logic, as they provide an
efficient method for checking whether an action could lead to a safety violation
during the next time step. We provide a general proof of safety for DSA, provided
the optimization problem solved by the baseline controller at each time step is fea-
sible, i.e., has a solution in each visited state. We also propose a novel extension
to the switching logic designed to avoid states in which this optimization problem
is infeasible. In particular, we introduce a state-dependent measure of the size of
the solution space, and we extend the switching logic to switch to the BC if the
size is below a threshold.

We demonstrate the effectiveness of DSA on several example MASs, includ-
ing a flock of robots moving coherently while avoiding inter-agent collisions,
ground rovers safely navigating through a series of way-points, and safe opera-
tion of a microgrid.

3

2. Background

2.1. Simplex Architecture
The Simplex Control Architecture relies on a verified-safe baseline controller

(BC) in conjunction with the verified switching logic of the Decision Module
(DM) to guarantee the safety of the plant, while permitting the use of an unverifi-
able, high-performance advanced controller (AC); see agent i in Fig. 1.

Let the admissible states of a system be those which satisfy all safety con-
straints and operational limits. All other states are inadmissible. The goal of the
Simplex Architecture is to ensure that the system never enters an inadmissible
state. The set R of recoverable states is a subset of the admissible states such that
the BC, starting from any state in R, guarantees that all future states are also in R.
The recoverable set takes into account the inertia of the physical system, giving
the BC enough time to preserve safety.

The DM’s forward switching condition (FSC) evaluates the control action pro-
posed by the AC and decides whether to switch to the BC. A common technique
used to develop an FSC is to shrink the recoverable region by a margin based on
the maximum time derivative of the state and the length of a time step, and switch
to BC if the current state lies outside this smaller set.

2.2. Control Barrier Functions
Control Barrier Functions (CBFs) [13, 14] are an extension of the Barrier Cer-

tificates used for safety verification of hybrid systems [11, 12]. CBFs are a class
of Lyapunov-like functions used to guarantee safety for nonlinear control systems
by assisting in the design of a class of safe controllers that establish the forward-
invariance of safe sets [15, 10]. Our presentation of CBFs is based on [14].

Consider a nonlinear affine control system

ẋ = f(x) + g(x)u (1)

with state x ∈ D ⊂ Rn, control input u ∈ U , and functions f and g that are
locally Lipschitz. The set R of recoverable states is defined as the super-level set
of a continuously differentiable function h : D ⊂ Rn → R. The recoverable set
R and its boundary ∂R are given by:

R = {x ∈ D ⊂ Rn|h(x) ≥ 0} (2)
∂R = {x ∈ D ⊂ Rn|h(x) = 0} (3)

4

The time derivative of h(x) along the direction of the state evolution is

dh(x)

dt
=

∂h(x)

∂x
ẋ =

∂h(x)

∂x
(f(x) + g(x)u) (4)

which can be restated in the Lie-derivative formulation as

dh(x)

dt
= Lfh(x) + Lgh(x)u. (5)

For all x ∈ D, if there exists an extended class K function α : R → R (strictly
increasing and α(0) = 0) such that the following condition on the Lie derivative
of h is satisfied:

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0 (6)

then h is a valid CBF. Condition (6) implies the existence of a control action, for
all x ∈ D, such that the Lie derivative of h is bounded from below by −α(h(x)).
Furthermore, for x ∈ ∂R, condition (6) reduces to a result for set invariance
known as Nagumo’s theorem [16, 17]. Condition (6) is used to define the set K(x)
of control actions that establish the forward invariance of set R; i.e., starting from
x ∈ R, the state will always remain inside the set R:

K(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0} (7)

The following theorem is from [14].

Theorem II.1. For the control system given in Eq. (1) and recoverable set R
defined in (2) as the super-level set of some continuously differentiable function
h : Rn → R, if h is a CBF for all x ∈ D and ∂h

∂x
̸= 0 for all x ∈ ∂R, then any

controller u such that ∀x ∈ D : u(x) ∈ K(x) ensures forward-invariance of the
set R.

Proof. See [14]. Condition (6) on the Lie derivative of h reduces, on the bound-
ary of R, to the set invariance condition of Nagumo’s theorem: for x ∈ ∂R,
ḣ ≥ −α(h(x)) = 0. Hence, according to Nagumo’s theorem [16, 17], the set R
is forward-invariant.

A widely used technique for the synthesis of CBFs is SOS-optimization [18]
based search, which can be applied to a polynomial approximation of the system
dynamics. Other methods of synthesizing CBFs are surveyed in [14].

5

3. Distributed Simplex Architecture

This section describes the Distributed Simplex Architecture (DSA). We for-
mally introduce the MAS safety problem and then discuss the main components
of DSA, namely, the distributed baseline controller (BC) and the distributed deci-
sion module (DM).

Let an instance of DSA be symmetric if every agent uses the same switching
condition and baseline controller. Moreover, DSA, or more precisely the MAS
it is controlling, is homogeneous if every constituent agent is an instance of the
same plant model.

Consider a MAS consisting of k homogeneous agents, denoted as M =
{1, ..., k}, where the nonlinear control-affine dynamics for the ith agent are:

ẋi = f(xi) + g(xi)ui (8)

where xi ∈ D ⊂ Rn is the state of agent i and ui ∈ U ⊂ Rm is its control input.
For an agent i, we define the set of its neighbors Ni ⊆ M as the agents whose
state is accessible to i either through sensing or communication. Depending on the
application, the set of neighbors could be fixed or vary dynamically. For example,
in our flocking case study (Section 4), agent i’s neighbors (in a given state) are
the agents within a fixed distance r of agent i; we assume agent i can accurately
sense the positions and velocities of these agents.

We denote a combined state of all of the agents in the MAS as the vector
x = {xT

1 , x
T
2 , . . . xT

k }T and denote a state of the neighbors of agent i (including
i itself) as xNi

. DSA uses discrete-time control: the DMs and controllers execute
every η seconds. We assume that all agents execute their DM and controllers
simultaneously.

Admissible States. The set of admissible states A ⊂ Rkn consists of all states
that satisfy the safety constraints. A constraint C : Dk → R is a function from
k-agent MAS states to the reals. In this paper, we are primarily concerned with
binary constraints (between neighboring agents) of the form Cij : D × D → R,
and unary constraints of the form Ci : D → R. Hence, the set of admissible
states, A ⊂ Rkn are the MAS states of x ∈ Rkn such that all of the unary and
binary constraints are satisfied.

Formally, a symmetric instance of DSA is tasked with solving the following
problem. Given a MAS defined as in Eq. (8) and x(0) ∈ A, design a BC and DM
to be used by all agents such that the MAS remains safe; i.e. x(t) ∈ A, ∀ t > 0.

6

Recoverable States. For each agent i, the local admissible set Ai ⊂ Rn is the set
of states xi ∈ Rn that satisfy all unary constraints. The set Si ⊂ Ai is defined
as the super-level set of the CBF hi : Rn → R, which is designed to ensure
forward-invariance of Ai. Similarly, for a pair of neighboring agents i, j where
i ∈ M, j ∈ Ni, the pairwise-admissible set Aij ⊂ R2n is the set of pairs of
states that satisfy all binary constraints. The set Sij ⊂ Aij is defined as the super-
level set of the CBF hij : R2n → R designed to ensure forward-invariance of
Aij . The recoverable set Rij ⊂ R2n, for a pair of neighboring agents i, j where
i ∈ M, j ∈ Ni, is defined in terms of Si, Sj and Sij .

Si = {xi ∈ Rn|hi(xi) ≥ 0} (9)
Sij = {(xi, xj) ∈ R2n|hij(xi, xj) ≥ 0} (10)
Rij = (Si × Sj) ∩ Sij (11)

The recoverable set R ⊂ A for the entire MAS is defined as the set of system
states for which (xi, xj) ∈ Rij for every pair of neighboring agents i, j. Note
that if agent i and j’s controllers satisfy the following constraints based on the Lie
derivatives of hi, hj and hij , similar to the constraints in (7), the pairwise state of
agents i and j will remain in Rij according to Theorem II.1.

Lfhi(xi) + Lghi(xi)ui + α(hi(xi)) ≥ 0 (12a)

Lfhj(xj) + Lghj(xj)uj + α(hj(xj)) ≥ 0 (12b)

Lfhij(xi, xj) + Lghij(xi, xj)

[
ui

uj

]
+ α(hij(xi, xj)) ≥ 0 (12c)

3.1. Constraint Partitioning
Note that the constraints in (12) are linear in the control variable. For ease of

notation, we write the unary constraints as Aiui ≤ bi and the binary constraints as
[Pij Qij] [ui

uj] ≤ bij .
The binary constraint in (12c) is a condition on the control actions of a pair of

agents. For a centralized MAS, the global controller can pick coordinated actions
for agents i and j to ensure binary constraint (12c) is satisfied. For a decentralized
MAS, however, the distributed control of the two agents cannot independently sat-
isfy the binary constraint without running an agreement protocol. The DSA avoids
the overhead of multiple rounds of communication by partitioning the constraints,
acknowledging that this may overly restrict the action space for some cases.

7

As DSA is a distributed control framework, we solve the problem of the sat-
isfaction of binary constraints by partitioning a binary constraint into two unary
constraints such that the satisfaction of the unary constraints by agents i and j im-
plies the satisfaction of the binary constraint (but not necessarily vice versa) [10].

Pijui ≤ bij/2
Qijuj ≤ bij/2

}
⇒

[
Pij Qij

] [ui

uj

]
≤ bij (13)

Moreover, the equal partitioning of the binary constraint ensures that the agents
share an equal responsibility in maintaining it. The admissible control space for
agent i, denoted by Li, is the intersection of half-spaces of the hyper-planes de-
fined by the linear constraints.

Li = {ui ∈ U | ∀j ∈ Ni : Aiui ≤ bi ∧ Pijui ≤ bij/2} (14)

We note that equal partitioning of the binary constraints makes simultaneous
execution necessary for DSA, as the controllers of neighboring agents are simul-
taneously required to meet the conditions in (13).

Theorem III.1. Given a MAS indexed by M and with dynamics as in (8), if the
controller for each agent i ∈ M chooses an action ui ∈ Li, thereby satisfying the
Lie derivative constraints on the respective CBFs, and x(0) ∈ R, then the MAS is
guaranteed to remain safe.

Proof. If all agents choose an action from their respective admissible control
spaces Li, then the forward-invariance of the set Si for all i ∈ M and Sij for
all i ∈ M, j ∈ Ni is established by Theorem II.1. Therefore, Rij is forward-
invariant for all i ∈ M, j ∈ Ni and consequently R is forward-invariant.

3.2. Baseline Controller
The BC is a distributed controller tasked with keeping the state of an agent in

the safe region. For an agent i, the BC’s control law depends on i’s state xi and
the states of its neighbors xj,∀j ∈ Ni. In our design, the BC is strictly focused
on safety, leaving mission-critical objectives to the AC. Specifically, the BC is
designed to move the system away from unsafe states and toward safer states as
quickly as possible.

We design the BC as the solution to the following constrained multi-objective
optimization (MOO) problem, where the utility function is the weighted sum of

8

objective functions based on the Lie derivatives of the CBFs hi and hij introduced
above:

u∗
i = argmax

ui

1

hi

(Lfhi + Lghiui) +
∑
j∈Ni

1

hij

(Lfhij + Lghij

[
ui

0

]
)

s.t. ui ∈ Li

(15)

The bottom component of the column vector in the last term is agent i’s pre-
diction for agent j’s next control action uj . Since we consider MASs in which
agents are unable to communicate their planned control actions, agent i simply
predicts that uj = 0. This approach has been shown to work well in prior work on
distributed model-predictive control for flocking [19], where the control actions
are accelerations. Despite its complex form, at any given time, the utility function
in Eq. (15) is linear in ui, as the values of all other quantities are fixed. Since the
constraints are also linear, the optimization problem in Eq. (15) is a linear program
and hence can be efficiently solved in real-time.

Recall that, by definition, the CBFs quantify the degree of safety of a state with
respect to the given safety constraints, with larger (positive) values indicating safer
states. A positive value of the Lie derivative indicates that the proposed action will
lead to a state that has a higher CBF value and therefore is safer.

The solution to the optimization problem (15) is a control action that maxi-
mizes the weighted sum of the Lie derivatives of the CBFs. We note that in a
weighted-sum formulation of a MOO problem, it is possible that some objective
functions are negative in the optimal solution. We ensure the selected action ui

is safe by constraining ui to be in the admissible control space Li, defined in
Eq. (14).

The weights in the utility function in Eq. (15) prioritize certain safety con-
straints over others. We use state-dependent weights in the form of inverses of
the CBFs, thereby giving more weight to maximizing the Lie derivatives of CBFs
corresponding to safety constraints that are closer to being violated.

3.3. Decision Module
Each agent’s DM implements the switching logic for both forward and reverse

switching. Control is switched from the AC to the BC if the forward switching
condition (FSC) is true. Similarly, control is reverted back to the AC (from the
BC) if the reverse switching condition (RSC) is true. For an agent i, the state
of the DM is denoted as DMi ∈ {AC,BC}, with DMi = AC (DMi = BC)
indicating that the advanced (baseline) controller is in control. DSA starts with

9

all agents in the AC mode; i.e., DMi(t) = AC for all t ≤ 0 and i ∈ M; this is
justified by the assumption that x(0) ∈ R.

We derive the switching conditions from the CBFs as follows. To ensure
safety, the FSC must be true in a state xNi

(t) if an unrecoverable state is reachable
from xNi

(t) in one time step η. The check for one-step reachability of an unrecov-
erable state is based on computing the under-approximation of the Taylor series
of the CBF at the current time t, and evaluating it one time step in the future, i.e.,
at time t + η. The Taylor series approximation of the CBF is a function of its
time-derivatives and can be regarded as a function of time based on the dynamics
of the system for a given value of the control input; we take the control input of
agent i to be the command proposed by the AC at time t and use the worst-case
commands as the control inputs for the neighboring agents j ∈ Ni. The worst-
case commands are defined as the control inputs that minimize the value of the
Taylor approximation of the CBF. If the Taylor series approximation of any of the
CBFs is negative during the next time step η, we switch control to the BC. We
denote the Taylor series approximation of the CBF h as ĥ. This results in an FSC
of the following form:

FSC(xNi
, t) = ∃tc ∈ (t, t+ η] | (ĥi(tc) < 0) ∨ (∃j ∈ Ni | ĥij(tc) < 0) (16)

We derive the RSC using a similar approach, except the inequalities are re-
versed, the worst-case commands are used as the control inputs for all the agents,
and an m-time-step reachability check with m > 1 is used; the latter is to prevent
frequent back-and-forth switching between the AC and BC. The RSC holds if the
under-approximation of the Taylor series of all the CBFs remain positive during
the next m · η seconds.

RSC(xNi
, t) = ∀tc ∈ (t, t+m ·η] | (ĥi(tc) > 0)∧ (∀j ∈ Ni | ĥij(tc) > 0) (17)

We experimented with various orders of Taylor series approximations in our
case studies. Since the time step η is typically small, even low-order Taylor series
approximation gives very good results, i.e., ĥ(t + η) is very close to the exact
value h(t+η). The switching condition can be made more rigorous by taking into
account the remainder error in the Taylor series approximation; Taylor’s theorem
provides a bound on the remainder error. We will explore this idea in future work.

3.4. Safety Theorem
Our main result is the following safety theorem for DSA.

10

Theorem III.2. Given a MAS indexed by M with dynamics specified as in Eq. (8),
if each agent operates under DSA with the BC as in Eq. (15) (assuming that the
optimization in Eq. (15) is feasible), the switching logic as in Eqs. (16) and (17),
and x(0) ∈ R ⊂ Rkn, and the agents update their DM mode and controllers
simultaneously, then the MAS will remain safe.

Proof. The proof proceeds by considering both possible DM states for an arbi-
trary agent i, and establishing that i’s next state is safe. First, consider agent i at
time t with DMi(t) = AC. As the FSC is false, the one-step reachability check
associated with the FSC ensures that the CBFs for unary and binary safety con-
straints are strictly positive in the next state xi(t + η); i.e. hi(xi(t + η)) > 0 and
∀j ∈ Ni : hij(xi(t+ η), xj(t+ η)) > 0. Hence the next state is recoverable.

Subsequently, consider agent i at time t with DMi(t) = BC. The unary
safety constraint is satisfied for agent i as the BC’s action is constrained within
the admissible control space. Next, we show that the binary safety constraints with
all neighboring agents are also satisfied. We divide the neighbors of i into two sets
based on their DM states: the set of neighbors in AC mode and the set of neighbors
in BC mode are denoted as NAC

i and NBC
i , respectively. The neighbors in BC

mode choose their control actions from their corresponding admissible control
spaces as in Eq. (14). As agent i also chooses its control action from its admissible
control space, according to Theorem III.1, the neighbors in BC mode will satisfy
the binary safety constraints with agent i. As for neighbors in AC mode, due
to the one-step reachability check in their FSC, in state xi(t + η), the pairwise
CBFs satisfy hij(xi(t + η), xj(t + η)) ≥ 0 for all j ∈ NAC

i . Hence, xi(t + η) is
recoverable for DMi(t) = BC. We have proven that for any agent i and time step
t, if xi(t) is recoverable, then xi(t+ η) is recoverable. By assumption, x(0) ∈ R.
Therefore, by induction, x(t) ∈ R for t > 0.

3.5. Enhanced Switching Logic to Address Infeasibility
DSA guarantees the safety of the MAS as long as the control actions of all

agents remain within their respective admissible control spaces. However, as the
BC is required to solve a constrained optimization problem, there is a possibility
that in extreme cases the admissible control space is empty. In such situations,
the BC’s optimization problem is infeasible and the safety of the MAS is not
guaranteed. An agent can encounter infeasibility because its neighboring agents
enforce the binary safety constraints by restricting its admissible control space. In
some deadlock situations, the neighboring agents may empty the admissible con-
trol space for some agent. Dealing with such deadlock scenarios is a challenge.

11

In [20], deadlock situations are resolved by designing a conservative barrier func-
tion with a stopping mode. We on the other hand, modify the forward switching
condition to avoid deadlock situations.

To address this situation, we modify the definition of the FSC in Eq. (16) in
such a way that the risk of infeasibility is significantly reduced. In particular,
we modify the FSC in Eq. (16) to induce a forward-switch from the AC to the
BC if the feasible control space shrinks below a given threshold. This requires
computing the size of the feasible control space.

Note that the constraints that define the admissible control space Li are linear
and are based on the Lie derivatives of the CBFs, which in turn depend on the
current state of the system. Similar to [21], we compute the size δi of the feasible
control space for agent i by solving the following Linear Program (LP).

max
ui∈Rm,δ∈R

δi

s.t. Aiui ≤ bi − δi

Pijui ≤ bij/2− δi, ∀j ∈ Ni

∥ui∥∞ ≤ umax

(18)

where umax is the bound on the infinity norm of the control action. If δi ≥ 0,
the optimization in Eq. (15) is feasible and the admissible control space Li is
non-empty. Moreover, a larger positive δi indicates a larger size of the feasible
control space. Alternatively, if δi < 0, the admissible control space is empty and
no feasible control action is available.

For any agent i in AC mode at time t, if the size of the feasible control space
is less than a fixed threshold δmin, the following enhanced forward switching con-
dition (FSC ′) switches control to the BC.

FSC ′(xNi
, t) =(∃tc ∈ (t, t+ η] | (ĥi(tc) < 0) ∨ (∃j ∈ Ni | ĥij(tc) < 0))

∨ (δi(t) < δmin)
(19)

Larger values of δmin makes FSC ′ more conservative, i.e., more proactive in
avoiding infeasibility. For the flocking case study presented in Section 4, we
experimentally demonstrate that using FSC ′ with an appropriate value of δmin

effectively eliminates the possibility of infeasibility. For the other case studies, in-
feasibility never arose in our experiments, even with the original FSC in Eq. (16).

12

4. Flocking Case Study

We evaluate DSA on the distributed flocking problem with the goal of pre-
venting inter-agent collisions. Consider a MAS consisting of k robotic agents
with double integrator dynamics, indexed by M = {1, . . . , k}:[

ṗi
v̇i

]
=

[
0 I2×2

0 0

] [
pi
vi

]
+

[
0

I2×2

]
ai (20)

where pi, vi, ai ∈ R2 are the position, velocity and acceleration of agent i ∈ M,
respectively. The magnitudes of velocities and accelerations are bounded by v̄
and ā, respectively. Acceleration ai is the control input for agent i. As DSA is
a discrete-time protocol, the state of the DM and the ai’s are updated every η
seconds. The state of an agent i is denoted by the vector si = [pTi v

T
i]

T . The state
of the entire flock at time t is denoted by the vector s(t) = [p(t)T v(t)T]T ∈ R4k,
where p(t) = [pT1 (t) · · · pTn (t)]T and v(t) = [vT1 (t) · · · vTn (t)]T are the vectors
respectively denoting the positions and velocities of the flock at time t.

The MAS is characterized by a set of operational constraints which include
physical limits and safety properties. States that satisfy the operational constraints
are called admissible, and are denoted by the set A ∈ R4k. The desired safety
property is that no pair of agents is in a “state of collision”. A pair of agents is
considered to be in a state of collision if the Euclidean distance between them is
less than a threshold distance dmin ∈ R+, resulting in a binary safety constraint
of the form: ∥pi − pj∥ − dmin ≥ 0 ∀ i ∈ M, j ∈ Ni. Similarly, a state s is
recoverable if all pairs of agents can brake (de-accelerate) relative to each other
without colliding. Otherwise, the state s is considered unrecoverable.

We assume that an agent can accurately sense the positions and velocities of
nearby agents within a fixed distance r, satisfying the following condition.

r > 2v̄η +
v̄2

ā
+ dmin (21)

This condition effectively ensures collision freedom and recoverability, during
the next decision period η, with respect to the agents that are currently outside the
sensing range. The set of the spatial neighbors of agent i , Ni ⊆ M is defined
as Ni(p) = {j ∈ M | j ̸= i ∧ ∥pi − pj∥ < r}, where ∥ · ∥ denotes the Euclidean
norm. For ease of notation, we sometimes use s and si to refer to the state variables
s(t) and si(t), respectively, without the time index.

13

4.1. Synthesis of Control Barrier Function
Let Rij ⊂ R8 be the set of recoverable states for a pair of agents i, j ∈ M.

The flock-wide set of recoverable states, denoted by R ⊂ R4k, is defined in terms
of Rij . As in [15], the set Rij is defined as the super-level set of a pairwise
CBF hij : R8 → R: Rij = {(si, sj) | hij(si, sj) ≥ 0}. The flock-wide set of
recoverable states R ⊂ A is defined as the set of system states in which (si, sj) ∈
Rij , for every pair of neighboring agents i, j.

In accordance with [15], the function hij(si, sj) is based on a safety constraint
over a pair of agents i, j ∈ M. The safety constraint ensures that for any pair
of agents, the maximum braking force can always keep the agents at a distance
greater than dmin from each other. As introduced earlier, dmin is the threshold
distance that defines a collision. Considering that the tangential component of the
relative velocity, denoted by ∆v, causes a collision, the constraint regulates ∆v by
application of maximum acceleration to reduce ∆v to zero. Hence, the safety con-
straint can be represented as the following condition on the inter-agent distance
∥∆pij∥ = ∥pi − pj∥, the braking distance (∆v)2/4ā, and the safety threshold dis-
tance dmin: ∥∥∆pij

∥∥− (∆v)2

4ā
≥ dmin (22)

hij(si, sj) =
√

4ā(
∥∥∆pij

∥∥− dmin)−∆v ≥ 0 (23)

The braking distance is the distance covered while the relative speed reduces from
∆v to zero under a deceleration of 2ā. The constraint in Eq. (22) is re-arranged
to get the CBF hij given in Eq. (23).

Combining Eqs. (23) and (12c), we arrive at the linear constraint on the accel-
erations for agents i and j, which constrains the Lie derivative of the CBF in (23)
to be greater than −α(hij). We set α(hij) = γh3

ij , as in [15], where γ ∈ R+,
resulting in the following constraint on the accelerations of agents i, j:

∆pT
ij(∆aij)

∥∆pij∥
−

(∆vT
ij∆pij)

2

∥∆pij∥3
+

∥∆vij∥2

∥∆pij∥

+
2ā∆vT

ij∆pij

∥∆pij∥
√
4ā(∥∆pij∥ − dmin)

≥ −γh3
ij

(24)

where the left-hand side is the Lie derivative of the CBF hij and ∆pij = pi − pj ,
∆vij = vi − vj , and ∆aij = ai − aj are the vectors representing the relative po-
sition, the relative velocity, and the relative acceleration of agents i and j, re-
spectively. We further note that the binary constraint (24) can be reformulated as

14

[Pij Qij] [aiaj] ≤ bij , and hence can be split into two unary constraints Pijui ≤ bij/2
and Qijuj ≤ bij/2, following the convention in Eq. (13). The set of safe acceler-
ations for an agent i, denoted by Ki(si) ⊂ R2, is defined as the intersection of the
half-planes defined by the Lie-derivative-based constraints, where each neighbor-
ing agent contributes a single constraint:

Ki(si) =
{
ai ∈ R2 | Pijui ≤ bij/2, ∀j ∈ Ni

}
(25)

With the CBFs for collision-free flocking defined in (23) and the admissible
control space defined in (25), the BC, FSC, and RSC follow from (15), (16), and
(17), respectively. We use Taylor approximation of order one to compute FSC and
RSC.

4.2. Advanced Controller
We use the Reynolds flocking model [22] as the AC. In the Reynolds model,

the accelerations ai for each agent is a weighted sum of three acceleration terms
based on simple rules of interaction with neighboring agents: separation (move
away from your close-by neighbors), cohesion (move towards the centroid of your
neighbors), and alignment (match your velocity with the average velocity of your
neighbors). The acceleration for agent i is ai = wsa

s
i + wca

c
i + wala

al
i , where

ws, wc, wal ∈ R+ are scalar weights and asi , a
c
i , a

al
i ∈ R2 are the acceleration terms

corresponding to separation, cohesion, and alignment, respectively. We note that
the Reynolds model does not guarantee collision avoidance. Nevertheless, when
the flock stabilizes, the average distance to the closest neighbors is determined by
the weights of the interaction terms.

4.3. Experimental Results for 15-Agent Flocks
The number of agents in the MAS is k = 15. The other parameters used in

the experiments are r = 4, ā = 5, v̄ = 2.5, dmin = 2, and η = 0.1s. The length
of the simulations is 50 seconds. The initial positions and the initial velocities
are uniformly sampled from [−10, 10]2 and [−1, 1]2, respectively, and we ensure
that the initial state is recoverable. The weights of the Reynolds model terms are
chosen experimentally to ensure that no pair of agents are in a state of collision in
the steady state. They are set to ws = 3, wc = 1.5, and wal = 0.5.

To demonstrate the effectiveness of DSA in preventing inter-agent collisions,
we generated 100 simulation runs using two different control strategies, starting
from the same set of random initial configurations. In the first set of 100 simula-
tions, Reynolds model is used to control all agents for the duration of the simu-
lations. In the second set of 100 simulations, Reynolds model is wrapped with a

15

0 10 20 30 40 50

Time

0

0.5

1

1.5

2

2.5

3

D
is

ta
n
c
e

mean MPD min MPD max MPD d
min

0 10 20 30 40 50

Time

0

0.5

1

1.5

2

2.5

3

D
is

ta
n
c
e

(a) Reynolds Model

0 10 20 30 40 50

Time

0

0.5

1

1.5

2

2.5

3

D
is

ta
n
c
e

(b) Reynolds Model with DSA

Figure 2: The minimum pairwise distance (MPD) for a flock of size 15, calculated over 100
simulation runs, with and without DSA.

verified safe BC and DM designed using DSA, with the FSC in Eq. (16). We note
that in the second set of simulations, the BC’s optimization problem, see Eq. (15),
was feasible at all times.

We define the minimum pairwise distance (MPD), as the minimum Euclidean
distance between any pairs of agents in the flock, i.e., min

i,j∈M
∥pi−pj∥. Fig. 2 shows the

spread of MPD at each time step, by plotting its mean, minimum, and maximum
values, calculated over 100 simulation runs.

As evident from Fig. 2(b), the minimum MPD is greater than dmin for the
entire duration of the simulation runs, indicating that DSA is able to prevent inter-
agents collisions for the 100 simulations. Furthermore, the gap between the solid
blue line and the constraint boundary in dotted red is not very large, indicating
that the forward switching is not conservative. In contrast, as shown in Fig. 2(a),
Reynolds model results in safety violations during the first 42 seconds (Only the
last 8 seconds are collision-free in all 100 simulations) and the mean MPD crosses
the safety threshold at around 16 seconds. Moreover, operating under DSA, the
distribution of MPD is relatively uniform over the duration of the simulations. We
further note that the average time the agents spend in BC mode is only 3.44 percent
of the total duration of the simulation, indicating that DSA is largely non-invasive.
Videos of flocking under both control strategies are available online.1

The simulation results clearly demonstrate the effectiveness of DSA in guar-
anteeing inter-agent collision avoidance. We also ran simulations where all agents

1https://youtu.be/E_ufaJRnfvo, https://youtu.be/PZz6nUA5fD8

16

are solely under the control of the BC. As the BC is strictly focused on safety, we
observed that the flock fragments as agents safely move out of the sensing ranges
of other agents.

The flocking case study clearly illustrate the guiding principles and benefits
of DSA. In particular, it shows that: (a) the AC is not always safe, but (b) the
combination of the AC and BC in DSA is safe, and (c) DSA outperforms the BC.

In the 15-agent simulation study, the BC did not encounter infeasibility while
computing the FSC. Next, we present a study for 30-agent flocks where we demon-
strate that the infeasibility of the BC can be effectively handled using the enhanced
forward switching condition (Eq. 19).

4.4. Experimental Results for Infeasibility Handling in 30-Agent Flocks
For the experiments in this section, the number of agents in the MAS is k =

30. The values of other parameters are the same as for the experiments presented
in the previous section.

We generated three batches of 100 simulation runs, starting from the same set
of initial configurations. In the first batch, the original FSC in Eq. (16) is used.
In the second and third batches, FSC ′ in Eq. (19) is used instead, with δmin set
to 15 and 30, respectively. During the simulations, if a pair of agents collide, we
continue the simulation, propagating the state of the colliding agents using the
dynamics in Eq. (20). In case the BC’s optimization problem is infeasible, we use
zero acceleration as the control action.

Table 1 summarizes the results. For the 100 simulations in each batch, we
report the percentage of simulations that have at least one collision, the percentage
of states in BC mode that are infeasible, and the percentage of time spent in BC
mode.

Table 1: Handling the infeasibility of the BC’s optimization using enhanced FSC.

δmin Sims. with Collisions (%) Infeasible States (%) Time in BC (%)

FSC - 27 0.0196 4.79
FSC ′ 15 1 0.0005 6.80
FSC ′ 30 0 0 9.38

The original FSC leads to at least one collision in 27 of the 100 simulations.
With FSC ′, this metric drops to one for δmin = 15, and zero for δmin = 30. We
note that these collisions are due to the infeasibility of the BC’s optimization. The
percentage of states in BC mode that are infeasible also drops to zero when δmin

17

0 5 10 15 20 25

Time-steps to collision

0

2000

4000

6000

8000

fr
e
q
u
e
n
c
y

FCS

FSC' (
min

=15)

FSC' (
min

=30)

Figure 3: The histograms of the time it takes an agent to collide with it neighbors if the forward
switch is not applied, under the different forward switching schemes.

is increased to 30, indicating that FSC ′ is able to effectively eliminate the infea-
sibility of BC’s optimization and thereby eliminate the occurrence of collisions.
This benefit comes at the cost of increased time spent in BC mode. The results
in Table 1 indicate that the trade-off is reasonable for this system, with the time
spent in BC mode still under 10% for δmin = 30.

We run another series of experiments to compare the conservativeness of the
three forward-switching schemes. For these experiments, we identify the states
where an agent forward switches and fix the mode of that agent and its neighbors
to AC. We then propagate the system until the first collision. The histograms of
the number of steps it takes to collide are shown in Fig. 3. The results show that
the enhanced switching conditions are conservative as they trigger early forward
switches where the degree of conservativeness depends on the value of δ. This
is because the enhanced switching logic is designed to switch preemptively based
on the size of the admissible control space. On the other hand, for the original
FSC, most of the agents collide with their neighbors within the first three steps,
indicating that the switches are not conservative.

5. Way-point Case Study

This section describes the problem setup and experimental results for the way-
point (WP) control case study. The agent model is the same as the one used for the
flocking case study, given in Eq. (20). The experimental setup is shown in Fig. 4,
where the agents, initially positioned along the top of the figure, are to navigate

18

(a) Trajectories of agents passing through WPs.
Red/blue segments indicate AC/BC mode.

0 10 20 30 40 50

Time/s

0

0.5

1

D
is

ta
n
c
e

closest neighbor distance d
min

(b) Distance to closest neighbor for all agents.

Figure 4: Experimental results for way-point case study.

through a series of WPs while maintaining a safe distance from one another. The
WPs are represented by the black squares. The CBFs, BC and DM are same as
those defined for the flocking problem; see Section 4.

The AC is a rule-based controller where each agent accelerates towards its
next WP (ignoring the other agents) until the final WP is reached. Agents are
assigned one WP from each row such that they are on a collision course if they
follow the AC’s commands.

5.1. Experimental Results
The number of agents used in the experiment is eight and the number of WPs

an agent is required to visit is four (one in each row). Initially, the agents are at rest
with their positions represented by the red dots in Fig. 4(a). The final positions
are shown as green dots. The duration of the simulation is 60 seconds. The other
parameters used in the experiments are r = 1.0, ā = 0.8, v̄ = 0.2, dmin = 0.15,
and η = 0.05s. The trajectories of the agents are given in Fig. 4(a), where the
segments in blue indicate when the BC is in control. Fig. 4(b) plots the smallest
inter-agent distances, indicating that the agents maintain a safe distance from one
another. A video of the simulation is available online.2

2https://youtu.be/AcC8iUI0TjU

19

6. Microgrid Case Study

With an increasing prevalence of distributed energy resources (DERs) such as
wind and solar power, electrification using microgrids (MGs) has witnessed un-
precedented growth. Unlike traditional power systems, MG DERs do not have
rotating components such as turbines. The lack of rotating components can lead
to low inertia, making MGs susceptible to oscillations resulting from transient
disturbances [23]. Ensuring the safe operation of an MG is thus a challenging
problem. In this case study, we demonstrate the effectiveness of DSA in main-
taining MG voltage levels within safe limits.

The MG we consider is a network of k droop-controlled inverters, indexed by
M = {1, . . . , k}. The dynamics of each inverter is modeled as [23, 24, 25, 26]:

θ̇i = ωi (26a)

τiω̇i = ω0
i − ωi + λp

i (P
set
i − Pi) (26b)

τiv̇i = v0i − vi + λq
i (Q

set
i −Qi) (26c)

where θi, ωi, and vi are respectively the phase angle, frequency, and voltage of
inverter i, i ∈ M. The state vector for the MG is denoted by s = [θT ωT vT]T ∈
R3k, where θ, ω, and v are respectively vectors representing the voltage phase
angle, frequency, and voltage at each node of the MG. A pair of inverters are
considered neighbors if they are connected by a transmission line. Also, λp

i and
λq
i are droop coefficients of “active power vs frequency” and “reactive power vs

voltage” droop controllers, respectively. τi ∈ R+ is the time constant used for the
low-pass filters that are processing the active and reactive power measurements.
Finally, ω0

i and v0i are the nominal frequency and voltage values.
Pi and Qi are the active and reactive powers injected by inverter i into the

system:
Pi = vi

∑
j∈Ni

vj(Gi,j cos θi,j +Bi,j sin θi,j)

Qi = vi
∑
j∈Ni

vj(Gi,j sin θi,j −Bi,j cos θi,j)
(27)

where θi,j = θi−θj , and Ni ⊆ M is the set of neighbors. Gi,j, Bi,j are respectively
conductance and susceptance values of the transmission line connecting inverters
i and j.

P set
i and Qset

i are the active power and reactive power setpoints. The inverters
have the ability to change their respective power setpoints according to the MG’s

20

operating conditions. This is modeled as:

P set
i = P 0

i + up
i , Q

set
i = Q0

i + uq
i (28)

where P 0
i and Q0

i are the setpoints for the nominal operating condition, and up
i

and uq
i are control inputs.

6.1. Synthesis of Control Barrier Function
The safety property for the MG network is a set of unary constraints restrict-

ing the voltages at each node to remain within safe limits. The recoverable set
Ri ⊂ R3 for inverter i is defined as the super-level set of a CBF hi : R3 → R.
We follow the SOS-optimization technique given in [26] to synthesize the CBFs.
Since the power flow equations (26) are nonlinear, we apply a third-order Tay-
lor series expansion to approximate the dynamics in polynomial form. We then
follow the three-step process given in [26] to obtain the CBF for each MG node.
We then calculate the admissible control space according to Eq. (14), and the BC,
FSC, and RSC follow from Eqs. (15), (16), and (17), respectively. We have ex-
perimented with various orders of Taylor approximations for the computation of
FSC and RSC.

6.2. Advanced Controller
The AC sets the active/reactive power setpoints to their nominal values. Thus,

the AC does not limit voltage and frequency magnitudes but is only concerned
with stabilizing frequency and voltage magnitudes to their nominal values.

6.3. Experimental Results
We consider a 6-bus MG [26]. Disconnecting the MG from the main utility,

we replace bus 0 with a droop-controlled inverter (Eq. (26)), with inverters also
placed on buses 1, 4 and 5. Bus 0 is the reference bus for the phase angle.
Nominal values of voltage and frequency, as well as the active/reactive power set-
points, were obtained by solving the steady-state power-flow equations given in
Eq. (27); these were then used to shift the equilibrium point to the origin. Droop
coefficients λp

i and λq
i were set to 2.43 rad/s/p.u. and 0.20 p.u./p.u., τi was set to

0.5s, and the control period η was set to 0.01s. Loads are modeled as constant
power loads, and a Kron-reduced network [27] with only the inverter nodes was
used for analysis. The safe set is defined in terms of the shifted (around the 0 p.u.)
nodal voltage magnitudes as follows: vi ≥ −0.4 p.u. ∧ vi ≤ 0.2 p.u.

The duration of the simulation is two seconds. Our results show that with
DSA, the voltage at each node remains within safe limits; without DSA, safety

21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time/s

-0.4

-0.2

0

0.2

V
/p

.u
.

without DSA with DSA limits

Figure 5: Voltage graph at node 4 of the MG network.

limits are exceeded. Fig. 5 gives the voltage plot at node 4. When the MG is
operating under the control of DSA and the voltage approaches the upper limit, a
switch from AC to BC occurs. Subsequently, the BC reduces the voltage inducing
a reverse switch. The voltage profiles at the other nodes are similar.

7. Related Work

The original Simplex architecture [28, 5] was developed for systems compris-
ing a single controller and a single (non-distributed) plant. With DSA, we extend
the scope of Simplex to MASs under distributed control. RTA [29, 30] is a runtime
assurance technique that can be applied to component-based systems. In this case,
however, each RTA wrapper (i.e., each Simplex-like instance) independently en-
sures a local safety property of a component. For example, in [29], RTA instances
for an inner-loop controller and a guidance system are uncoordinated and operate
independently. In contrast, in DSA, each agent takes the states of neighboring
agents into account when making control decisions, in order to ensure that pair-
wise safety constraints are satisfied.

A runtime verification framework for dynamically adaptive multi-agent sys-
tems (DAMS-RV) is proposed in [31]. DAMS-RV is activated every time the
system adapts to a change in the system itself or its environment. This method
relies on a monitoring phase to observe and identify changes that occur in agent
collaboration so that verification can be carried out on the system operating in
new contexts. In contrast, DSA does not require such intermediary supervision.
In [32], a dynamic policy model that can be used to express constraints on agent
behavior is presented. These constraints limit agent autonomy to lie within well-
defined boundaries. Constraint specifications are kept simple by allowing the pol-
icy designer to decompose a specification into components and define the overall
policy as a composition of these smaller units. In contrast, DSA uses CBFs to
compute the requisite safety regions.

22

In [15, 10, 21, 14], CBF-based methodologies have been used for runtime
safety assurance of MASs. For example, in [15, 10], a formal framework for
collision avoidance in multi-robot systems is presented. A CBF-based wrapper
around an advanced controller guarantees forward invariance of a safe set. The
wrapper solves an optimization problem involving the Lie derivative of the CBF to
compute minimal changes to the AC’s output needed to ensure safety. In contrast,
in DSA, no attempt is made to minimally perturb the AC’s output. Instead we
rely on CBF-based switching logic in the DM to forward switch to the BC if the
AC’s output is not recoverable.

In [33], a shield-based technique for runtime verification of multi-agent sys-
tems is presented. In this approach, which does not require global information,
every agent has a shield consisting of two components: a pathfinder that corrects
the behavior of the agent, and an ordering mechanism that dynamically modifies
the priority of the agent. An upper bound is derived on the maximum deviation
for any agent from its original behavior. In contrast, DSA relies on forward and
reverse switching between an agent’s advanced and baseline controllers to safely
allow completion of mission goals.

8. Conclusion

We have presented the Distributed Simplex Architecture, a runtime assurance
technique for the safety of multi-agent systems. DSA is distributed in the sense
that it involves one local instance of traditional Simplex per agent such that the
conjunction of their respective safety properties yields the desired safety property
for the entire MAS. Moreover, an agent’s switching logic depends only on its own
state and that of neighboring agents. We demonstrated the effectiveness of DSA
by successfully applying it to flocking, way-point visiting, and microgrid control.
As future work, we plan to apply DSA to non-homogenous MASs and implement
it on a physical platform.

In some situations, the BC’s optimization problem might become infeasible.
Infeasibility occurs due to delayed switching or because the baseline controller
is not powerful enough to prevent its occurrence. For example, for the flocking
case study, infeasibility of the BC’s optimization problem is possible if the agents
are crowded in a small region. In this paper, we have prevented the occurrence of
infeasibility due to delayed switching by modifying the switching logic to preemp-
tively switch if the feasible region shrinks beyond a threshold and demonstrated
the effectiveness of this technique in eliminating the occurrence of infeasibility in

23

the flocking case study. As future work, we intend to establish formal guarantees
of feasibility, by designing a BC that is certified to ensure feasibility.

References

[1] M. Nasir, Z. Jin, H. A. Khan, N. A. Zaffar, J. C. Vasquez, J. M. Guerrero, A
decentralized control architecture applied to DC nanogrid clusters for rural
electrification in developing regions, IEEE Transactions on Power Electron-
ics 34 (2) (2019) 1773–1785.

[2] Z. Boussaada, O. Curea, H. Camblong, N. Bellaaj Mrabet, A. Hacala, Multi-
agent systems for the dependability and safety of microgrids, International
Journal on Interactive Design and Manufacturing (2016).

[3] A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, J. Plosila, Swarms
of unmanned aerial vehicles — a survey, Journal of Industrial Information
Integration 16 (2019) 100106.

[4] R. Tynan, G. M. P. O’Hare, D. Marsh, D. O’Kane, Multi-agent system ar-
chitectures for wireless sensor networks, in: Computational Science – ICCS
2005, Springer, 2005, pp. 687–694.

[5] D. Seto, L. Sha, A case study on analytical analysis of the inverted pendu-
lum real-time control system, Tech. Rep. CMU/SEI-99-TR-023, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1999).

[6] L. Sha, Using simplicity to control complexity, IEEE Software 18 (4) (2001)
20–28.

[7] D. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, S. D. Stoller, Neu-
ral simplex architecture, in: Proceedings of NASA Formal Methods Sympo-
sium (NFM 2020), 2020.

[8] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, A. Ames, Towards
a framework for realizable safety critical control through active set invari-
ance, in: 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), 2018, pp. 98–106.

[9] M. Egerstedt, J. N. Pauli, G. Notomista, S. Hutchinson, Robot ecology:
Constraint-based control design for long duration autonomy, Annual Re-
views in Control 46 (2018) 1 – 7.

24

[10] L. Wang, A. D. Ames, M. Egerstedt, Safety barrier certificates for heteroge-
neous multi-robot systems, in: 2016 American Control Conference (ACC),
IEEE, 2016, pp. 5213–5218.

[11] S. Prajna, A. Jadbabaie, Safety verification of hybrid systems using barrier
certificates, in: R. Alur, G. J. Pappas (Eds.), Hybrid Systems: Computa-
tion and Control, 7th International Workshop, Vol. 2993 of Lecture Notes in
Computer Science, Springer, 2004, pp. 477–492.

[12] S. Prajna, Barrier certificates for nonlinear model validation, Autom. 42 (1)
(2006) 117–126.

[13] P. Wieland, F. Allgöwer, Constructive safety using control barrier functions,
IFAC Proceedings Volumes 40 (12) (2007) 462 – 467, 7th IFAC Symposium
on Nonlinear Control Systems.

[14] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
P. Tabuada, Control barrier functions: Theory and applications, in: 18th
European Control Conference, ECC 2019, Naples, Italy, IEEE, 2019, pp.
3420–3431.

[15] U. Borrmann, L. Wang, A. D. Ames, M. Egerstedt, Control barrier certifi-
cates for safe swarm behavior, in: M. Egerstedt, Y. Wardi (Eds.), ADHS,
Vol. 48 of IFAC-PapersOnLine, Elsevier, 2015, pp. 68–73.

[16] F. Blanchini, S. Miani, Set-Theoretic Methods in Control, 1st Edition,
Birkhäuser Basel, 2007.

[17] F. Blanchini, Set invariance in control, Automatica 35 (11) (1999) 1747 –
1767.

[18] L. Wang, D. Han, M. Egerstedt, Permissive barrier certificates for safe sta-
bilization using sum-of-squares, in: 2018 Annual American Control Confer-
ence, ACC 2018, IEEE, 2018, pp. 585–590.

[19] U. Mehmood, N. Paoletti, D. Phan, R. Grosu, S. Lin, S. D. Stoller, A. Ti-
wari, J. Yang, S. A. Smolka, Declarative vs rule-based control for flocking
dynamics, in: Proceedings of 33rd Annual ACM Symposium on Applied
Computing, 2018.

25

[20] L. Wang, A. D. Ames, M. Egerstedt, Safety barrier certificates for collisions-
free multirobot systems, IEEE Transactions in Robotics 33 (3) (2017)
661–674.

[21] A. D. Ames, X. Xu, J. W. Grizzle, P. Tabuada, Control barrier function based
quadratic programs for safety critical systems, IEEE Transactions on Auto-
matic Control 62 (8) (2017) 3861–3876.

[22] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,
SIGGRAPH Comput. Graph. 21 (4) (1987) 25–34.

[23] N. Pogaku, M. Prodanovic, T. C. Green, Modeling, analysis and testing of
autonomous operation of an inverter-based microgrid, IEEE Transactions on
Power Electronics 22 (2) (2007) 613–625.

[24] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, T. Sezi, Conditions for stability
of droop-controlled inverter-based microgrids, Automatica 50 (10) (2014)
2457 – 2469.

[25] E. A. A. Coelho, P. C. Cortizo, P. F. D. Garcia, Small-signal stability for
parallel-connected inverters in stand-alone AC supply systems, IEEE Trans-
actions on Industry Applications 38 (2) (2002) 533–542.

[26] S. Kundu, S. Geng, S. P. Nandanoori, I. A. Hiskens, K. Kalsi, Distributed
barrier certificates for safe operation of inverter-based microgrids, in: 2019
American Control Conference (ACC), 2019, pp. 1042–1047.

[27] P. Kundur, N. Balu, M. Lauby, Power System Stability and Control, EPRI
power system engineering series, McGraw-Hill Education, 1994.

[28] D. Seto, B. Krogh, L. Sha, A. Chutinan, The Simplex architecture for safe
online control system upgrades, in: Proceedings of the 1998 American Con-
trol Conference, Vol. 6, 1998, pp. 3504–3508.

[29] M. Aiello, J. Berryman, J. Grohs, J. Schierman, Run-Time Assurance for
Advanced Flight-Critical Control Systems, 2010.

[30] J. Schierman, D. Ward, B. Dutoi, A. Aiello, J. Berryman, M. DeVore,
W. Storm, J. Wadley, Run-Time Verification and Validation for Safety-
Critical Flight Control Systems, 2012.

26

[31] Y. J. Lim, G. Hong, D. Shin, E. Jee, D.-H. Bae, A runtime verification frame-
work for dynamically adaptive multi-agent systems, in: 2016 International
Conference on Big Data and Smart Computing (BigComp), 2016, pp. 509–
512.

[32] H. Alotaibi, H. Zedan, Runtime verification of safety properties in multi-
agents systems, in: 2010 10th International Conference on Intelligent Sys-
tems Design and Applications, 2010, pp. 356–362.

[33] D. Raju, S. Bharadwaj, U. Topcu, Online synthesis for runtime enforcement
of safety in multi-agent systems, preprint ArXiv:1910.10380 (2019).

27

