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ABSTRACT
Concurrent programs are notorious for containing errors that
are difficult to reproduce and diagnose. A common kind
of concurrency error is deadlock, which occurs when some
threads are permanently blocked. This paper defines a run-
time notion of potential deadlock in programs with locks,
semaphores, and condition variables. Informally, an execu-
tion has potential for a deadlock if some feasible permuta-
tion of the execution results in a deadlock. Feasibility of a
permutation is determined by ordering constraints amongst
events in the execution. Previous work on run-time detec-
tion of potential deadlocks are for programs that use locks.
This paper presents run-time algorithms to detect potential
deadlocks in programs that use locks (block structured as
well as non block structured), semaphores, and condition
variables.
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1. INTRODUCTION
Multithreaded programs are becoming increasingly com-

mon. Such programs are notorious for containing errors that
are difficult to reproduce and diagnose at run-time. Com-
mon synchronization errors in multithreaded programs in-
clude data races, atomicity violations, and deadlocks. This
paper focuses on deadlocks. Informally, a deadlock occurs
when some threads are permanently blocked.

Errors in multithreaded programs are often difficult to
find and reproduce because they manifest themselves only
in some rare executions, based on underconstrained (effec-
tively non-deterministic) scheduling decisions. Therefore,
algorithms that can detect potential errors in an observed
execution, even if the potential error does not actually oc-
cur in that execution, are valuable debugging tools that
can greatly increase the probability of detecting insidious
scheduling-dependent errors during testing. This has moti-
vated work done on run-time detection of potential races [17,
23, 16], potential atomicity violations [10, 25], and potential
deadlocks [12, 3, 2, 11].

Work on run-time detection of potential deadlocks has fo-
cused on programs that use locks. The GoodLock algorithm
proposed by Havelund detects potential deadlocks involving
two threads [12]. This algorithm was later generalized to
handle any number of threads, independently by us [2], and
by Bensalem and Havelund [3]. Our multi-thread GoodLock
algorithm detects potential for deadlocks in programs that
use block structured locking, as in Java. This paper extends
that algorithm to handle non block structured locking as
well. Bensalem and Havelund’s algorithm [3] handles non
block structured locking, but does not incorporate some of
the optimizations in our algorithm [2].

Semaphores are another common synchronization mecha-
nism [20]. Semaphores can be used to provide mutual ex-
clusion or condition synchronization. This dual-use nature
of semaphores makes analysis of programs that use them
more challenging. This paper presents algorithms to detect
potential for deadlocks involving semaphores.

Condition variables are another common synchronization
mechanism. For example, the POSIX threads library pro-
vides pthread cond wait and pthread cond signal routines
for condition synchronization. pthread cond wait blocks
the calling thread until the specified condition is signaled
using the pthread cond signal routine. Java has wait and
notify routines for condition synchronization. Lost notifies
(or lost signals) are a common cause of blocked threads in
programs that use condition variables [8, 13]. A notify is
lost if it occurs before the thread it should wake actually



calls wait. As a result, the notify has no effect, and when
that thread does call wait, it may wait forever. This paper
presents algorithms to detect potential for lost notifies.

In summary, the paper makes the following contributions:

• A definition of potential for deadlock and potential for
lost notify in an execution for programs that use one or
more of the following synchronization primitives: locks
(block structured as well as non block structured), con-
dition variables, and semaphores.

• A definition of the feasible permutations of an execu-
tion for such programs; this is the basis for the defini-
tion of potential for deadlock.

• Algorithms to detect potential for deadlocks in such
programs.

Our work has some limitations intrinsic to pure run-time
approaches, which look only at executions (sequences of
states) not at the program itself. First, we only attempt
to analyze the effect of different schedules, not the effect of
different inputs to the program. Second, some of the per-
mutations we identify as feasible might not be possible exe-
cutions of the program. Prior work on run-time detection of
potential atomicity violations [25, 24], and potential dead-
locks [2, 3] share these limitations and have proven effective
in practice nevertheless.

In future work, we plan to evaluate the algorithms pre-
sented in this paper by implementing them and testing them
on benchmarks. For algorithms presented in the paper, we
plan to investigate if more efficient algorithms are possi-
ble. In particular, we think that algorithms for detecting
potential for deadlock due to semaphores presented later in
Section 4, can be improved by identifying some orderings on
the semaphores.

The paper is structured as follows. Section 2 defines po-
tential for deadlock and potential for lost signals. Sections
3 and 4 discuss run-time detection of potential deadlocks
involving locks, and semaphores respectively. Section 5 dis-
cusses detection of potential for lost signals. Section 6 dis-
cusses detection of potential deadlocks involving multiple
synchronization mechanisms. Section 7 discusses related
work.

2. POTENTIAL FOR A DEADLOCK
The definitions and algorithms in this paper apply to pro-

grams in any language that use the following synchroniza-
tion mechanisms. For illustration, we indicate the availabil-
ity of these mechanisms in Java and C++. For concreteness,
we will mainly use the Java terminology in the rest of the
paper.

• locks: Block structured locks (i.e., locks whose ac-
quires and releases are nested so that the most re-
cently acquired lock is the next one to be released)
are built into Java. The Java 5 concurrency library
(java.util.concurrent) and the POSIX pthread li-
brary for C provide locks that are not necessarily block
structured. In pthreads, locks are called mutexes.

• semaphores: Semaphores are provided by the Java 5
concurrency library and by the pthread library for C.
We call the operations on semaphores up and down.

• condition variables: Condition variables are built into
Java; the operations are called wait, notify, and
notifyall. Condition variables are provided by the
POSIX pthread library for C; the operations are called
pthread cond wait, pthread cond signal, and
pthread cond broadcast. In Java and pthreads, a
lock is associated with each condition variable, and it
should be held whenever an operation on the condition
variable is invoked.

• fork and join: Java provides start and join constructs
to start and join. In the POSIX pthread library, the
corresponding operations are pthread create and
pthread join.

The programs may use other synchronization mechanisms
as well, although this may cause our algorithms to produce
some false alarms, unless the definition of feasible permuta-
tion is extended to reflect ordering constraints imposed by
those other mechanisms.

An event is one step in the execution of a program. This
paper considers events that perform the following kinds of
operations: acquire and release of locks, wait and notify on
condition variables, up and down operations on semaphores,
accesses to shared variables, and thread start, join, and ter-
mination operations.

A trace tr is a sequence of events in a given execution.
A feasible permutation of a trace is a trace that is con-
sistent with the original order of events from each thread
and with constraints imposed by synchronization events.
The constraint imposed by locks is that no lock is held by
multiple threads at the same time. The constraints im-
posed by other synchronization mechanisms are expressed
as happens-before orderings. Here we present the frame-
work; orderings imposed by specific kinds of synchronization
events are described later.

Happens-before is a partial order on the events in an ex-
ecution. If event e1 happens-before event e2, then e1 must
occur before e2 in all feasible permutations of the trace.

For an event e in trace tr, we call e a blocking event if one
of the following holds:

• e is an acquire of a lock l by thread t, and l is currently
held by another thread when e occurs.

• e is a wait on a condition variable.

• e is a down on a semaphore whose value is 0.

We do not currently look for deadlocks involving join, so
we do not classify it as a blocking event.

We say that a trace tr deadlocks if a set T of threads
in tr exists, such that the last event for each thread in T

is a blocking event, and all threads in tr not in T have
terminated.

An execution trace has potential for deadlock, if some fea-
sible permutation of the trace deadlocks. Informally, we also
say that the executed program has potential for deadlock.

The above definition considers all synchronization mech-
anisms together. We develop separate algorithms for detec-
tion of potential deadlocks involving different synchroniza-
tion mechanisms before combining them. Next we define
potential for deadlock due to a single synchronization mech-
anism. These definitions serve as correctness conditions for
those algorithms.



An execution trace has potential for deadlock due to locks
/ semaphores if some feasible permutation of the trace re-
stricted to operations on the specified synchronization mech-
anism and operations on threads (i.e., ignoring all other op-
erations) deadlocks.

We do not define “potential for deadlock due to condi-
tion variables” here, because it is essentially the same as
potential for lost notify, defined below.

For potential deadlock due to locks, we also define a sim-
pler conservative condition that can be checked more effi-
ciently. Because this condition is conservative, checking it
can produce false alarms. Our experience so far suggests
that such false alarms are rare in practice.

A program has potential for deadlock due to locks ignoring
gate locks if there exist distinct threads t0, . . . , tm−1 and
locks l0, . . . , lm−1 in the given trace tr such that, for all
i = 0..m−1, ti holds lock li while acquiring lock li+1 mod m.
We call this condition Potential for Deadlock due to Locks
Ignoring Gate Locks (PDL-IGL) condition. This condition
ignores the effect of gate locks [12], which are locks that are
held when other locks are acquired and prevent deadlocking
interleavings (i.e., permutations) of the acquires of those
locks.

An execution trace tr has potential for lost notify if it
contains a notify or notifyall event e such that there is a
feasible permutation of tr in which e wakes up fewer threads
than it does in tr. This is possible when the wait event of
one of the threads woken in tr is not constrained to happen-
before e. Note that a notify that does not wake any threads
in tr might lead to some permanently blocked threads in the
monitored execution tr, but this is easily detected, and we
do not consider such actual lost notifies to be potential lost
notifies.

Next we discuss happen-before orderings due to start/join
events.

When a thread t1 calls t2.start() to start another thread
t2, then the thread start event in t1 happens-before the first
event of t2. Similarly, when a thread t1 calls t2.join() to
wait for thread t2 to terminate, then the the last event of t2
happens before the thread join event in t1.

In addition, we consider orderings due to control depen-
dencies on accesses to shared variables which is useful for
condition synchronization:

• A read event er (on some shared variable) that occurs
in the boolean condition in an if-then statement or
while statement happens after the previous write event
ew to that variable (i.e., ew happens-before er) and
happens-before the next write event to that variable.

Intuitively, this condition helps make permutations in which
the condition would have a different value infeasible. This
is important for analysis of condition synchronization, be-
cause the synchronization operations are often guarded by
the condition in an if-then or while statement. In contrast,
such orderings can usually be safely ignored in analysis of
locking. To completely ensure infeasibility of such permu-
tations, we would also need to consider flow of values from
shared variables into unshared variables used in conditions.
We conjecture that in practice this would eliminate too few
false alarms to be worthwhile. We plan to evaluate this
conjecture experimentally.

The instrumentations needed to detect such orderings can
easily be inserted by a source-code transformation but can-

not easily be inserted by lower level (e.g., bytecode) trans-
formations.

To keep track of these orderings, one can use vector clocks
[15], as in [16], or thread segment identifiers, as in [25].

Orderings due to other events are discussed in later sec-
tions.

3. DETECTION OF POTENTIAL DEADLOCKS
INVOLVING LOCKS

We review our algorithm [2] for run-time detection of po-
tential deadlocks for programs that use block structured
locking, and then describe how to extend it to handle general
locking. It constructs a run-time lock tree for each thread,
as in Havelund’s GoodLock algorithm [12]. The run-time
lock tree for a thread represents the nested pattern in which
locks are acquired and released by the thread. Each node of
the run-time lock tree is labeled with a lock and represents
the thread acquiring that lock. There is an edge from a node
n1 to a node n2 if n1 represents the most recently acquired
lock that the thread holds when it acquires the lock associ-
ated with n2. At each instant, each run-time lock tree has
one node designated as the current node; the path from the
root of the tree to that node represents the nested acquires
of locks held by that thread at that instant. If a thread
re-acquires a lock that it already holds, its run-time lock
tree does not contain a node representing the re-acquire. 1

When a thread acquires a lock that it does not already hold,
if there is already a child of the current node labeled with
that lock, that child becomes the current node, otherwise a
new child labeled with that lock is created and becomes the
current node.

At the end of the execution, it constructs a run-time lock
graph, which is a directed graph G = (V, E), where V con-
tains all the nodes of all the run-time lock trees, and the
set E of directed edges contains (1) tree edges: the directed
(from parent to child) edges in each of the run-time lock
trees, and (2) inter edges: bidirectional edges between nodes
that are labeled with the same lock and that are in different
run-time lock trees.

For a run-time lock graph G, a valid path is a path that
does not contain consecutive inter edges and such that nodes
from each lock tree appear as at most one consecutive sub-
sequence in the path. Similarly, a valid cycle is a cycle that
does not contain consecutive inter edges and nodes from
each thread appear as at most one consecutive subsequence
in the cycle. As shown in [1, 2], there is a valid cycle iff the
execution has potential for deadlock due to locks ignoring
gate locks.

Existence of a valid cycle is detected by traversing all
valid paths starting from the root of each lock tree in G

using a modified depth-first search (DFS) algorithm, which
differs from standard DFS in two ways. First, it traverses
only valid paths, because it extends the current path (on
the search stack) only with edges satisfying both criteria for
validity. Second, a node all of whose neighbors have been
explored may be explored multiple times (along incoming in-
ter edges); this is necessary because the set of threads with
some lock-tree nodes on the stack might be different on dif-
ferent visits, so the set of valid paths that can be explored

1 This matches the semantics of Java locks. For pthread
mutexes, it is an error for a thread to re-acquire a mutex it
holds; we assume run-time checking for this is already done.



by continuing the search from that node is different. The
above algorithm is optimized by observing that many valid
paths share a common suffix. For details, see [1].

To handle general (i.e., not necessarily block structured)
locking, the run-time lock tree construction needs to be
changed as follows. For each thread, the new lock trees keep
track of which locks are held by a thread when it acquires
another lock. The root node of each lock tree is labeled with
the name t of the thread. The root has one child for each
lock acquired by t. Each of those nodes is labeled with the
name l of one of those locks and has a child labeled with a
lock l′ iff t acquired l′ while holding l. Thus, the height of
each lock tree is at most 2. Nodes at depth one (child nodes
of root) that are also leaf nodes are redundant and hence
can be removed from the lock tree. After the run-time lock
trees are constructed, the run-time lock graph construction
remains the same. The algorithm to detect valid cycles re-
mains as before.

As an example, Figure 1 shows the run-time lock graph
for the illustrative program in Figure 2 which uses non block
structured locks. Note that the lock tree of each thread has
height 2. For example, the lock tree for thread T4 has height
2, even though T4 holds 3 locks simultaneously. The graph
in Figure 1 contains several cycles including the following
three, where liTj denotes the node for lock li in the run-
time lock tree for thread j: l3T1 → l3T2 → l3T4 → l3T1,
l1T1 → l2T1 → l2T2 → l3T2 → l3T1 → l4T1 → l4T3 →
l1T3 → l1T1, and l3T1 → l4T1 → l4T4 → l3T4 → l3T1.

The first cycle is not valid because it contains two or more
consecutive inter edges. The second cycle is not valid be-
cause nodes from thread T1 appear in more than one sub-
sequence. The third cycle is valid and hence indicates a
potential deadlock. Specifically, it indicates that the pro-
gram in Figure 2 can deadlock if thread 1 acquires lock l3

and waits for lock l4 and thread 4 acquires lock l4 and waits
for lock l3.

Now we show that PDL-IGL holds iff the run-time lock
graph G contains a valid cycle. Suppose PDL-IGL holds,
i.e., there exist distinct threads t0, . . . , tm−1 and locks l0, . . . , lm−1

such that for all i = 0..m−1, ti holds lock li while acquiring
lock li+1 mod m. Let ni and n′

i denote the nodes in Ti corre-
sponding to the acquire of li and the acquire of li+1 mod m

nested within it, respectively. Since thread ti acquires lock
li and waits for lock li+1 mod m, there is an edge from ni to
n′

i in run-time lock tree Ti for ti (by construction). Also,
there is an inter edge from n′

i in run-time lock tree Ti to
ni+1 mod m in run-time lock tree Ti+1 mod m in G (by con-
struction). These tree edges and inter edges together form
a valid cycle.

Next, we show that existence of a valid cycle C in G

implies that the PDL-IGL condition holds. The cycle in-
volves nodes from more than one lock tree, because nodes
of a single tree cannot be involved in a cycle. Suppose C

had nodes ni and n′

i in run-time lock tree Ti for thread ti,
i ∈ 0..m − 1. Also, nodes n′

i and ni+1 mod m are labeled
with the same lock (they are consecutive nodes from dif-
ferent lock trees and this is only possible through an inter
edge which connects two similar labeled locks). Thus, exis-
tence of C implies there exist distinct threads t0, . . . , tm−1

and locks l0, . . . , lm−1 (node ni corresponds to lock li and
node n′

i corresponds to lock li+1 mod m) such that, for all
i = 0..m−1, ti holds lock li while acquiring lock li+1 mod m.
Hence, the PDL-IGL condition holds.

However, the algorithm does not consider gate locks and
therefore produces false alarms whenever some common lock
acquired by at least two threads prevents deadlocks. To
eliminate these false alarms, we extend the algorithm to
check whether there exist distinct t0 . . . tm−1 and locks l0 . . . , lm−1

such that for all i = 0..m−1, ti holds lock li while acquiring
lock li+1 mod m and there do not exist ti, tj , and l such that
ti and tj hold l when acquiring li and lj , respectively. (Such
a lock l is called a gate lock for the cycle). We call this the
Potential for Deadlocks from Locks (PDL) condition.

The above algorithm can be extended to handle gate locks.
To account for gate locks, each thread maintains for each
edge (l, l′) in the lock tree, a set of locks that were held but
not released at the time the thread acquired lock l′ while
also holding lock l. The acquire of lock l′ while holding
lock l can happen multiple times during the execution of a
thread possibly with a different set of locks already held.
Each such set of locks is maintained for each edge. After
detecting a valid cycle as above, we check if there is a gate
lock preventing a deadlock by checking if any two edges e1

and e2 in a valid cycle share a common lock by taking an
intersection of every set of locks for e1 with every set of locks
for e2 and checking if any of the intersection resulted in a
non-empty set. These checks eliminate false alarms due to
gate locks, but makes the algorithm more expensive.

4. DETECTION OF POTENTIAL DEADLOCKS
INVOLVING SEMAPHORES

Semaphores can be used to provide mutual exclusion or
condition synchronization. This dual-use nature of semaphores
makes analysis of programs that use them more challenging.
To detect potential for deadlocks involving semaphores, we
first use heuristics to determine which semaphores are be-
ing used for mutual exclusion. These semaphores are then
analyzed exactly as if they were locks, with down treated as
acquire, and up treated as release. The other semaphores
are analyzed as described below.

We classify a semaphore sem as used for mutual exclusion
in a given execution σ if sem’s initial and maximum values in
σ are 1 and, letting σ’ be the restriction of σ onto operations
on sem, each down in σ’ either is the last event in σ’ or is
immediately followed by an up by the same thread.

Semaphores not used for mutual exclusion are usually
used for condition synchronization. They induce the fol-
lowing happens-before ordering:

• An up event eu that unblocks a thread blocked on a
down event ed happens-before succ(ed), where succ(e)
is the event immediately following e on the same thread.

To detect potential for deadlocks due to semaphores not
used for mutual exclusion, we look at all feasible permuta-
tions allowed by the ordering constraints, tracking the values
of the semaphore. If there is a permutation which can re-
sult in a deadlock, a warning of a potential for deadlock is
issued.

Consider the program for the cigarette smokers problem
[14] shown in Figure 3. It uses 4 semaphores for condi-
tion synchronization and has a potential for deadlock in-
volving semaphores. Consider, the following deadlock-free
trace of the program. The semaphores tobacco, paper, and
matches are initialized to 0, and order is initialized to 1.
The agent thread does a down on order, followed by an up
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Figure 1: Run-time lock graph

Thread 1:

acquire(l1);

acquire(l2);

release(l1);

release(l2);

acquire(l3);

acquire(l4);

release(l4);

release(l3);

Thread 2:

acquire(l2);

acquire(l3);

release(l3);

release(l2);

Thread 3:

acquire(l4);

acquire(l1);

release(l1);

release(l4);

Thread 4:

acquire(l4);

acquire(l3);

acquire(l1);

release(l4);

release(l1);

release(l3);

Figure 2: Synchronization behavior of 4 threads.

on tobacco and paper, making tobacco and paper avail-
able, and then blocks waiting for order semaphore to be
signaled. smoker 1 which was initially blocked waiting for
tobacco uses tobacco and paper and then performs up on
the order semaphore, following which the agent thread un-
blocks and makes paper and matches available by doing an
up on those semaphores. This time smoker 2 unblocks and
uses up paper and matches.

Based on the happens-before ordering introduced above,
the above execution trace is drawn as a partial order in Fig-
ure 4. In the figure, t,p,m,o stand for tobacco, paper,matches,
and order respectively. Each event happens-before the next
event on the same thread, and an edge from an event e to an
event e′ of another thread means that e happens-before e′.
There is a feasible permutation where the agent thread does
a down on order, followed by an up on tobacco and an up
on paper, followed by a down on tobacco by smoker 1 and
a down on paper by smoker 2. The last 2 events have no
causal predecessors, so they can occur as above, leaving the
system deadlocked. Therefore, the above execution trace
has a potential for deadlock.

5. DETECTION OF POTENTIAL FOR LOST
NOTIFIES

As described in Section 1, lost notifies are a common cause
of blocked threads in programs using condition variables.

Our algorithm to detect potential for lost notifies is based
directly on the definition in Section 2: for each notify or
notifyall event en, for each thread t woken by en, there is
a potential for lost notify if t’s corresponding wait event ew

does not happen-before en. Lost notify can result in mul-
tiple threads blocked on a wait if the wait in those threads
does not happen before the corresponding notify or notifyAll
intended for those threads.

Consider the program shown in Figure 5. In this program,
the intended behavior is that the computeThread object re-
peatedly waits, waiting for the EventHandler object to no-
tify it whenever an update event happens. The computeThread
then unblocks and performs the computation. However, this
program has a potential for a lost notify that may cause
the desired computation not to occur. That may happen if
the EventHandler object notifies the computeThread of an
update event before it waits, resulting in a lost notify. Our
algorithm warns of potential for lost notifies even if notifies
are not lost in the observed execution.
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Figure 4: Partial order for an execution trace of cigarette smokers problem.

Happens-before orderings induced by condition synchro-
nization (as well as start/join and other synchronization
mechanisms) are considered in this analysis. Specifically, we
consider the following ordering constraints due to condition
variables.

• For each notify or notifyAll event en and each wait
event ew that is notified by en, en happens-before
succ(ew), where succ(e) is the event immediately after
e on the same thread. Since, the same lock l must be
held when ew and en occur and only one thread can
hold a given lock at a time, this is equivalent to saying
that the release of l after en happens-before succ(ew).

This condition is similar to the ordering on down and up
on semaphores not used for mutual exclusion in Section 4;
this reflects the fact that semaphores not used for mutual
exclusion are typically used for condition synchronization.

We continue to use the orderings on reads and writes on
shared variables given in Section 4.

Figure 6 shows typical code for producer-consumer syn-
chronization implemented using condition variables. The
above code is taken from Java tutorial on wait and notify
at Sun’s website [21]. Specifically, it shows the put and get

methods for a shared buffer with capacity one. The producer
repeatedly invokes the put method, while the consumer re-
peatedly invokes the get method. Consider the following
execution trace, where available is initially false: the con-
sumer executes get until it blocks on the wait, then the
producer executes put to completion without blocking, then
the awoken consumer executes the rest of get. Our ordering
constraints imply that the consumer’s read of available

happens-before the producer’s write to available. This
along with locking constraints ensure that the consumer’s
first acquire of the lock on the shared buffer happens-before
the producer’s acquire of that lock. Hence, the consumer’s
wait happens-before the producer’s notifyAll, hence there
is no potential for lost notify. The consumer’s notifyAll

does not wake any thread in the observed execution, so our
algorithm does not produce any warnings for it.

6. DETECTION OF POTENTIAL DEADLOCKS
INVOLVING LOCKS, CONDITION VARI-
ABLES, AND SEMAPHORES

As discussed in Section 2, for programs involving locks,
condition variables, and semaphores, a potential for dead-
lock occurs if some feasible permutation of the execution
trace deadlocks. To find feasible permutations, we first de-
termine if the semaphores are used for mutual exclusion us-
ing the heuristics presented in Section 4. Semaphores used

for mutual exclusion are treated exactly like locks. All the
ordering constraints introduced in previous sections and the
constraint imposed by locks (no lock is held by multiple
threads at the same time) are taken into account.It is un-
clear how to extend the lock-graph-based algorithm in Sec-
tion 3 to efficiently consider the effects of condition variables
and semaphores. Therefore, when considering all three syn-
chronization mechanisms, we currently use a naive algorithm
that checks each feasible permutation of the trace for dead-
lock.

Consider the program shown in Figure 7. Although the
example is a bit contrived, it is interesting as it uses locks,
semaphores, and condition variables and has both deadlock-
free executions and deadlocking executions. The program
has three threads. Each thread invokes a separate method
doWait, doNotify, and doCompute on the same shared ob-
ject o. Threads invoking doWait and doNotify methods use
the same shared object o′ as the argument. Consider the
following deadlock-free trace. sem is initialized to 0. Thread
3 first invokes the doCompute method, acquires the lock on
o, does an up operation on sem and releases the lock on o.
Thread 1 then invokes the doWait method, acquires the lock
on o, acquires the lock on o′, and waits releasing the lock on
o′. Thread 2 then invokes the doNotify method, acquires
the lock on o′, does a notify and releases the lock on o′.
Thread 1 then wakes up, releases the lock on o and proceeds
to termination.

Given this trace, our algorithm correctly identifies two
synchronization problems in the program, corresponding to
the following feasible permutations of this trace. One fea-
sible permutation which results in a deadlock is if thread
1 invokes doWait method and acquires the lock on o, ac-
quires the lock on o′, and waits releasing the lock on o′.
Each of the threads is then blocked: Thread 1 on the wait,
thread 2 on sem.down, and thread 3 trying to acquire a lock
on o. Another feasible permutation is if thread 3 invokes
the doCompute method, followed by thread 2 invoking the
doNotify method, followed by thread 1 invoking the doWait

method. This permutation results in a lost notify.

7. RELATED WORK

7.1 Run-time analysis
The GoodLock algorithm [12], multi-thread GoodLock al-

gorithms developed by us [2] and Bensalem and Havelund
[3], and the algorithm in Visual Threads[11] detect potential
for deadlocks due to locks. These algorithms do not consider
semaphores or condition variables.

ConTest [6] detects actual deadlocks, not potential dead-
locks, and therefore may miss some potential deadlocks. On



Initially, tobacco =0, paper =0,

matches =0, order =1

smoker 1

---------

while (1) {

tobacco.down()

paper.down()

order.up()

}

smoker 2

---------

while (1) {

paper.down()

matches.down()

order.up()

}

smoker 3

---------

while (1) {

matches.down()

tobacco.down()

order.up()

}

agent

---------

while (1) {

order.down()

up on one of tobaco, paper, matches at random

up on one of the three at random but not above

}

Figure 3: Program for the cigarette smokers prob-
lem.

the other hand, ConTest’s scheduling perturbation heuris-
tics make potential deadlocks of all kinds (including dead-
locks due to condition synchronization) more likely to mani-
fest themselves as actual deadlocks during testing with Con-
Test, compared to testing without ConTest. An extension
to ConTest implements a run-time deadlock checking algo-
rithm that combines information obtained from multiple ex-
ecutions of the program [9]. Farchi et al. [8] present heuris-
tics that increase the probability that lost notification bugs
will manifest themselves during testing.

Pulse [14] is an operating system mechanism that uses
speculative execution to detect deadlocks involving reusable
resources, such as locks, and consumable resources, such as
semaphores. Pulse can handle many synchronization mech-
anisms, including the ones we consider, but it is designed to
detect actual deadlocks, not potential for deadlock.

Sen et al. [19] define feasible permutations of an exe-
cution of a multithreaded program and give algorithms to
compute them which are implemented in the JMPaX tool
[18]. They generate orderings among all reads and writes of
shared variables. They consider lock acquires and releases
as writes to shared variables. This is overly conservative as

class EventHandler extends ... {

public void handleEvent(Event e) {

switch(e.type) {

update:

data.update(e);

synchronized(computeThread) {

computeThread.notify();

}

break;

....

}

}

}

class ComputeThread extends Thread {

public void run {

while(true) {

synchronized(this) {

this.wait();

compute();

}

}

}

}

Figure 5: A program with a potential for lost notify.

it prevents permuting two synchronized blocks. Condition
synchronization is handled by generating writes to shared
variables by notified and notifying threads; this is similar to
the ordering we consider. Chen and Rosu [5] define a more
relaxed causal ordering that takes the program’s control de-
pendence into account. These techniques have not yet been
applied to detect potential for deadlocks.

7.2 Static Analysis
Boyapati, Lee and Rinard [4] introduce a static type sys-

tem that ensures Java programs are deadlock-free. The
types express a partial order among locks. Deadlocks in-
volving locks and a condition variable are prevented by the
simple constraint that a thread can invoke e.wait only if the
thread holds no locks other than the lock on e. Semaphores
and lost notifies are not considered.

Engler et al. [7], von Praun [22], and Williams et al. [26]
developed inter-procedural static analyses that detect pos-
sible deadlocks. Engler et al.’s analysis detects only possi-
ble deadlocks involving synchronization primitives used like
locks. They do not handle condition variables or semaphores
not used for mutual exclusion. They use heuristics to de-
termine which semaphores are used for mutual exclusion.
Williams et al.’s analysis detects only possible deadlocks in-
volving only locks. von Praun considers locks, and condition
variables, but does not consider lost notifies or semaphores.
These static analyses are also based on checking whether
locks are acquired in a consistent order by all threads. These
static analyses are more sophisticated and more accurate
than Boyapati et al.’s deadlock types but still produce nu-



public synchronized int get() {

while (available == false) {

try {

//Wait for Producer to put value.

wait();

} catch (InterruptedException e) { }

}

available = false;

//Notify Producer that value has been retrieved.

notifyAll();

return contents;

}

public synchronized void put(int value) {

while (available == true) {

try {

//Wait for Consumer to get value.

wait();

} catch (InterruptedException e) { }

}

contents = value;

available = true;

//Notify Consumer that value has been set.

notifyAll();

}

Figure 6: Shared buffer implemented using wait and
notify.

merous false alarms. Engler et al. and Williams et al. par-
tially address this problem by using heuristics to rank or
suppress warnings that seem more likely to be false alarms.
We expect that run-time detection of potential deadlocks,
like run-time detection of races and atomicity violations,
will produce fewer false alarms than static analysis, because
aliasing and infeasible path elimination are not problems for
run-time analysis.

[2] uses the idea of using static analysis to optimize run-
time checking to detect potential deadlocks involving locks.
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