From Clarity to Efficiency for Distributed Algorithms

Yanhong A. Liu Scott D. Stoller Bo Lin

Computer Science Department, Stony Brook University, Stony Brook, NY 11794, USA
{liu,stoller,bolin}@cs.stonybrook.edu

Abstract
This article describes a very high-level language for clear
description of distributed algorithms and optimizations nec-
essary for generating efficient implementations. The lan-
guage supports high-level control flows where complex syn-
chronization conditions can be expressed using high-level
queries, especially logic quantifications, over message his-
tory sequences. Unfortunately, the programs would be ex-
tremely inefficient, including consuming unbounded mem-
ory, if executed straightforwardly.

We present new optimizations that automatically trans-
form complex synchronization conditions into incremen-
tal updates of necessary auxiliary values as messages are
sent and received. The core of the optimizations is the first
general method for efficient implementation of logic quan-
tifications. We have developed an operational semantics of
the language, implemented a prototype of the compiler and
the optimizations, and successfully used the language and
implementation on a variety of important distributed algo-
rithms.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—Very high-level languages; D.3.4 [Pro-
gramming Languages]: Processors—Code generation, Com-
pilers, Optimization; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying about Programs—Specifi-
cation techniques; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics; I.2.4 [Computing Method-
ologies]: Knowledge Representation Formalisms and Meth-
ods—Predicate logic

General Terms Algorithms, Design, Languages, Perfor-
mance

Keywords distributed algorithms, high-level queries and
updates, incrementalization, logic quantifications, synchro-
nization conditions, yield points

1. Introduction
Distributed algorithms are at the core of distributed systems.
Yet, developing practical implementations of distributed al-
gorithms with correctness and efficiency assurances remains
a challenging, recurring task.

- Study of distributed algorithms has relied on either pseu-
docode with English, which is high-level but imprecise,
or formal specification languages, which are precise but
harder to understand, lacking mechanisms for building
real distributed systems, or not executable at all.
- At the same time, programming of distributed systems
has mainly been concerned with program efficiency and
has relied mostly on the use of low-level or complex
libraries and to a lesser extent on built-in mechanisms in
restricted programming models.

What’s lacking is (1) a simple and powerful language that
can express distributed algorithms at a high level and yet
has a clear semantics for precise execution as well as for
verification, and is fully integrated into widely used pro-
gramming languages for building real distributed systems,
together with (2) powerful optimizations that can transform
high-level algorithm descriptions into efficient implemen-
tations.

This article describes a very high-level language, DistAlgo,
for clear description of distributed algorithms, combining
advantages of pseudocode, formal specification languages,
and programming languages.

- The main control flow of a process, including sending
messages and waiting on conditions about received mes-
sages, can be stated directly as in sequential programs;
yield points where message handlers execute can be spec-
fied explicitly and declaratively.
- Complex synchronization conditions can be expressed
using high-level queries, especially quantifications, over
message history sequences, without manually writing
message handlers that perform low-level incremental up-
dates and obscure control flows.

DistAlgo supports these features by building on an object-
oriented programming language. We also developed an op-
erational semantics for the language. The result is that dis-
tributed algorithms can be expressed in DistAlgo clearly at a
high level, like in pseudocode, but also precisely, like in fo-
mal specification languages, facilitating formal verification, and be executed as part of real applications, as in programming languages.

Unfortunately, programs containing control flows with synchronization conditions expressed at such a high level are extremely inefficient if executed straightforwardly: each quantifier will cause a linear factor in running time, and any use of the history of messages sent and received will cause space usage to be unbounded.

We present new optimizations that allow efficient implementations to be generated automatically, extending previous optimizations to distributed programs and to the most challenging quantifications.

- Our method transforms sending and receiving of messages into updates to message history sequences, incrementally maintains the truth values of synchronization conditions and necessary auxiliary values as those sequences are updated, and finally removes those sequences as dead code when appropriate.
- To incrementally maintain the truth values of general quantifications, our method first transforms them into aggregate queries. In general, however, translating nested quantifications simply into nested queries can incur asymptotically more space and time overhead than necessary. Our transformations minimize the nesting of the resulting queries.
- Quantified order comparisons are used extensively in nontrivial distributed algorithms. They can be incrementalized easily when not mixed with other conditions or with each other. We systematically extract single quantified order comparisons and transform them into efficient incremental operations.

Overall, our method significantly improves time complexities and reduces the unbounded space used for message history sequences to the auxiliary space needed for incremental computation. Systematic incrementalization also allows the time and space complexity of the generated programs to be analyzed easily.

There has been a significant amount of related research, as discussed in Section 7. Our work contains three main contributions:

- A simple and powerful language for expressing distributed algorithms with high-level control flows and synchronization conditions, an operational semantics, and full integration into an object-oriented language.
- A systematic method for incrementalizing complex synchronization conditions with respect to all sending and receiving of messages in distributed programs.
- A general and systematic method for generating efficient implementations of arbitrary logic quantifications together with general high-level queries.

We have implemented a prototype of the compiler and the optimizations and experimented with a variety of important distributed algorithms, including Paxos, Byzantine Paxos, and multi-Paxos. Our experiments strongly confirm the benefits of the language and the effectiveness of the optimizations.

This article is a revised version of Liu et al. [53]. The main changes are revised and extended descriptions of the language and the optimization method, a new formal operational semantics, an abridged and updated description of the implementation, and a new description of our experience of using DistAlgo in teaching.

2. Expressing distributed algorithms

Even when a distributed algorithm appears simple at a high level, it can be subtle when necessary details are considered, making it difficult to understand how the algorithm works precisely. The difficulty comes from the fact that multiple processes must coordinate and synchronize to achieve global goals, but at the same time, delays, failures, and attacks can occur. Even determining the ordering of events is nontrivial, which is why Lamport’s logical clock [40] is so fundamental for distributed systems.

Running example. We use Lamport’s distributed mutual exclusion algorithm [40] as a running example. Lamport developed it to illustrate the logical clock he invented. The problem is that processes access a shared resource, and need to access it mutually exclusively, in what is called a critical section (CS), i.e., there can be at most one process in a critical section at a time. The processes have no shared memory, so they must communicate by sending and receiving messages. Lamport’s algorithm assumes that communication channels are reliable and first-in-first-out (FIFO).

Figure 1 contains Lamport’s original description of the algorithm, except with the notation $<$ instead of \rightarrow in rule 5 (for comparing pairs of timestamps and process ids using standard pair comparison: $(a, b) < (a_2, b_2)$ iff $a < a_2$ or $a = a_2$ and $b < b_2$) and with the word “acknowledgment” added in rule 5 (for simplicity when omitting a commonly omitted [27, 55] small optimization mentioned in a footnote). This description is the most authoritative, is at a high level, and uses the most precise English we found.

The algorithm satisfies safety, liveness, and fairness, and has a message complexity of $3(n - 1)$. It is safe in that at most one process can be in a critical section at a time. It is live in that some process will be in a critical section if there are requests. It is fair in that requests are served in the order of the logical timestamps of the request messages. Its message complexity is $3(n - 1)$ in that $3(n - 1)$ messages are required to serve each request.

Challenges. To understand how this algorithm is carried out precisely, one must understand how each of the n processes acts as both P_i and P_j in interactions with all other pro-
The algorithm is then defined by the following five rules. For convenience, the actions defined by each rule are assumed to form a single event.

1. To request the resource, process P_i sends the message $T_m; P_i$ requests resource to every other process, and puts that message on its request queue, where T_m is the timestamp of the message.

2. When process P_i receives the message $T_m; P_i$ requests resource, it places it on its request queue and sends a (timestamped) acknowledgment message to P_i.

3. To release the resource, process P_i removes any $T_m; P_i$ requests resource message from its request queue and sends a (timestamped) P_i releases resource message to every other process.

4. When process P_i receives a P_i releases resource message, it removes any $T_m; P_i$ requests resource message from its request queue.

5. Process P_i is granted the resource when the following two conditions are satisfied: (i) There is a $T_m; P_i$ requests resource message in its request queue which is ordered before any other request in its queue by the relation $<$. (To define the relation $<$ for messages, we identify a message with the event of sending it.) (ii) P_i has received an acknowledgment message from every other process timestamped later than T_m. Note that conditions (i) and (ii) of rule 5 are tested locally by P_i.

![Figure 1.](image-url) Figure 1. Original description in English.

Processes. Each process must have an order of handling all the events according to the five rules, trying to reach its own goal of entering and exiting a critical section while also responding to messages from other processes. It must also keep testing the complex condition in rule 5 as events happen.

State machine based formal specifications have been used to fill in such details precisely, but at the same time, they are lower-level and harder to understand. For example, a formal specification of Lamport’s algorithm in I/O automata [55, pages 647-648] occupies about one and a fifth pages, most of which is double-column.

To actually implement distributed algorithms, details for many additional aspects must be added, for example, creating processes, letting them establish communication channels with each other, incorporating appropriate logical clocks (e.g., Lamport clock or vector clock [56]) if needed, guaranteeing the specified channel properties (e.g., reliable, FIFO), and integrating the algorithm with the application (e.g., specifying critical section tasks and invoking the code for the algorithm as part of the overall application). Furthermore, how to do all of these in an easy and modular fashion?

Our approach. We address these challenges with the DistAlgo language, compilation to executable programs, and especially optimization by incrementalization of expensive synchronizations, described in Sections 3, 4, and 5, respectively. An unexpected result is that incrementalization let us discover simplifications of Lamport’s original algorithm in

Figure 1; the simplified algorithm can be expressed using basically two send statements, a receive definition, and an await statement.

Figure 2 shows Lamport’s original algorithm expressed in DistAlgo; it also includes configuration and setup for running of 50 processes each trying to enter critical section at some point during its execution. Figures 3 and 4 show two alternative optimized programs after incrementalization; all lines with comments are new except that the await statement is simplified. Figure 5 shows the simplified algorithm.

3. **DistAlgo Language**

To support distributed programming at a high level, four main concepts can be added to commonly used object-oriented programming languages, such as Java and Python: (1) processes as objects, and sending of messages, (2) yield points and waits for control flows, and handling of received messages, (3) synchronization conditions using high-level queries and message history sequences, and (4) configuration of processes and communication mechanisms. DistAlgo supports these concepts, with options and generalizations for ease of programming, as described below. A formal operational semantics for DistAlgo is presented in Appendix A.

Processes and sending of messages. Distributed processes are like threads except that each process has its private memory, not shared with other processes, and processes communicate by message passing. Three main constructs are used, for defining processes, creating processes, and sending messages.

A process definition is of the following form. It defines a type P of processes, by defining a class P that extends class Process. The process body is a set of method definitions and handler definitions, to be described.

```
class P extends Process:
  process_body
```

A special method `setup` may be defined in `process_body` for initially setting up data in the process before the process’s execution starts. A special method `run()` must be defined in `process_body` for carrying out the main flow of execution, and a call `start()` starts the execution of the method `run()`. A special variable `self` refers to the current process.

A statement for process creation is of the following form. It creates n new processes of type P, and assigns the single new process or set of new processes to variable v; expression `nodeexp` evaluates to a node (a host name or IP address plus a port number) or a set of nodes, specifying where the new processes will be created.

```
v = n new P at node_exp
```

The number n and the `at` clause are optional; the defaults are 1 and the local node, respectively.

A statement for sending messages is of the following form. It sends the message that is the value of expression
components in the value matched. The expression \(pexp \) of statements to be executed for the matched messages.

Control flows and handling of received messages. The key idea is to use labels to specify program points where control flow can yield to handling of messages and resume afterwards. Three main constructs are used, for specifying yield points, handling of received messages, and synchronization.

A yield point preceding a statement is of the following form, where identifier \(l \) is a label. It specifies that point in the program as a place where control yields to handling of un-handled messages, if any, and resumes afterwards.

\[
\text{- - } l
\]

The label \(l \) is optional; it can be omitted when this yield point is not explicitly referred to in any handler definitions, defined next.

A handler definition, also called receive definition, is of the following form. It handles, at yield points labeled \(l_1, \ldots, l_j \), un-handled messages that match some \(mexp_k \) sent from \(pexp_k \), where \(mexp_k \) and \(pexp_k \) are parts of a tuple pattern; variables in a pattern are bound to the corresponding components in the value matched. The \textit{handler_body} is a sequence of statements to be executed for the matched messages.

\[
\text{receive } mexp_1 \text{ from } pexp_1, \ldots, mexp_j \text{ from } pexp_j \text{ at } l_1, \ldots, l_j:\n\]

\textit{handler_body}

The \textit{from} and \textit{at} clauses are optional; the defaults are any process and all yield points, respectively. If the \textit{from} clause is used, each message automatically includes the process id of the sender. A tuple pattern is a tuple in which each component is a non-variable expression, a variable possibly prefixed with "\(= \)", a wildcard, or recursively a tuple pattern. A non-variable expression or a variable prefixed with "\(= \)" means that the corresponding component of the tuple being matched must equal the value of the non-variable expression or the variable, respectively, for pattern matching to succeed. A variable not prefixed with "\(= \)" matches any value and becomes bound to the corresponding component of the tuple being matched. A wildcard, written as "\(_{} \)”, matches any value. Support for receive mimics common usage in pseudocode, allowing a message handler to be associated with multiple yield points without using method definition and invocations. As syntactic sugar, a receive that is handled at only one yield point can be written at that point.

Synchronization and associated actions can be expressed using general, nondeterministic \textit{await} statements. A simple \textit{await} statement is of the following form. It waits for the value of Boolean-valued expression \(bexp \) to become true.

\[
\text{await } bexp
\]

A general, nondeterministic \textit{await} statement is of the following form. It waits for any of the values of expressions \(bexp_1, \ldots, bexp_k \) to become true or a timeout after time period \(t \), and then nondeterministically selects one of statements \(stmt_1, \ldots, stmt_k \), \(stmt \) whose corresponding conditions are satisfied to execute. The or and timeout clauses are optional.

\[
\text{await } bexp_1: \text{ stmt}_1 \text{ or } \ldots \text{ or } bexp_k: \text{ stmt}_k \text{ timeout } t: \text{ stmt}
\]

An \textit{await} statement must be preceded by a yield point; if a yield point is not specified explicitly, the default is that all message handlers can be executed at this point.

These few constructs make it easy to specify any process that has its own flow of control while also responding to messages. It is also easy to specify any process that only responds to messages, for example, by writing just receive definitions and a run method containing only \textit{await} false.

Synchronization conditions using high-level queries. Synchronization conditions and other conditions can be expressed using high-level queries—quantifications, comprehensions, and aggregations—over sets of processes and sequences of messages. High-level queries are used commonly in distributed algorithms because (1) they make complex synchronization conditions clearer and easier to write, and (2) the complexity of distributed algorithms is measured by round complexity and message complexity, not time complexity of local processing.

Quantifications are especially common because they directly capture the truth values of synchronization conditions. We discovered a number of errors in our initial programs that were written using aggregations in place of quantifications before we developed the method to systematically optimize quantifications. For example, we regularly expressed "\(v \) is larger than all elements of \(s \)" as \(v > \max(s) \) and either forgot to handle the case that \(s \) is empty or handled it in an ad hoc fashion. Naive use of aggregate operations like \(\max \) may also hinder generation of more efficient implementations.

We define operations on sets; operations on sequences are the same except that elements are processed in order, and square brackets are used in place of curly braces.

- A quantification is a query of one of the following two forms, called existential and universal quantifications, respectively, plus a set of parameters—variables whose values are bound before the query. For a query to be well-formed, every variable in it must be reachable from a parameter—be a parameter or recursively be the left-side variable of a membership clause whose right-side variables are reachable. Given values of parameters, the query returns \(\text{true} \) iff for some or all, respectively, combinations of values of variables that satisfy all membership clauses \(v_i \in \text{sexp}_i \), expression \(bexp \) evaluates to

\[
\text{true}
\]
true. When an existential quantification returns true, all variables in the query are also bound to a combination of values, called a witness, that satisfy all the membership clauses and condition $bexp$.

some v_1 in $sexp_1$, ..., v_k in $sexp_k$ | $bexp$

each v_1 in $sexp_1$, ..., v_k in $sexp_k$ | $bexp$

For example, the following query returns true iff each element in S is greater than each element in T.

each x in S, y in T | $x > y$

For another example, the following query, containing a nested quantification, returns true iff some element in S is greater than each element in T. Additionally, when the query returns true, variable x is bound to a witness—an element in S that is greater than each element in T.

some x in S | each y in T | $x > y$

• A comprehension is a query of the following form plus a set of parameters. Given values of parameters, the query returns the set of values of exp for all combinations of values of variables that satisfy all membership clauses v_i in $sexp_i$ and condition $bexp$.

$$\{exp: v_1 \text{ in } sexp_1, \ldots, v_k \text{ in } sexp_k | bexp\}$$

For example, the following query returns the set of products of x in S and y in T where x is greater than y.

$$\{x \cdot y: x \text{ in } S, y \text{ in } T | x > y\}$$

We abbreviate $\{v: v \text{ in } exp | bexp\}$ as $\{v \text{ in } sexp | bexp\}$.

• An aggregation is of the form $agg(sexp)$, where agg is an operation, such as $size$, sum, or max, specifying the kind of aggregate operations over the set value of $sexp$.

• In the query forms above, each v_i can also be a tuple pattern t_i. Variables in t_i are bound to the corresponding components in the matched elements of the value of $sexp_i$. We omit $| bexp$ when $bexp$ is true.

We use $\{}$ for empty set; use s.add(x) and s.del(x) for element addition and deletion, respectively; and use x in s and x not in s for membership test and its negation, respectively. We assume that hashing is used in implementing sets, and the expected time of set initialization, element addition and removal, and membership test is $O(1)$. We consider operations that involve iterations over sets and sequences to be expensive; each iteration over a set or sequence incurs a cost that is linear in the size of the set or sequence. All quantifications, comprehensions, and aggregations are considered expensive.

DistAlgo has built-in sequences received and sent, containing all messages received and sent, respectively, by a process.

• Sequence received is updated only at yield points; after a message arrives, it will be handled when execution reaches the next yield point, by adding the message to received and running matching receive definitions, if any, associated with the yield point. We use received(m from p) as a shorthand for m from p in received; from p is optional, but when specified, each message in received automatically includes the process id of the sender.

• Sequence sent is updated at each send statement; each message sent to a process is added to sent. We use sent(m to p) as a shorthand for m to p in sent; to p is optional, but when specified, p is the process to which m was sent as specified in the send statement.

If implemented straightforwardly, received and sent can create a huge memory leak, because they can grow boundlessly, preventing their use in practical programming. Our method can remove them by maintaining only auxiliary values that are needed for incremental computation.

Configuration. One can specify channel types, handling of messages, and other configuration items. Such specifications are declarative, so that algorithms can be expressed without unnecessary implementation details. We describe a few basic kinds of configuration items.

First, one can specify the types of channels for passing messages. For example, the following statement configures all channels to be FIFO.

```
configure channel = fifo
```

Other options for channel types include reliable and {reliable, fifo}. When either reliable or fifo is specified, TCP is used for communication; otherwise, UDP is used. In general, separate channel types can be specified for communication among any set of processes; the default is for communication among all processes.

One can specify how much effort is spent processing messages at yield points. For example,

```
configure handling = all
```

means that all arrived messages that are not yet handled must be handled before execution of the main flow of control continues past any yield point. For another example, one can specify a time limit. One can also specify different handling effort for different yield points.

Logical clocks [25, 40, 56] are used in many distributed algorithms. One can specify the logical clock, e.g., Lamport clock, that is used:

```
configure clock = Lamport
```

It configures sending and receiving of messages to update the clock appropriately. A call logical_clock() returns the current value of the clock.

Other language constructs. For other constructs, we use those in high-level object-oriented languages. We mostly
use Python syntax (indentation for scoping, `:` for separation, `#` for comments, etc.), for succinctness, except with a few conventions from Java (uppercase initial letter for class names, keyword `extends` for subclass, keyword `new` for object creation, and omission of `self`, the equivalent of `this` in Java, when there is no ambiguity), for ease of reading.

Example. Figure 2 shows Lamport's algorithm expressed in DistAlgo. The algorithm in Figure 1 corresponds to the body of `cs` and the two `receive` definitions, 16 lines total; the rest of the program, 14 lines total, shows how the algorithm is used in an application. The execution of the application starts with method `main`, which configures the system to run (lines 25-30). Method `cs` and the two `receive` definitions are executed when needed and follow the five rules in Figure 1 (lines 5-21). Recall that there is an implicit yield point before the `await` statement.

Note that Figure 2 is not meant to replace Figure 1, but to realize Figure 1 in a precisely executable manner. Figure 2 is meant to be high-level, compared with lower-level specifications and programs.

```python
1 class P extends Process:
2     def setup(s):
3         self.s = s  # set of all other processes
4         self.q = {}  # set of pending requests
5     def cs(task):
6         # for calling task() in CS
7         self.c = logical_clock()  # 1 in Fig 1
8         send(‘request’, c, self) to s  #
9         q.add(‘request’, c, self)  #
10        # wait for own req < others in q
11        # and for acks from all in s
12        await each (‘request’, c2, p2) in q  # 5 in Fig 1
13        (c2, p2) != (c, self) implies (c, self) < (c2, p2)
14        and each p2 in s  #
15        some received(‘ack’, c2, p2) | c2 > c
16        task()  # critical section
17     -- release
18        q.del(‘request’, c, self)  # 3 in Fig 1
19        send(‘release’, logical_clock(c, self)) to s #
20        receive(‘request’, c2, p2);  # 2 in Fig 1
21        q.add(‘request’, c2, p2) #
22        send(‘ack’, logical_clock(c, self)) to p2 #
23        receive(‘release’, .., p2);  # 4 in Fig 1
24        for (‘request’, c2, p2) in q:  #
25        q.del(‘request’, c2, p2)) #
26     def run():  # main method for the process
27        # may do non-CS tasks of the proc
28     def task():  # define critical section task
29        cs(task)  # call cs to do task in CS
30        # may do non-CS tasks of the proc
31     def main():  # main method for the application
32        configure channel = (reliable, fifo)  # use reliable and FIFO channel
33        configure clock = Lamport  # use Lamport clock
34        ps = 50 new P  # create 50 processes of P class
35        for p in ps: p.setup(ps-{p})  # pass to each proc other procs
36        for p in ps: p.start()  # start each proc, call method run

Figure 2. Original algorithm (lines 6-21) in a complete program in DistAlgo.

4. Compiling to executable programs

Compilation generates code to create processes on the specified machine, take care of sending and receiving messages, and realize the specified configuration. In particular, it inserts appropriate message handlers at each yield point.

**Processes and sending of messages.** Process creation is compiled to creating a process on the specified or default machine and that has a private memory space for its fields. Each process is implemented using two threads: a main thread that executes the main flow of control of the process, and a helper thread that receives and enqueues messages sent to this process. Constructs involving a set of processes, such as `n new P`, can easily be compiled into loops.

Sending a message `m` to a process `p` is compiled into calls to a standard message passing API. If the sequence `sent` is used in the program, we also insert `sent.add(m to p)`. Calling a method on a remote process object is compiled into a remote method call.

**Control flows and handling of received messages.** Each yield point 1 is compiled into a call to a message handler method `l()` that updates the sequence `received`, if it is used in the program, and executes the bodies of the `receive` definitions whose at clause includes 1. Precisely:

1. Each `receive` definition is compiled into a method that takes a message `m` as argument, matches `m` against the message patterns in the `receive` clause, and if the matching succeeds, binds the variables in the matched pattern appropriately, and executes the statement in the body of this `receive` definition.
2. Method `l()` compiled for yield point 1 does the following: for each newly arrived message `m` from `p` in the queue of messages, (1) execute `received.add(m from p)` if `received` is used in the program, (2) call the methods generated from the `receive` definitions whose at clause includes 1, and (3) remove `m` from the message queue.

An `await` statement can be compiled into a synchronization using busy-waiting or blocking. For example, for busy-waiting, a statement `await bexp` that immediately follows a label 1 is compiled into a call `l()` followed by `while not bexp: l()`.

**Configuration.** Configuration options are taken into account during compilation in a straightforward way. Libraries and modules are used as much as possible. For example, when `fifo` or `reliable` channel is specified, the compiler can generate code that uses TCP sockets.

5. Incrementalizing expensive synchronizations

Incrementalization transforms expensive computations into efficient incremental computations with respect to updates to the values on which the computations depend. It (1) identifies all expensive queries, (2) determines all updates that
may affect the query result, and (3) transforms the queries and updates into efficient incremental computations. Much of incrementalization has been studied previously, as discussed in Section 7.

The new method here is for (1) systematic handling of quantifications for synchronization as expensive queries, especially nested alternating universal and existential quantifications and quantifications containing complex order comparisons and (2) systematic handling of updates caused by all sending, receiving, and handling of messages in the same way as other updates in the program. The result is a drastic reduction of both time and space complexities.

**Expensive computations using quantifications.** Expensive computations in general involve repetition, including loops, recursive functions, comprehensions, aggregations, and quantifications over collections. Optimizations were studied most for loops, less for recursive functions, comprehensions, and aggregations, and least for quantifications, basically corresponding to how frequently these constructs have traditionally been used in programming. However, high-level queries are increasingly used in programming, and quantifications are dominantly used in writing synchronization conditions and assertions in specifications and very high-level programs. Unfortunately, if implemented straightforwardly, each quantification incurs a cost factor that is linear in the size of the collection quantified over.

Optimizing expensive quantifications in general is difficult, which is a main reason that they are not used in practical programs, not even logic programs, and programmers manually write more complex and error-prone code. The difficulty comes from expensive enumerations over collections and complex combinations of join conditions. We address this challenge by converting quantifications into aggregate queries that can be optimized systematically using previously studied methods. However, a quantification can be converted into multiple forms of aggregate queries. Which one to use depends on what kinds of updates must be handled, and on how the query can be incrementalized under those updates. Direct conversion of nested quantifications into nested aggregate queries can lead to much more complex incremental computation code and asymptotically worse time and space complexities for maintaining the intermediate query results.

Note that, for an existential quantification, we convert it to a more efficient aggregate query if a witness is not needed; if a witness is needed, we incrementally compute the set of witnesses.

**Converting quantifications to aggregate queries.** We present all converted forms here and describe which forms to use after we discuss the updates that must be handled. The correctness of all rules presented have been proved using first-order logic and set theory. These rules ensure that the value of a resulting query expression equals the value of the original quantified expression.

Table 1 shows general rules for converting single quantifications into equivalent queries that use aggregate operation size. For converting universal quantifications, either rule 2 or 3 could be used. The choice does not affect the asymptotic cost, but only small constant factors: rule 2 requires maintaining size(s), and rule 3 requires computing not; the latter is generally faster unless size(s) is already needed for other purposes, and is certainly faster when not bexp can be simplified, e.g., when bexp is a negation. The rules in Table 1 are general because bexp can be any Boolean expression, but they are for converting single quantifications. Nested quantifications can be converted one at a time from inside out, but the results may be much more complicated than necessary. For example,

- each x in s | some y in t | bexp

would be converted using rule 1 to

- each x in s | size({y in t | bexp}) != 0

and then using rule 2 to

- size({x in s | size({y in t | bexp}) != 0}) == size(s)

A simpler conversion is possible for this example, using a rule in Table 2, described next.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Quantification</th>
<th>Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>some x in s</td>
<td>bexp</td>
</tr>
<tr>
<td>2</td>
<td>each x in s</td>
<td>bexp</td>
</tr>
<tr>
<td>3</td>
<td>each x in s</td>
<td>bexp</td>
</tr>
</tbody>
</table>

Table 1. Rules for converting single quantifications.

Table 2 shows general rules for converting nested quantifications into equivalent, but non-nested, queries that use aggregate operation size. These rules yield much simpler results than repeated use of the rules in Table 1. For example, rule 2 in this table yields a much simpler result than using two rules in Table 1 in the previous example. More significantly, rules 1, 4, and 5 generalize to any number of the same quantifier, and rules 2 and 3 generalize to any number of quantifiers with one alternation. We have not encountered more complicated quantifications than these. It is well known that more than one alternation is rarely used, so commonly used quantifications can all be converted to non-nested aggregate queries. For example, in twelve different algorithms expressed in DistAlgo [53], there are a total of 50 quantifications but no occurrence of more than one alternation.

Table 3 shows general rules for converting single quantifications with a single order comparison, for any linear order, into equivalent queries that use aggregate operations max and min. These rules are useful because max and min can in general be maintained incrementally in \( O(\log n) \) time with \( O(n) \) space overhead. Additionally, when there are only element additions, max and min can be maintained most efficiently in \( O(1) \) time and space.
Nested Quantifications | Aggregation
--- | ---
1. some x in s | some y in t | bexp | size({(x,y): x in s, y in t | bexp}) != 0
2. each x in s | some y in t | bexp | size({x: x in s, y in t | bexp}) == size(s)
3. some x in s | each y in t | bexp | size({x: x in s, y in t | not bexp}) != size(s)
4. each x in s | each y in t | bexp | size({(x,y): x in s, y in t | bexp}) == size({(x,y): x in s, y in t})
5. each x in s | each y in t | bexp | size({(x,y): x in s, y in t | not bexp}) == 0

Table 2. Rules for converting nested quantifications.

<table>
<thead>
<tr>
<th>Quantification</th>
<th>Decomposed Quantifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>each x in s</td>
<td>not e</td>
</tr>
<tr>
<td>each x in s</td>
<td>e1 and e2</td>
</tr>
<tr>
<td>each x in s</td>
<td>e1 implies e2</td>
</tr>
<tr>
<td>each x in s</td>
<td>not e</td>
</tr>
<tr>
<td>each x in s</td>
<td>e1 and e2</td>
</tr>
<tr>
<td>each x in s</td>
<td>e1 or e2</td>
</tr>
<tr>
<td>each x in s</td>
<td>e1 implies e2</td>
</tr>
</tbody>
</table>

Table 3. Rules for single quantified order comparison.

Table 4 shows general rules for decomposing Boolean combinations of conditions in quantifications, to obtain quantifications with simpler conditions. In particular, Boolean combinations of order comparisons and other conditions can be transformed to extract quantifications each with a single order comparison, so the rules in Table 3 can be applied, and Boolean combinations of inner quantifications and other conditions can be transformed to extract directly nested quantifications, so the rules in Table 2 can be applied. For example,

\[ \text{each x in s | bexp implies y < x} \]

can be converted using rule 8 in Table 4 to

\[ \text{each x in s | bexp | y < x} \]

which can then be converted using rule 13 of Table 3 to

\[ \{x in s | bexp\} == \{x in s | bexp\} \]

**Updates caused by message passing.** Recall that the parameters of a query are variables in the query whose values are bound before the query. Updates that may affect the query result include not only updates to the query parameters but also updates to the objects and collections reachable from the parameter values. The most basic updates are assignments to query parameters, \( v = \text{exp} \), where \( v \) is a query parameter. Other updates are to objects and collections used in the query. For objects, all updates can be expressed as field assignments, \( o.f = \text{exp} \). For collections, all updates can be expressed as initialization to empty and element additions and removals, \( s.add(x) \) and \( s.del(x) \).

For distributed algorithms, a distinct class of important updates are caused by message passing. Updates are caused in two ways:

1. Sending and receiving messages updates the sequences sent and received, respectively. Before incrementalization, code is generated, as described in Section 4, to explicitly perform these updates.

2. Handling of messages by code in receive definitions updates variables that are parameters of the queries for computing synchronization conditions, or that are used to compute the values of these parameters.

Once these are established, updates can be determined using previously studied analysis methods, e.g., [31, 48].

**Incremental computation.** Given expensive queries and updates to the query parameters, efficient incremental computations can be derived for large classes of queries and updates based on the language constructs used in them or by using a library of rules built on existing data structures [48, 50, 51, 60].
For aggregate queries converted from quantifications, algebraic properties of the aggregate operations are exploited to efficiently handle possible updates. In particular, each resulting aggregate query result can be obtained in \(O(1)\) time and incrementally maintained in \(O(1)\) time per update to the sets maintained and affected plus the time for evaluating the conditions in the aggregate query once per update. The total maintenance time at each element addition or deletion to a query parameter is at least a linear factor smaller than computing from scratch. Additionally, if aggregate operations \(\max\) and \(\min\) are used and there are only element additions, the space overhead is \(O(1)\). Note that if \(\max\) and \(\min\) are used naively when there are element deletions, there may be an unnecessary overhead of \(O(n)\) space and \(O(\log n)\) update time from using more sophisticated data structures to maintain the \(\max\) or \(\min\) under element deletion [19, 79, 80].

Incremental computation improves time complexity only if the total time of repeated expensive queries is larger than that of repeated incremental maintenance. This is generally true for incrementalizing expensive synchronization conditions, for two reasons: (1) expensive queries in the synchronization conditions need to be evaluated repeatedly at each relevant update to the message history, until the condition becomes true, and (2) incremental maintenance at each such update is always at least a linear factor faster than computing from scratch.

To allow the most efficient incremental computation under all given updates, our method transforms each top-level quantification as follows:

- For non-nested quantifications, if the conditions contain no order comparisons or there are deletions from the sets or sequences whose elements are compared, the rules in Table 1 are used. The space overhead is linear in the sizes of the sets maintained and being aggregated over.

- For non-nested quantifications, if the conditions contain order comparisons and there are only additions to the sets or sequences whose elements are compared, the rules in Table 4 are used to extract single quantified order comparisons, and then the rules in Table 3 are used to convert the extracted quantifications. In this case, the space overhead is reduced to constant.

- For nested quantifications with one level of nesting, the rules in Table 4 are used to extract directly nested quantifications, and then the rules in Table 2 are used. If the resulting incremental maintenance has constant-time overhead maintaining a linear-space structure, we are done. If it is linear-time overhead maintaining a quadratic-space structure, and if the conditions contain order comparisons, then the rules in Table 4 are used to extract single quantified order comparisons, and then the rules in Table 3 are used. This can reduce the overhead to logarithmic time and linear space.

- In general, multiple ways of conversion may be possible, besides small constant-factor differences between rules 2 and 3 in Table 1 and rules 4 and 5 in Table 2. In particular, for nested quantifications with two or more alternations, one must choose which two alternating quantifiers to transform first, using rule 2 or 3 in Table 2. We have not encountered such queries and have not studied this aspect further. Our general method is to transform in all ways possible, obtain the time and space complexities for each result, and choose one with the best time and then space. Complexities are calculated using the cost model of the set operations given in Section 3. The number of possible ways is exponential in the worst case in the size of the query, but the query size is usually a small constant.

Table 5 summarizes well-known incremental computation methods for these aggregate queries. The methods are expressed as incrementalization rules: if a query in the program matches the query form in the table, and each update to a parameter of the query in the program matches an update form in the table, then transform the query into the corresponding replacement and insert at each update the corresponding maintenance; fresh variables are introduced for each different query to hold the query results or auxiliary data structures. In the third rule, \(\text{ds}\) stores the argument set \(s\) of \(\max\) and supports priority queue operations.

<table>
<thead>
<tr>
<th>Query</th>
<th>Replacement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(s)</td>
<td>count</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Updates</td>
<td>Inserted Maintenance</td>
<td></td>
</tr>
<tr>
<td>(s = {})</td>
<td>count = 0</td>
<td>(O(1))</td>
</tr>
<tr>
<td>s.add(x)</td>
<td>if x not in s: count += 1</td>
<td>(O(1))</td>
</tr>
<tr>
<td>s.del(x)</td>
<td>if x in s: count -= 1</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>Replacement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max(s))</td>
<td>maximum</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Updates</td>
<td>Inserted Maintenance</td>
<td></td>
</tr>
<tr>
<td>(s = {x})</td>
<td>maximum = x</td>
<td>(O(1))</td>
</tr>
<tr>
<td>s.add(x)</td>
<td>if x &gt; (\max): maximum = x</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>Replacement</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>max(s)</td>
<td>(\text{ds}.\max())</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Updates</td>
<td>Inserted Maintenance</td>
<td></td>
</tr>
<tr>
<td>(s = {})</td>
<td>(\text{ds} = \text{new DS()})</td>
<td>(O(1))</td>
</tr>
<tr>
<td>s.add(x)</td>
<td>if x not in s: (\text{ds}.\add(x))</td>
<td>(O(\log</td>
</tr>
<tr>
<td>s.del(x)</td>
<td>if x in s: (\text{ds}.\del(x))</td>
<td>(O(\log</td>
</tr>
</tbody>
</table>

Table 5. Incrementalization rules for \(\text{size}\) and for \(\max\). The rule for \(\min\) is similar to the rule for \(\max\).

The overall incrementalization algorithm [48, 50, 60] introduces new variables to store the results of expensive queries and subqueries, as well as appropriate additional values, forming a set of invariants, transforms the queries and subqueries to use the stored query results and additional values, and transforms updates to query parameters to also
do incremental maintenance of the stored query results and additional values.

In particular, if queries are nested, inner queries are transformed before outer queries. Note that a comprehension such as \( \{ x \in s \mid bexp \} \) is incrementalized with respect to changes to parameters of Boolean expression \( bexp \) as well as addition and removal of elements of \( s \); if \( bexp \) contains nested subqueries, then after the subqueries are transformed, incremental maintenance of their query results become additional updates to the enclosing query.

At the end, variables and computations that are dead in the transformed program are eliminated. In particular, sequences received and sent will be eliminated when appropriate, because queries using them have been compiled into message handlers that only store and maintain values needed for incremental evaluation of the synchronization conditions.

Example. In the program in Figure 2, three quantifications are used in the synchronization condition in the await statement, and two of them are nested. The condition is copied below, except that \( \{ \text{‘ack’}, c_2, p_2 \} \) in received is used in place of received(‘ack’, c_2, p_2).

\[
\begin{align*}
&\text{each} \ (\text{‘request’}, c_2, p_2) \ \text{in} \ q \ |
\quad \text{and} \quad \text{each} \ p_2 \ \text{in} \ s \ |
\quad \text{some} \ (\text{‘ack’}, c_2, p_2) \ \text{in} \ \text{received} \ |
\quad c_2 > c
\end{align*}
\]

Converting quantifications into aggregate queries as described using Tables 1 through 4 proceeds as follows. In the first conjunct, the universal quantification is converted using rule 2 or 3 in Table 1, because it contains an order comparison with elements of \( q \) and there are element deletions from \( q \); rule 3 is used here because it is slightly simpler after the negated condition is simplified. In the second conjunct, the nested quantification is converted using rule 2 in Table 2. The resulting expression is:

\[
\begin{align*}
\text{size}(\{ \text{‘request’}, c_2, p_2 \} \ \text{in} \ q \ |
\quad (c, \text{self}) > (c_2, p_2)) &= 0 \\
&\quad \text{and} \\
\text{size}(\{ p_2: p_2 \ \text{in} \ s \mid
\quad \text{‘ack’}, c_2, p_2 \ \text{in} \ \text{received} \ |
\quad c_2 > c \}) &= \text{size}(s)
\end{align*}
\]

Updates to parameters of the first conjunct are additions and removals of requests to and from \( q \), and also assignment to \( c \). Updates to parameters of the second conjunct are additions of ack messages to \( \text{received} \), and assignment to \( c \), after the initial assignment to \( s \).

Incremental computation [48, 50, 51, 60] introduces variables to store the values of all three aggregations in the converted query, transforms the aggregations to use the introduced variables, and incrementally maintains the stored values at each of the updates, as follows, yielding Figure 3.

- For the first conjunct, store the set value and the size value in two variables, say \( \text{earlier} \) and \( \text{count1} \), respectively, so first conjunct becomes \( \text{count1} = 0 \); when \( c \) is assigned a new value, let \( \text{earlier} \) be \( q \) and let \( \text{count1} \) be its size, taking \( O(\mid \text{earlier} \mid) \) time, amortized to \( O(1) \) time when each request in \( \text{earlier} \) is served; when a request is added to \( q \), if \( c \) is defined and \( (c, \text{self}) > (c_2, p_2) \) holds, add the request to \( \text{earlier} \) and increment \( \text{count1} \) by 1, taking \( O(1) \) time; similarly for deletion from \( q \). A test of definedness, here \( c != \text{undefined} \), is inserted for any variable that might not be defined in the scope of the maintenance code.

Note that when \( (\text{‘request’}, c, \text{self}) \) in particular is added to or removed from \( q \), \( \text{earlier} \) and \( \text{count1} \) are not updated, because \( (c, \text{self}) > (c, \text{self}) \) is trivially false.

- For the second conjunct, store the set value and the two size values in three variables, say \( \text{responded} \), \( \text{count2} \), and total, respectively, so the conjunct becomes \( \text{count2} = \text{total} \); when \( s \) is initialized in setup, assign total the size of \( s \), taking \( O(\mid s \mid) \) time, done only once for each process; when \( c \) is assigned a new value, let \( \text{responded} \) be \{0\}, and let \( \text{count2} \) be 0, taking \( O(1) \) time; when an ack message is added to \( \text{received} \), if the associated conditions hold, increment \( \text{count2} \) by 1, taking \( O(1) \) time. A test of definedness of \( c \) is omitted in the maintenance for receiving ack messages, because \( c \) is always defined there; this small optimization is incorporated in an incrementalization rule, but it could be done with a data-flow analysis that covers distributed data flows.

Note that incrementalization uses basic properties about primitives and libraries. These properties are incorporated in incrementalization rules. For the running example, the property used is that a call to logical_clock() returns a timestamp larger than all existing timestamp values, and thus at the assignment to \( s \) in method \( cs \), we have that \( \text{earlier} = q \) and \( \text{responded} = 0 \). So, an incrementalization rule for maintaining \( \text{earlier} \) specifies that at update \( c = \text{logical}_\text{clock}() \), the maintenance is \( \text{earlier} = q \); similarly for maintaining \( \text{responded} \). These simplifications could be facilitated with data-flow analyses that determine variables holding logical-clock values and sets holding certain element types. Incrementalization rules can use any program analysis results as conditions [51].

Figure 3 shows the optimized program after incrementalization of the synchronization condition on lines 10-11 in Figure 2. All lines with comments are new except that the synchronization condition in the await statement is simplified. The synchronization condition now takes \( O(1) \) time, compared with \( O(\mid s \mid) \) if computed from scratch. The trade-off is the amortized \( O(1) \) time overhead at updates to \( c \) and \( q \) and on receiving of ack messages.

Note that the sequence \( \text{received} \) used in the synchronization condition in Figure 2 is no longer used after incrementalization. All values needed for evaluating the synchronization condition are stored in new variables introduced:
earlier, count1, responded, count2, and total, a drastic
space improvement from unbounded for received to linear
in the number of processes.

```python
class P extends Process:
 def setup(s):
 self.s = s
 self.total = size(s) # total num of other proc
 self.q = ()

 def cs(task):
 -- request
 self.c = logical_clock()
 self.earlier = q # set of pending earlier reqs
 self.count1 = size(earlier) # num of pending earlier reqs
 self.responded = () # set of responded procs
 self.count2 = 0 # num of responded procs
 earlier.add(('request', c, self)) to s
 send('request', c, self) to s
 self.count2 = 0 # num of pending earlier reqs
 responded.add(p2) # add to responded
 send('ack', logical_clock(), self) to p2
 await count1 == 0 # use maintained results

 -- release
 q.del(('request', c, self)) to p2
 send('ack', logical_clock(), self) to p2
 await count2 == total # use maintained results

 send('ack', logical_clock(), self) to p2
 q.del(('request', c, self)) to p2
```

**Figure 3.** Optimized program after incrementalization. Definitions of
``run and main are as in Figure 2.

Example with naive use of aggregate operation min. Note
that the resulting program in Figure 3 does not need to use
a queue at all, even though a queue is used in the original
description in Figure 1; the variable q is simply a set, and
thus element addition and removal takes O(1) time.

We show that if min is used naively, a more sophisti-
cated data structure [19, 79, 80] supporting priority queue
is needed, incurring an O(log n) time update instead of the
O(1) time in Figure 3. Additionally, for a query using min
to be correct, special care must be taken to deal with the case
when the argument to min is empty, because then min is
undefined.

Consider the first conjunct in the synchronization condi-
tion in the await statement in Figure 2, copied below:

```
each ('request', c2, p2) in q | (c2, p2) != (c, self) implies (c, self) < (c2, p2)
```

One might have written the following instead, because it
seems natural, especially if universal quantification is not
supported:

```
(c, self) < min({(c2,p2) : ('request', c2, p2) in q | (c2, p2) != (c, self)})
```

However, that is incorrect, because the argument of min
may be empty, in which case min is undefined.

Instead of resorting to commonly used special values,
such as maxint, which is ad hoc and error prone in general,
the empty case can be added as the first disjunct of a disjunc-
tion:

```
((c2, p2) : ('request', c2, p2) in q
 | (c2, p2) != (c, self)) == {}
or (c, self) < min({(c2,p2) : ('request', c2, p2) in q
 | (c2, p2) != (c, self)})
```

In fact, the original universal quantification in the first con-
junct in the await statement can be converted exactly to this
disjunction by using rule 8 in Table 4 and then rule 13 in Ta-
ble 3. Our method does not consider this conversion because
it leads to a worse resulting program.

Figure 4 shows the resulting program after incremental-
ization of the synchronization condition that uses the dis-
junction above, where ds stores the argument set of min and
supports priority queue operations. All commented lines are
new compared to Figure 2 except that the synchronization
condition in the await statement is simplified. The program
appears shorter than Figure 3 because the long complex code
for maintaining the data structure ds is not included; it is
in fact similar to Figure 3 except that ds is used and maintained
instead of earlier and count1.

The program in Figure 4 is still a drastic improvement
over the original program in Figure 2, with the synchroniza-
tion condition reduced to $O(1)$ time and with received re-
moved, just as in Figure 3. The difference is that maintaining
ds for incrementalizing min under element addition to and
deletion from q takes $O(\log |s|)$ time, as opposed to $O(1)$
time for maintaining earlier and count1 in Figure 3.

Simplifications to the original algorithm. Consider the
original algorithm in Figure 2. Note that incrementalization
determined that there is no need for a process to update
auxiliary values for its own request, in both Figures 3 and 4.
Based on this, we discovered, manually, that updates to q for
a process’s own request do not affect the two uses of q, on
lines 9 and 35, in Figure 3 and the only use of q, on line 30,
in Figure 4. So we can remove them in Figures 3 and 4. In
addition, we can remove them on lines 9 and 14 in Figure 2
and remove the test (c2, p2) != (c, self), which becomes
always true, in the synchronization condition, yielding a
simplified original algorithm.

Furthermore, note that the remaining updates to q in Fig-
ure 2 merely maintain pending requests by others, so we can
remove lines 4, 17, 20, 21, and the entire receive definition

11 2016/1/8
6. Implementation and experiments

We have developed a prototype implementation of the compiler and optimizations for DistAlgo and evaluated it in implementing a set of well-known distributed algorithms, as described previously [53]. We have also used DistAlgo in teaching distributed algorithms and distributed systems, and students used the language and system in programming assignments and course projects. We summarize results from the former and describe experience with the latter, after an overview and update about the implementation.

Our DistAlgo implementation takes DistAlgo programs written in extended Python, applies analyses and optimizations, especially to the high-level queries, and generates executable Python code. It optionally interfaces with an incrementalizer to apply incrementalization before generating code. Applying incrementalization uses the methods and implementation from previous work: a library of incrementalization rules was developed, manually but mostly following a systematic method [48, 50], and applied automatically using InvTS [31, 51]. A set of heuristics are currently used to select the best program generated from incrementalizing differently converted aggregate queries.

A more extensive implementation of DistAlgo than the first prototype [53] has been released and is being gradually improved [23]. Improved methods and implementation for incrementalization are also being developed, to replace manually written incrementalization rules, and to better select the best transformed programs.

Evaluation in implementing distributed algorithms. We have used DistAlgo to implement a variety of well-known distributed algorithms, including twelve different algorithms for distributed mutual exclusion, leader election, and atomic commit, as well as Paxos, Byzantine Paxos, and multi-Paxos, as summarized previously [53]; results of evaluation using these programs are as follows:

- DistAlgo programs are consistently small, ranging from 22 to 160 lines, and are much smaller than specifications or programs written in other languages, mostly 1/2 to 1/5 of the size; also we were able to find only a few of these algorithms written in other languages. Our own best effort to write Lamport’s distributed mutual exclusion in programming languages resulted in 272 lines in C.
lines in Java, 122 lines in Python, and 99 lines in Erlang, compared with 32 lines in DistAlgo.

- Compilation times without incrementalization are all under 0.05 seconds on an Intel Core-i7 2600K CPU with 16GB of memory; and incrementalization times are all under 30 seconds. Generated code size ranges from 1395 to 1606 lines of Python, including 1300 lines of fixed library code.

- Execution time and space confirm the analyzed asymptotic time and space complexities. For example, for Lamport’s distributed mutual exclusion, total CPU time is linear in the number of processes for the incrementalized program, but superlinear for the original program; for a fixed number of processes, the memory usage is constant for the incremental program, but grows linearly with the number of requests for the original program.

- Compared with running times of our best, manually written programs in programming languages, our generated DistAlgo takes about twice as long as our Python version, which takes about twice as long as our Java version, which takes about twice as long as our C version, which takes about four times as long as our Erlang version.

Python is well known to be slow compared Java and C, and we have not focused on optimizing constant factors. Erlang is significantly faster than C and the rest because of its use of light-weight threads that is made possible by its being a functional language. However, among our programs for Lamport’s distributed mutual exclusion, Erlang is the only one besides un-incrementalized DistAlgo whose memory usage for a fixed number of processes grows linearly with the number of requests.

Programming distributed algorithms at a high level has also allowed us to discover several improvements to correctness and efficiency aspects of some of the algorithms [52]. For example, in the pseudocode for multi-Paxos [77], in processes Commander, waiting for p1b messages containing ballot b from a majority of acceptors is expressed by starting with a 

```python
await size(\{p2b: received(('p2b'==b) from a)\}) > acceptors/2
```

using the standard majority test, and it is correct whether / is for integer or float.

**Experience in teaching distributed algorithms.** DistAlgo has also helped us tremendously in teaching distributed algorithms, because it makes complex algorithms completely clear, precise, and directly executable. Students learn DistAlgo quickly through even a small programming assignment, despite that most did not know Python before, thanks to the power and clarity of Python.

In particular, students in distributed systems courses have used DistAlgo in dozens of course projects, implementing the core of network protocols and distributed graph algorithms [55]; distributed coordination services Chubby [16] and Zookeeper [35]; distributed hash tables Kademlia [57], Chord [74], Pastry [69], Tapestry [82], and Dynamo [22]; distributed file systems GFS [30] and HDFS [73]; distributed databases Bigtable [17], Cassandra [39], and Megastore [12]; distributed processing platform MapReduce [21]; and others.

All distributed programming features were used extensively in students’ programs—easy process creation and setup and sending of messages, high-level control flows with `receive` definitions as well as `await` for synchronization, and declarative configurations—with the exception of queries over message histories, because students had been trained in many courses to handle events imperatively; we have not evaluated incrementalization on students’ programs, because execution efficiency has not been a problem. Overall, students’ experience helps confirm that DistAlgo allows complex distributed algorithms and services to be implemented much more easily than commonly used languages such as C++ and Java. We summarize two specific instances below.

In a graduate class in Fall 2012, most of the 28 students initially planned to use Java or C++ for their course projects, because they were familiar with those and wanted to strengthen their experience of using them instead of using DistAlgo in implementing distributed systems. However, after doing one programming assignment using DistAlgo, all those students switched to DistAlgo for their course projects, except for one student, who had extensive experience with C++, including several years of internship at Microsoft Research programming distributed systems.

- This student wrote about 3000 lines of C++, compared to about 300 lines of DistAlgo written by several other students who chose the same project of implementing multi-Paxos and several optimizations. His C++ program was incomplete, lacking some optimizations that other students’ DistAlgo programs included.

- The student did a re-implementation in DistAlgo quickly after the course1, confirming that it took about 300 lines. His biggest surprise was that his C++ program was an order of magnitude slower than his DistAlgo program. After several weeks of debugging, he found that it was due to an improper use of some C++ library function.

1 The student wanted to do research on DistAlgo and so was asked to re-implement his project in DistAlgo.
The main contrast that the student concluded was the huge advantage of DistAlgo over C++ in ease of programming and program understanding, not to mention the unexpected performance advantage.

In a graduate class in Fall 2014, each team of two students first implemented a fault-tolerant banking service in two languages: DistAlgo and another language of their choice other than Python. We excluded Python as the other language, because implementing the same service in such closely related languages would be less educational. The service uses chain replication [78] to tolerate crash failures. The service offers only a few simple banking operations (get balance, deposit, withdrawal, intra-bank transfer, inter-bank transfer), so most of the code is devoted to distributed systems aspects. The numbers of teams that chose various other languages are: Java 15, C++ 3, Go 3, Erlang 2, Node.js 2, Elixir (a variant of Erlang) 1, JavaScript 1.

- In the last assignment, teams implemented an extension to the banking service in one language of their choice. 59% of the teams chose DistAlgo for this, even though most students (about 80%) did not know Python, and none knew DistAlgo, at the beginning of the class. In other words, a majority of students decided that implementation of this type of system is better in DistAlgo, even compared to languages with which they had more experience and that are more widely used.

- We asked each team to compare their experiences with the two languages. Teams consistently reported that development in DistAlgo was faster and easier than development in the other language (even though most students did not know Python before the project), and that the DistAlgo code was significantly shorter. It is no surprise that Java and C++ require more code, even when students used existing networking libraries, which they were encouraged to do. Comparison with Erlang and Go is more interesting, because they are high-level languages designed to support distributed programming. For the teams that chose Erlang, the average DistAlgo and Erlang code sizes, measured as non-empty non-comment line of code, are 586 and 1303, respectively. For the teams that chose Go, the average DistAlgo and Go code sizes are 465 and 1695, respectively.

7. Related work and conclusion

A wide spectrum of languages and notations have been used to describe distributed algorithms, e.g., [7, 27, 38, 41, 42, 55, 65–67, 76]. At one end, pseudocode with English is used, e.g., [38], which gives a high-level flow of the algorithms, but lacks the details and precision needed for a complete understanding. At the other end, state machine based specification languages are used, e.g., I/O automata [36, 55], which is completely precise, but uses low-level control flows that make it harder to write and understand the algorithms.

There are also many notations in between these extremes, some being much more precise or completely precise while also giving a high-level control flow, e.g., Raynal’s pseudocode [65–67] and Lamport’s PlusCal [42]. However, all of these languages and notations lack concepts and mechanisms for building real distributed applications, and most of the languages are not executable.

Many programming languages support programming of distributed algorithms and applications. Most support distributed programming through messaging libraries, ranging from relatively simple socket libraries to complex libraries such as MPI [58]. Many support Remote Procedure Call (RPC) or Remote Method Invocation (RMI), which allows a process to call a subroutine in another process without the programmer coding the details for this. Many also support asynchronous method invocation (AMI), which allows the caller to not block and get the reply later. Some programming languages, such as Erlang [24, 43], based on the actor model [2], have support for message passing and process management built into the language. There are also other well-studied languages for distributed programming, e.g., Argus [44], Lynx [71], SR [5], Concert/C [8], and Emerald [15]. These languages all lack constructs for expressing control flows and complex synchronization conditions at a much higher level; such high-level constructs are extremely difficult to implement efficiently. DistAlgo’s construct for declaratively and precisely specifying yield points for handling received messages is a new feature that we have not seen in other languages. So is DistAlgo’s support of history variables in high-level synchronization conditions in nondeterministic await in a programming language. Our simple combination of synchronous await and asynchronous receive allows distributed algorithms to be expressed easily and clearly.

There has been much work on producing executable implementations from formal specifications, e.g., from process algebras [34], I/O automata [29], Unity [32], and Seuss [37], as well as from more recently proposed high-level languages for distributed algorithms, e.g., Datalog-based languages Meld [6], Overlog [4], and Bloom [13], a Prolog-based language DAHL [54], and a logic-based language EventML [14, 62]. An operational semantics was studied recently for a variant of Meld, called Linear Meld, that allows updates to be encoded more conveniently than Meld by using linear logic [20]. Compilation of DistAlgo to executable implementations is easy because it is designed to be so and DistAlgo is given an operational semantics. High-level queries and quantifications used for synchronization conditions can be compiled into loops straightforwardly, but they may be extremely inefficient. None of these prior works study powerful optimizations of quantifications. Efficiency concern is a main reason that similar high-level language constructs, whether for queries or assertions, are rarely used, if supported at all, in commonly used languages.
Incrementalization has been studied extensively, e.g., [45, 64], both for doing it systematically based on languages, and in applying it in an ad hoc fashion to specific problems. However, all systematic incrementalization methods based on languages have been for centralized sequential programs, e.g., for loops [3, 28, 49], set languages [33, 50, 60], recursive functions [1, 46, 63], logic rules [47, 70], and object-oriented languages [48, 59, 68]. This work is the first to extend incrementalization to distributed programs to support high-level synchronization conditions. This allows the large body of previous work on incrementalization, especially on sets and sequences, to be used for optimizing distributed programs.

Quantifications are the centerpiece of first-order logic, and are dominantly used in writing synchronization conditions and assertions in specifications, but there are few results on generating efficient implementations of them. In the database area, despite extensive work on efficient implementation of high-level queries, efficient implementation of quantification has only been studied in limited scope or for extremely restricted query forms, e.g., [9–11, 18]. In logic programming, implementations of universal quantification are based on variants of brute-force Lloyd-Topor transformations, e.g., [26, 61]; even state-of-the-art logic programming systems, e.g., [75], do not support universal quantification. Our method is the first general and systematic method for incrementalizing arbitrary quantifications. Although they are much more challenging to optimize than set queries, our method combines a set of general transformations to transform them into aggregate queries that can be most efficiently incrementalized using the best previous methods.

To conclude, this article presents a powerful language and method for programming and optimizing distributed algorithms. There are many directions for future work, from formal verification on the theoretical side, to generating code in lower-level languages on the practical side, with many additional analyses and optimizations in between. In particular, a language with a high level of abstraction also facilitates formal verification, of not only the high-level programs, but also the generated efficient implementations when they are generated through systematic optimizations. Besides developing systematic optimizations, we have started to study formal verification of distributed algorithms and their implementations by starting with their high-level, concise descriptions in DistAlgo.

**APPENDIX**

**A. Semantics of DistAlgo**

We give an abstract syntax and operational semantics for a core language for DistAlgo. The operational semantics is a reduction semantics with evaluation contexts [72, 81].

### A.1 Abstract Syntax

The abstract syntax is defined in Figures 6 and 7. We use some syntactic sugar in sample code, e.g., we use infix notation for some binary operators, such as and and is.

**Notation.**

- A symbol in the grammar is a terminal symbol if it starts with a lower-case letter.
- A symbol in the grammar is a non-terminal symbol if it starts with an upper-case letter.
- In each production, alternatives are separated by a line-break.
- * after a non-terminal means “0 or more occurrences”.
- + after a non-terminal means “1 or more occurrences”.
- $t\theta$ denotes the result of applying substitution $\theta$ to $t$. We represent substitutions as functions from variables to expressions.

**Well-formedness requirements on programs.**

1. The top-level method in a program must be named `main`. It gets executed in an instance of the pre-defined `Process` class when the program starts.
2. Each label used in a `receive` definition must be the label of some statement that appears in the same class as the `receive` definition.
3. Invocations of methods defined using `def` appear only in method call statements. Invocations of methods defined using `defun` appear only in method call expressions.

**Constructs whose semantics is given by translation.**

1. Constructors for all classes, and `setup()` methods for process classes, are eliminated by translation into ordinary methods that assign to the fields of the objects.
2. A method call or field assignment that does not explicitly specify the target object is translated into a method call or field assignment, respectively, on `self`.
3. An `await` statement without an explicitly specified label—in other words, the associated label is the empty string—is translated into an `await` statement with an explicitly specified label, by generating a fresh label name $\ell$, replacing the empty label in that `await` statement with $\ell$, and inserting $\ell$ in every `at` clause in the class containing the `await` statement.
4. The Boolean operators and and each are eliminated as follows: $e_1$ and $e_2$ is replaced with `not(not(e_1) or not(e_2))`, and each `iter` $|$ $e$ is replaced with `not(some iter | not(e))`.
5. An aggregate is eliminated by translation into a comprehension followed by a `for` loop that iterates over the set
Program ::= Configuration ProcessClass* Method
ProcessClass ::= class ClassName extends ClassName: Method* ReceiveDef*

ReceiveDef ::= receive ReceivePattern+ at Label+: Statement
receive ReceivePattern+: Statement

ReceivePattern ::= Pattern from InstanceVariable

Method ::= def MethodName (Parameter*) Statement
defun MethodName (Parameter*) Expression

Statement ::= InstanceVariable = Expression
InstanceVariable = new ClassName
InstanceVariable = { Pattern : Iterator* | Expression } Statement ; Statement
if Expression : Statement else : Statement
for Iterator : Statement
while Expression : Statement
Expression . MethodName (Expression*)
send Tuple to Expression
Label await Expression : Statement AnotherAwaitClause*
Label await Expression : Statement AnotherAwaitClause* timeout Expression
skip

Expression ::= Literal
Parameter
InstanceVariable
Tuple
Expression . MethodName (Expression*)
UnaryOp (Expression)
BinaryOp (Expression, Expression)
isinstance (Expression, ClassName)
and (Expression, Expression)  // conjunction (short-circuiting)
or (Expression, Expression)  // disjunction (short-circuiting)
each Iterator | Expression
some Iterator | Expression

Tuple ::= (Expression*)

Figure 6. Abstract syntax, Part 1.

returned by the comprehension. The for loop updates an accumulator variable using the aggregate operator.

6. Iterators containing tuple patterns are rewritten as iterators without tuple patterns, as follows.

- Consider the existential quantification \( \text{some } (e_1, \ldots, e_n) \) in \( s \mid b \). Let \( x \) be a fresh variable. Let \( \theta \) be the substitution that replaces \( e_i \) with \( \text{select}(x, i) \) for each \( i \) such that \( e_i \) is a variable not prefixed with “\( = \)”.
  
  Let \( \{j_1, \ldots, j_m\} \) contain the indices of the constants and the variables prefixed with “\( = \)” in \( (e_1, \ldots, e_n) \). Let \( \bar{e}_j \) denote \( e_j \) after removing the “\( = \)” prefix, if any. The quantification is rewritten as \( \text{some } x \text{ in } s \mid \text{isTuple}(x) \text{ and len}(x) \text{ is } n \text{ and } (\text{select}(x,j_1), \ldots, \text{select}(x,j_m)) \text{ is } (\bar{e}_{j_1}, \ldots, \bar{e}_{j_m}) \text{ and } b\theta \).

- Consider the loop for \( (e_1, \ldots, e_n) \) in \( e : s \). Let \( x \) and \( S \) be fresh variables. Let \( \{i_1, \ldots, i_k\} \) contain the indices in \( (e_1, \ldots, e_n) \) of variables not prefixed with “\( = \)”.
  
  Let \( \theta \) be the substitution that replaces \( e_i \) with \( \text{select}(x, i) \) for each \( i \) in \( \{i_1, \ldots, i_k\} \). Let \( \{j_1, \ldots, j_m\} \) contain the indices in \( (e_1, \ldots, e_n) \) of the constants and the variables prefixed with “\( = \)”.


**UnaryOp** ::= not // Boolean negation
                   isTuple // test whether a value is a tuple
                   len // length of a tuple

**BinaryOp** ::= is // identity-based equality
                 plus // sum
                 select // select(t,i) returns the i'th component of tuple t

**Pattern** ::= InstanceVariable
               TuplePattern

**TuplePattern** ::= (PatternElement*)

**PatternElement** ::= Literal
                        InstanceVariable
                        =InstanceVariable

**Iterator** ::= Pattern in Expression

**AnotherAwaitClause** ::= or Expression : Statement

**Configuration** ::= configuration ChannelOrder ChannelReliability ...

**ChannelOrder** ::= fifo
                    unordered

**ChannelReliability** ::= reliable
                          unreliable

**ClassName** ::= ...
**MethodName** ::= ...
**Parameter** ::= ...
**InstanceVariable** ::= Expression.Field
**Field** ::= ...
**Label** ::= ...
**Literal** ::= BooleanLiteral
               IntegerLiteral
... 
**BooleanLiteral** ::= true
                      false
**IntegerLiteral** ::= ...

---

**Figure 7.** Abstract syntax, Part 2. Ellipses ("...") are used for common syntactic categories whose details are unimportant.

7. Comprehensions in which some variables are prefixed with = are translated into comprehensions without such prefixing. Specifically, for a variable x prefixed with = in a comprehension, replace occurrences of =x in the comprehension with occurrences of a fresh variable y, and add the conjunct y=x to the Boolean condition.

8. Comprehensions are statically eliminated as follows. The comprehension \( \ell \ x = \{ \ e \ | \ x_1 \ in \ e_1, \ldots, x_n \ in \ e_n \ | \ b \} \), where \( \ell \) is a label and each \( x_i \) is a pattern, is replaced with

\[
\ell \ x = \mathrm{new} \ Set \\
\text{for } x_1 \ in \ e_1: \\
\quad \ldots \\
\text{for } x_n \ in \ e_n: \\
\quad \text{if } b: \\
\quad \quad x.\text{add}(e)
\]
5. Tuples are treated as immutable values, not as mutable objects.
6. All expressions are side-effect free. For simplicity, we treat quantifications as expressions, so existential quantifications do not have the side-effect of binding variables to a witness. Such existential quantifications could be added as a new form of statement.

7. Object creation and comprehension are statements, not expressions, because they have side-effects. Comprehension has the side-effect of creating a new Set.

8. Parameter must include self. The values of method parameters cannot be updated (e.g., using assignment statements). For brevity, local variables of methods are omitted from the core language. Consequently, assignment is allowed only for instance variables.

9. Semantically, the for loop copies the contents of a (mutable) sequence or set into an (immutable) tuple before iterating over it, to ensure that changes to the sequence or set by the loop body do not affect the iteration. An implementation could use optimizations to achieve this semantics without copying when possible.

10. For brevity, among the standard arithmetic operations (+, -, *, etc.), we include only one representative operation in the abstract syntax and semantics; others are handled similarly.

11. The semantics below does not model real-time, so timeouts in await statements are simply allowed to occur non-deterministically.

12. We omit the concept of node (process location) from the semantics, and we omit the node argument of the constructor when creating instances of process classes, because process location does not affect other aspects of the semantics.

13. We omit configure handling statements from the syntax. The semantics is for configure handling = all. Semantics for other configure handling options can easily be added.

14. To support initialization of a process by its parent, a process can access fields of another process and invoke methods on another process before the latter process is started.

15. We require that all messages are tuples. This is an inessential restriction; it slightly simplifies the specifica-

\[
S = e \\
\text{if} \ \text{isinstance}(S, \text{Set}): \\
S = \{ x : x \in S \mid \text{isTuple}(x) \text{ and } \text{len}(x) \text{ is } n \text{ and } (\text{select}(x,j_1), \ldots, \text{select}(x,j_m)) = (\ell_{j_1}, \ldots, \ell_{j_m}) \} \\
\text{for } x \text{ in } S: \\
\ s_\theta \\
\text{else: } 1/S \text{ is a sequence} \\
\text{for } x \text{ in } S: \\
\text{if } (\text{isTuple}(x) \text{ and } \text{len}(x) \text{ is } n \text{ and } (\text{select}(x,j_1), \ldots, \text{select}(x,j_m)) = (\ell_{j_1}, \ldots, \ell_{j_m}): \\
\ s_\theta \\
\text{else:} \\
\text{skip}
\]

**Figure 8.** Translation of for loop to eliminate tuple pattern.
A process’s semantic domains. Ellipses are used for semantic notes.

The semantic domains are defined in Figure 9.

**Notation.**

- \( D^* \) contains finite sequences of values from domain \( D \).
- \( \text{Set}(D) \) contains finite sets of values from domain \( D \).
- \( D_1 \rightarrow D_2 \) contains partial functions from \( D_1 \) to \( D_2 \).
- \( \text{dom}(f) \) is the domain of a partial function \( f \).

\[
\begin{align*}
\text{Bool} & = \{\text{true}, \text{false}\} \\
\text{Int} & = \ldots \\
\text{Address} & = \ldots \\
\text{ProcessAddress} & = \ldots \\
\text{Tuple} & = \text{Val}^* \\
\text{Val} & = \text{Bool} \cup \text{Int} \cup \text{Address} \cup \text{Tuple} \\
\text{SetOfVal} & = \text{Set}(\text{Val}) \\
\text{SeqOfVal} & = \text{Val}^* \\
\text{Object} & = (\text{Field} \rightarrow \text{Val}) \cup \text{SetOfVal} \cup \text{SeqOfVal} \\
\text{HeapType} & = \text{Address} \rightarrow \text{ClassName} \\
\text{LocalHeap} & = \text{Address} \rightarrow \text{Object} \\
\text{Heap} & = \text{ProcessAddress} \rightarrow \text{LocalHeap} \\
\text{ChannelStates} & = \text{ProcessAddress} \times \text{ProcessAddress} \\
& \rightarrow \text{Tuple}^* \\
\text{MsgQueue} & = (\text{Tuple} \times \text{ProcessAddress})^* \\
\text{State} & = (\text{ProcessAddress} \rightarrow \text{Statement}) \\
& \times \text{HeapType} \times \text{Heap} \times \text{ChannelStates} \\
& \times (\text{ProcessAddress} \rightarrow \text{MsgQueue})
\end{align*}
\]

\textbf{Figure 9.} Semantic domains. Ellipses are used for semantic domains of primitive values whose details are standard or unimportant.

**Notes.**

- We require \( \text{ProcessAddress} \subseteq \text{Address} \).
- For \( a \in \text{ProcessAddress} \) and \( h \in \text{Heap} \), \( h(a) \) is the local heap of process \( a \). For \( a \in \text{Address} \) and \( ht \in \text{HeapType} \), \( ht(a) \) is the type of the object with address \( a \). For convenience, we use a single (global) function for \( \text{HeapType} \) in the semantics, even though the information in that function is distributed in the same way as the heap itself in an implementation.
- The \( \text{MsgQueue} \) associated with a process by the last component of a state contains messages, paired with the sender, that have arrived at the process but have not yet been handled by matching \( \text{receive} \) definitions.

\textbf{A.2 Semantic Domains}

The semantic domains are defined in Figure 9.

\textbf{A.3 Extended Abstract Syntax}

Section A.1 defines the abstract syntax of programs that can be written by the user. Figure 10 extends the abstract syntax to include additional forms into which programs may evolve during evaluation. Only the new productions are shown here; all of the productions given above carry over unchanged.

\[
\begin{align*}
\text{Expression} & ::= \text{Address} \\
& \quad \text{Address.Field} \\
\text{Statement} & ::= \text{for } \text{Variable } \text{intuple } \text{Tuple: Statement}
\end{align*}
\]

\textbf{Figure 10.} Extensions to the abstract syntax.

The statement \( \text{for } v \text{ intuple } t: s \) iterates over the elements of tuple \( t \), in the obvious way.

\textbf{A.4 Evaluation Contexts}

Evaluation contexts, also called reduction contexts, are used to identify the next part of an expression or statement to be evaluated. An evaluation context is an expression or statement with a hole, denoted [ ], in place of the next sub-expression or sub-statement to be evaluated. Evaluation contexts are defined in Figure 11.

\textbf{A.5 Transition Relations}

The transition relation for expressions has the form \( ht : h \vdash e \rightarrow e' \), where \( e \) and \( e' \) are expressions, \( ht \in \text{HeapType} \), and \( h \in \text{LocalHeap} \). The transition relation for statements has the form \( \sigma \rightarrow \sigma' \) where \( \sigma \in \text{State} \) and \( \sigma' \in \text{State} \).

Both transition relations are implicitly parameterized by the program, which is needed to look up method definitions and configuration information. The transition relation for expressions is defined in Figure 12. The transition relation for statements is defined in Figures 13–14.

**Notation and auxiliary functions.**

- In the transition rules, \( a \) matches an address; \( v \) matches a value (i.e., an element of \( \text{Val} \)); and \( \ell \) matches a label.
- For an expression or statement \( e \), \( e[x := y] \) denotes \( e \) with all occurrences of \( x \) replaced with \( y \).
- A function matches the pattern \( f[x \rightarrow y] \) if \( f(x) \) equals \( y \).
- For a function \( f \), \( f[x := y] \) denotes the function that is the same as \( f \) except that it maps \( x \) to \( y \).
Val ::= Literal
   Address
   (Val*)
C ::= []
   (Val*, C, Expression*)
C,MethodName(Val*, C, Expression*)
Address,MethodName(Val*, C, Expression*)
UnaryOp(C)
BinaryOp(C, Expression)
BinaryOp(Val, C)
isinstance(C, ClassName)
some Pattern in C \ Expression
C.Field = Expression
Address.Field = C
Instance Variable = C
C ; Statement
if C: Statement else: Statement
for InstanceVariable in C: Statement
for InstanceVariable intuple Tuple: C
send C to Expression
send Val to C
await Expression: Statement AnotherAwaitClause*

Figure 11. Evaluation contexts.

- $f_0$ denotes the empty partial function, i.e., the partial function whose domain is the empty set.
- For a (partial) function $f$, $f \oplus a$ denotes the function that is the same as $f$ except that it has no mapping for $a$.
- Sequences are denoted with angle brackets, e.g., $\langle 0, 1, 2 \rangle \in \text{Int}^*$.
- $s \oplus t$ is the concatenation of sequences $s$ and $t$.
- $\text{tail}(s)$ is the tail of sequence $s$, i.e., the sequence obtained by removing the first element of $s$.
- $\text{first}(s)$ is the first element of sequence $s$.
- $\text{length}(s)$ is the length of sequence $s$.
- $\text{extends}(c_1, c_2)$ holds iff class $c_1$ is a descendant of class $c_2$ in the inheritance hierarchy.
- For $c \in \text{ClassName}$, $\text{new}(c)$ returns a new instance of $c$.

$$\text{new}(c) =
\begin{cases}
\{ \} & \text{if } c = \text{Set} \\
\{ \} & \text{if } c = \text{Sequence} \\
\emptyset & \text{otherwise}
\end{cases}$$

- For $m \in \text{MethodName}$ and $c \in \text{ClassName}$, $\text{methodDef}(c, m, \text{def})$ holds if (1) class $c$ defines method $m$, and $\text{def}$ is the definition of $m$ in $c$, or (2) $c$ does not define $m$, and $\text{def}$ is the definition of $m$ in the nearest ancestor of $c$ in the inheritance hierarchy that defines $m$.

- For $h, h', h'' \in \text{LocalHeap}$ and $ht, ht' \in \text{HeapType}$ and $v, \bar{v} \in \text{Val}$, $\text{isCopy}(v, h, h', h', \bar{v}, \bar{h}, \bar{h}')$ holds if (1) $v$ is a value in a process with local heap $h$ (i.e., addresses in $v$ are evaluated with respect to $h$), (2) $\bar{v}$ is a copy of $v$ for a process whose local heap was $\bar{h}$ before $v$ was copied into it and whose local heap is $\bar{h}'$ after $v$ is copied into it, i.e., $\bar{v}$ is the same as $v$ except that, instead of referencing objects in $h$, it references newly created copies of those objects in $\bar{h}'$, and (3) $\bar{h}'$ and $\bar{h}''$ are versions of $\bar{h}$ and $ht$ updated to reflect the creation of those objects. As an exception, because process addresses are used as global identifiers, process addresses in $v$ are copied unchanged into $\bar{v}$, and new copies of process objects are not created. We give auxiliary definitions and then a formal definition of $\text{isCopy}$.

For $v \in \text{Val}$, let $\text{addr}(v, h)$ denote the set of addresses that appear in $v$ or in any objects or values reachable from $v$ with respect to local heap $h$; formally,

$$a \in \text{addr}(v, h) =
\begin{array}{l}
(v \in \text{Address} \land v = a) \\
\lor (v \in \text{dom}(h) \land h(v) \in \text{Field} \rightarrow \text{Val} \\
\land (\exists f \in \text{dom}(h(v)), a \in \text{addr}(h(v)(f), h)))
\lor (v \in \text{dom}(h) \land h(v) \in \text{SetOfVal} \cup \text{SeqOfVal} \\
\land (\exists h' \in \text{ht}(v). a \in \text{addr}(v', h)))
\lor (\forall v_1, \ldots, v_n \in \text{Val} \land v = (v_1, \ldots, v_n)
\land (\exists i \in [1..n]. a = \text{addr}(v_i, h))
\end{array}$$

For $v, \bar{v} \in \text{Val}$ and $f \in \text{Address} \rightarrow \text{Address}$, $\text{subst}(v, \bar{v}, f)$ holds if $v$ is obtained from $\bar{v}$ by replacing each occurrence of an address $a$ in $\text{dom}(f)$ with $f(a)$ (informally, $f$ maps addresses of new objects in $\bar{v}$ to addresses of corresponding old objects in $v$); formally,

$$\text{subst}(v, \bar{v}, f) =
\begin{array}{l}
(v \in \text{Bool} \cup \text{Int} \cup (\text{Address} \setminus \text{dom}(f)) \land \bar{v} = v)
\lor (v \in \text{dom}(f) \land f(v) = v)
\lor (\exists v_1, \ldots, v_n, v_1, \ldots, \bar{v}_n.
\land (v = (v_1, \ldots, v_n) \land \bar{v} = (\bar{v}_1, \ldots, \bar{v}_n)
\land (\forall i \in [1..n]. \text{subst}(v_i, \bar{v}_i, f)))
\end{array}$$

Similarly, for $o, \bar{o} \in \text{Object}$ and $f \in \text{Address} \rightarrow \text{Address}$, $\text{subst}(o, \bar{o}, f)$ holds if $o$ is obtained from $\bar{o}$ by replacing each occurrence of an address $a$ in $\text{dom}(f)$ with $f(a)$. For sets $S$ and $S'$, let $S \uparrow S'$ be the set of bijections between $S$ and $S'$. 

2016/1/8
Finally, $isCopy$ is defined as follows (intuitively, $A$ contains the addresses of the newly allocated objects):

$$
{\begin{array}{l}
isCopy(v, h, \bar{h}, ht, \bar{h}', ht') = \\
\exists A \subseteq Address \setminus ProcessAddress. \\
\forall f \in A \stackrel{1}{\rightarrow} (\text{addr}(v, h) \setminus ProcessAddress).
\end{array}}
$$

$$
A \cap \text{dom}(ht) = \emptyset
\land \text{dom}(h') = \text{dom}(ht) \cup A
\land \forall \alpha \in \text{dom}(ht), ht'(a) = ht(a)
\land \forall \alpha \in \text{dom}(h), h'(a) = h(a)
\land \exists \text{sub}(h(a), h'(a), f))
$$

- For $m \in Val, a \in ProcessAddress, \ell \in Label, h \in LocalHeap$, and a receive definition $d$, if message $m$ can be received from $a$ at label $\ell$ by a process with local heap $h$ using receive definition $d$, then \text{matchRcvDef}(m, a, \ell, h, d)$ returns the appropriately instantiated body of $d$. Specifically, if (1) either $d$ lacks an at clause, or $d$ has an at clause that includes $\ell$, and (2) $d$ contains a receive pattern $P$ from $s$ such that there exists a substitution $\theta$ such that (2a) $m = P\theta$ and (2b) $\theta(y) = h(y)$ for every variable $y$ prefixed with “$\sim$” in $P$, then, letting $\theta$ be the substitution obtained using the first receive pattern in $d$ for which (2) holds, \text{matchRcvDef}(m, a, \ell, h, d)$ returns $s\theta[x := a]$, where $s$ is the body of $d$ (i.e., the statement that appears in $d$). Otherwise, \text{matchRcvDef}(m, a, \ell, h, d)$ returns ⊥.

- For $m \in Val, a \in ProcessAddress, \ell \in Label, c \in ClassName, h \in LocalHeap$, if message $m$ can be received from $a$ at label $\ell$ in class $c$ by a process with local heap $h$, then \text{receiveAtLabel}((m, a), \ell, c, h)$ returns a statement that should be executed when receiving $m$ in that context. Specifically, if class $c$ contains a receive definition $d$ such that \text{matchRcvDef}(m, a, \ell, h, d)$ is not ⊥, then, letting $d_1, \ldots, d_n$ be the receive definitions in $c$ such that \text{matchRcvDef}(m, a, \ell, h, d)$ is not ⊥, and letting $s_i = \text{matchRcvDef}(m, a, \ell, h, d_i), \text{receiveAtLabel}((m, a), \ell, c, h)$ returns $\{s_1, \ldots, s_n\}$. Otherwise, \text{receiveAtLabel}((m, a), \ell, c, h) returns skip.

### A.6 Executions

An execution is a sequence of transitions $\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow \cdots$ such that $\sigma_0$ is an initial state. The set of initial states is defined in Figure 15. Intuitively, $a_r$ is the address of the initial process, $a_s$ is the address of the received sequence of the initial process, and $a_o$ is the address of the sent sequence of the initial process.

Informally, execution of the statement initially associated with a process may eventually (1) terminate (i.e., the statement associated with the process becomes skip, indicating that there is nothing left for the process to do), (2) get stuck

\[Init = \{(P, h, c, h, mq) \in State \mid \exists a_r \in ProcessAddress, a_s \in Address \setminus ProcessAddress, a_o \neq a_s\}
\]

\[\land P = f_0[a_p := \text{main}()]
\land ht = f_0[a_p := \text{Process}, a_r := \text{Sequence}, a_s := \text{Sequence}]
\land h = f_0[a_p := ha]
\land ch = (\lambda(a_1, a_2) \in \text{ProcessAddress} \times \text{ProcessAddress}. ⟨⟩)
\land mq = (\lambda a \in \text{ProcessAddress}. ⟨⟩)
\land where ha = f_0[a_p := a_o, a_r := ⟨⟩, a_s := ⟨⟩]
\land a_p = f_0[\text{received} := a_r, \text{sent} := a_s]}
\]

**Figure 15.** Initial states.

(i.e., the statement associated with the process is not skip, and the process has no enabled transitions) due to an unsatisfied await statement or an error (e.g., the statement contains an expression that tries to select a component from a value that is not a tuple, or the statement contains an expression that tries to read the value of a non-existent field), or (3) run forever due to an infinite loop or infinite recursion.

### Acknowledgments

We thank Michael Gorbovitski for supporting the use of InvTS for automatic incrementalization of DistAlgo programs. We are grateful to the following people for their helpful comments and discussions: Ken Birman, Andrew Black, Jon Brandvein, Wei Chen, Ernie Cohen, John Field, Georges Gonthier, Leslie Lamport, Nancy Lynch, Lambert Meertens, Stephan Merz, Don Porter, Michel Raynal, John Reppy, Emin Gün Sirer, Doug Smith, Gene Stark, Robert van Renesse, and anonymous reviewers.

### References


// field access
ht : h ⊨ a.f → h(a)(f)  if a ∈ dom(h) ∧ f ∈ dom(h(a))

// invoke method in user-defined class
ht : h ⊨ a.m(v₁, . . . , vₙ) → e[|self := a, x₁ := v₁, . . . , xₙ := vₙ|]
if a ∈ dom(h) ∧ methodDef(h(t(a), m, defun(a, m(x₁, . . . , xₙ), e))

// invoke method in pre-defined class (representative examples)
ht : h ⊨ a.contains(v₁) → true  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∈ h(a)
ht : h ⊨ a.contains(v₁) → false  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∉ h(a)

// unary operations
ht : h ⊨ not(true) → false
ht : h ⊨ not(false) → true
ht : h ⊨ isTuple(v) → true  if v is a tuple
ht : h ⊨ isTuple(v) → false  if v is not a tuple
ht : h ⊨ len(v) → n  if v is a tuple with n components

// binary operations
ht : h ⊨ is(v₁, v₂) → true  if v₁ and v₂ are the same value
ht : h ⊨ plus(v₁, v₂) → v₃  if v₁ ∈ Int ∧ v₂ ∈ Int ∧ v₃ = v₁ + v₂
ht : h ⊨ select(v₁, v₂) → v₃
if v₂ ∈ Int ∧ v₂ > 0 ∧ (v₁ is a tuple with at least v₂ components) ∧ (v₃ is the v₂’th component of v₁)

// instanceof
ht : h ⊨ instanceof(a, c) → true  if ht(a) = c
ht : h ⊨ instanceof(a, c) → false  if ht(a) =/= c

// disjunction
ht : h ⊨ or(true, e) → true
ht : h ⊨ or(false, e) → e

// existential quantification
ht : h ⊨ some x in a | e → e[x := v₁] or · · · or e[x := vₙ]
if (ht(a) = Sequence ∧ h(a) = ⟨v₁, . . . , vₙ⟩) ∨ (ht(a) = Set ∧ {v₁, . . . , vₙ}) is a linearization of h(a)

Figure 12. Transition relation for expressions.

// field access
ht : h ⊨ a.f → h(a)(f)  if a ∈ dom(h) ∧ f ∈ dom(h(a))

// invoke method in user-defined class
ht : h ⊨ a.m(v₁, . . . , vₙ) → e[|self := a, x₁ := v₁, . . . , xₙ := vₙ|]
if a ∈ dom(h) ∧ methodDef(h(t(a), m, defun(a, m(x₁, . . . , xₙ), e))

// invoke method in pre-defined class (representative examples)
ht : h ⊨ a.contains(v₁) → true  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∈ h(a)
ht : h ⊨ a.contains(v₁) → false  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∉ h(a)

// unary operations
ht : h ⊨ not(true) → false
ht : h ⊨ not(false) → true
ht : h ⊨ isTuple(v) → true  if v is a tuple
ht : h ⊨ isTuple(v) → false  if v is not a tuple
ht : h ⊨ len(v) → n  if v is a tuple with n components

// binary operations
ht : h ⊨ is(v₁, v₂) → true  if v₁ and v₂ are the same value
ht : h ⊨ plus(v₁, v₂) → v₃  if v₁ ∈ Int ∧ v₂ ∈ Int ∧ v₃ = v₁ + v₂
ht : h ⊨ select(v₁, v₂) → v₃
if v₂ ∈ Int ∧ v₂ > 0 ∧ (v₁ is a tuple with at least v₂ components) ∧ (v₃ is the v₂’th component of v₁)

// instanceof
ht : h ⊨ instanceof(a, c) → true  if ht(a) = c
ht : h ⊨ instanceof(a, c) → false  if ht(a) =/= c

// disjunction
ht : h ⊨ or(true, e) → true
ht : h ⊨ or(false, e) → e

// existential quantification
ht : h ⊨ some x in a | e → e[x := v₁] or · · · or e[x := vₙ]
if (ht(a) = Sequence ∧ h(a) = ⟨v₁, . . . , vₙ⟩) ∨ (ht(a) = Set ∧ {v₁, . . . , vₙ}) is a linearization of h(a)

Figure 12. Transition relation for expressions.

// field access
ht : h ⊨ a.f → h(a)(f)  if a ∈ dom(h) ∧ f ∈ dom(h(a))

// invoke method in user-defined class
ht : h ⊨ a.m(v₁, . . . , vₙ) → e[|self := a, x₁ := v₁, . . . , xₙ := vₙ|]
if a ∈ dom(h) ∧ methodDef(h(t(a), m, defun(a, m(x₁, . . . , xₙ), e))

// invoke method in pre-defined class (representative examples)
ht : h ⊨ a.contains(v₁) → true  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∈ h(a)
ht : h ⊨ a.contains(v₁) → false  if a ∈ dom(h) ∧ ht(a) = Set ∧ v₁ ∉ h(a)

// unary operations
ht : h ⊨ not(true) → false
ht : h ⊨ not(false) → true
ht : h ⊨ isTuple(v) → true  if v is a tuple
ht : h ⊨ isTuple(v) → false  if v is not a tuple
ht : h ⊨ len(v) → n  if v is a tuple with n components

// binary operations
ht : h ⊨ is(v₁, v₂) → true  if v₁ and v₂ are the same value
ht : h ⊨ plus(v₁, v₂) → v₃  if v₁ ∈ Int ∧ v₂ ∈ Int ∧ v₃ = v₁ + v₂
ht : h ⊨ select(v₁, v₂) → v₃
if v₂ ∈ Int ∧ v₂ > 0 ∧ (v₁ is a tuple with at least v₂ components) ∧ (v₃ is the v₂’th component of v₁)

// instanceof
ht : h ⊨ instanceof(a, c) → true  if ht(a) = c
ht : h ⊨ instanceof(a, c) → false  if ht(a) =/= c

// disjunction
ht : h ⊨ or(true, e) → true
ht : h ⊨ or(false, e) → e

// existential quantification
ht : h ⊨ some x in a | e → e[x := v₁] or · · · or e[x := vₙ]
if (ht(a) = Sequence ∧ h(a) = ⟨v₁, . . . , vₙ⟩) ∨ (ht(a) = Set ∧ {v₁, . . . , vₙ}) is a linearization of h(a)

Figure 12. Transition relation for expressions.
// field assignment
(P[a → a'.f = v], ht, h[a → ha[a' → o]], ch, mq)
→ (P[a := skip], ht, h[a := ha[a' := o[f := v]]], ch, mq)

// object creation
(P[a → a'.f = new c], ht, h[a → ha[a' → o]], ch, mq)
→ (P[a := skip], ht[a' := c], h[a := ha[a' := o[f := a.c]], a.c := new(c)], ch, mq)
if a.c ∉ dom(ht) ∧ a.c ∈ Address ∧ (a.c ∈ ProcessAddress ↔ extends(c, Process))

// sequential composition
(P[a → skip; s], ht, h, ch, mq) → (P[a := s], ht, h, ch, mq)

// conditional statement
(P[a → if true : s1 else : s2], ht, h, ch, mq) → (P[a := s1], ht, h, ch, mq)

(P[a → if false : s1 else : s2], ht, h, ch, mq) → (P[a := s2], ht, h, ch, mq)

// for loop
(P[a → for x in a': s], ht, h, ch, mq) → (P[a := for x intuple (v1, . . . , vn) : s], ht, h, ch, mq)
if ((ht(a) = Sequence ∧ h(a)(a') = (v1, . . . , vn)) ∨ (ht(a) = Set ∧ (v1, . . . , vn) is a linearization of h(a)(a')))
(P[a → for x intuple (v1, . . . , vn) : s], ht, h, ch, mq)
→ (P[a := s[x := v1]; for x intuple (v2, . . . , vn) : s], ht, h, ch, mq)

(P[a → for x intuple () : s], ht, h, ch, mq) → (P[a := skip], ht, h, ch, mq)

// while loop
(P[a → while c: s], ht, h, ch, mq) → (P[a := if c: (s while c: s) else : skip], ht, h, ch, mq)

// invoke method in user-defined class
(P[a → a'.m(v1, . . . , vn)], ht, h, ch, mq)
→ (P[a := s[self := a, x1 := v1, . . . , xn := vn]], ht, h, ch, mq)
if a' ∈ dom(h(a))
∧ ht(a') ∉ {Process, Set, Sequence} ∧ methodDef(ht(a'), m, def m(x1, . . . , xn) s)

// invoke method in pre-defined class (representative examples)

// Process.start allocates a local heap and sent and received sequences for the new process,
// and moves the started process to the new local heap.
(P[a → a'.start()], ht, h[a → ha[a' → o]], ch, mq)
→ (P[a := skip, a' := a'.run()], ht[a.s := Sequence, a.r := Sequence],
    h[a := ha ⊕ a', a' := f0[a' → o[sent := a.s, received := a.r], a.r := ⟨⟩, a.s := ⟨⟩]], ch, mq)
if extends(ht(a'), Process) ∧ (ht(a') inherits start from Process) ∧ a.r ∉ dom(ht) ∧ a.s ∉ dom(ht)
∧ a.r ∈ Address \ ProcessAddress ∧ a.s ∈ Address \ ProcessAddress

// invoke method in pre-defined class (representative examples, continued)
(P[a → a'.add(v1)], ht, h[a → ha], ch, mq)
→ (P[a := skip], ht, h[a := ha[a' := ha(a') ∪ {v1}]], ch, mq)
if a' ∈ dom(ha) ∧ ht(a') = Set

(P[a → a'.add(v1)], ht, h[a → ha], ch, mq)
→ (P[a := skip], ht, h[a := ha[a' := ha(a')@forget(v1)]], ch, mq)
if a' ∈ dom(ha) ∧ ht(a') = Sequence

Figure 13. Transition relation for statements, Part 1.
// send a message to one process. create copies of the message for the sender's sent sequence
// and the receiver.
(P[a → send v to a₂], ht, h[a → ha, a₂ → ha₂], ch, mq)
→ (P[a := skip], ht⁺, h[a := ha’aₓ := ha(aₓ)@(v₁, a₂)], a₂ := ha₂, ch[(a₂, a) := ch((a₂, a)@<v₂>), mq])
if a₂ ∈ ProcessAddress ∧ aₓ = ha(a)(sent) ∧ isCopy(v, ha, ht, v₁, ha’, ht’)
∧ isCopy(v, ha’, ha₂, ht’, v₂, ha₂, ht’)

// send to a set of processes
(P[a → send v to a’], ht, h[a → ha], ch, mq)
→ (P[a := for x in a’; send v to x], ht, h[a := ha[x := ha(aₓ)@(v, a’)]], ch, mq)
if ht(a’) = Set ∧ aₓ = ha(a)(sent) ∧ (x is a fresh variable)

// message reordering
(P, ht, h, ch[(a, a’) → q], mq) → (P, ht, h, ch[(a, a’) := q’], mq)
if (channel order is unordered in the program configuration) ∧ (q’ is a permutation of q)

// message loss
(P, ht, h, ch[(a, a’) → q], mq) → (P, ht, h, ch[(a, a’) := q’], mq)
if (channel reliability is unreliable in the program configuration) ∧ (q’ is a subsequence of q)

// arrival of a message from process a at process a’. remove message from channel, and append
// (message, sender) pair to message queue.
(P, ht, h, ch[(a, a’) → q], mq)
→ (P, ht, h, ch[(a, a’) := tail(q)], mq[a’ := mq(a’)@(first(q), a)])
if length(q) > 0

// handle a message at a yield point. remove the (message, sender) pair from the message
// queue, append a copy to the received sequence, and prepare to run matching receive
// handlers associated with e, if any. s has a label hence must be await.
(P[a → e s], ht, h[a → ha], ch, mq[a → q])
→ (P[a := s'[self := a]; e s], ht’, h[a → ha'[a_r → ha(a_r)@copy]], ch, mq[a := tail(q)])
if length(q) > 0 ∧ a_r = ha(a)(received) ∧ isCopy(first(q), ha, ha, ht, copy, ha’, ht’)
∧ receiveAtLabel(first(q), e, ht, ha, ha’) = S ∧ s’ is a linearization of S

// await without timeout clause
(P[a → e₁ s₁ or · · · or eₙ sₙ], ht, h, ch, mq) → (P[a := s₁], ht, h, ch, mq)
if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ⊢ e₁ → true

// await with timeout clause, terminated by true condition
(P[a → e₁ s₁ or · · · or eₙ sₙ timeout v:s], ht, h, ch, mq) → (P[a := s₁], ht, h, ch, mq)
if length(mq(a)) = 0 ∧ i ∈ [1..n] ∧ h(a) : ht ⊢ e₁ → true

// await with timeout clause, terminated by timeout (occurs non-deterministically)
(P[a → e₁ s₁ or · · · or eₙ sₙ timeout v:s], ht, h, ch, mq) → (P[a := s], ht, h, ch, mq)
if length(mq(a)) = 0 ∧ h(a) : ht ⊢ e₁ → false ∧ · · · ∧ h(a) : ht ⊢ eₙ → false

// context rule for expressions
h(a) : ht ⊢ e → e’
(P[a → C[e]], ht, h, ch, mq) → (P[a := C[e’]], ht, h, ch, mq)

// context rule for statements
(P[a → s], ht, h, ch, mq) → (P[a := s’], ht’, h’, ch’, mq’)
(P[a → C[s]], ht, h, ch, mq) → (P[a := C[s’]], ht’, h’, ch’, mq’)

Figure 14. Transition relation for statements, Part 2.


