
CSE 519: Data Science
Steven Skiena
Stony Brook University

Lecture 23: Achieving Scale



Data Science and Big Data

The buzzword “Big Data” presumes analysis of 
truly massive data sets:
● all of Twitter or Facebook
● Web logs for major websites
● genome sequences of thousands of people
● all images on Flickr
Working with data generally gets harder with size



How Big Is...

● Twitter (500 million tweets/day in 2013)
● Library of Congress (235 TB in 2011)
● Facebook (over 30 PB of user info in 2012)
● Google (2 million search queries/minute)
● Flickr (3125 new photos/minute)
● Apple (47,000 app downloads/minute)
● Email (144.8 billion message/day)



The Three V’s of Big Data

Student projects 
are typically batch 
problems on MB 
scale CSV-type 
data.
Veracity is another 
V to worry about.



Could You Go Big? (Projects)

● Miss Universe?
● Movie gross?
● Baby weight?
● Art auction price?
● Snow on Christmas?
● Super Bowl / College Champion?
● Ghoul Pool?
● Future Gold / Oil Price?



Large-Scale Machine Learning

The learning algorithms we have studied 
generally do not scale well to huge data sets.
● Models with few parameters cannot really 

benefit from large numbers of examples.
● Algorithmic complexity must be near linear to 

run on large data sets.
● Big matrices better be sparse for big data.



Filtering Data

An important benefit of Big Data is that you can 
discard much of it to make analysis cleaner.
English accounts for only 34% of all tweets on 
Twitter, but you can exclude the rest and leave 
enough for meaningful analysis.
Filtering away irrelevant or hard-to-interpret 
data requires application-specific knowledge.



Subsampling Data

It can pay to subsample good, relevant data:
● Cleanly separate training, testing, and 

evaluation data.
● Simple, robust models generally have few 

parameters, making Big Data is overkill.
● Spreadsheet-sized data sets are fast and 

easy to explore.



Subsampling by Truncation

Taking the first n records is reproducible and 
simple but record order often has meaning:
● temporal biases: only analyze old data.
● lexicographic biases: only analyze the A’s, 

e.g. more Arabic names, fewer Chinese.
● numerical biases: ID numbers can encode 

meaning, e.g. social security numbers.



Random Sampling

Randomly sampling records with probability p 
ensures no explicit biases, but:
● Statistical discrepancies ensure some 

regions will be oversampled.
● Random sampling is not reproducible 

without the seed and random generator.
● Multiple random samples will not be disjoint.



Uniform Sampling

Sampling records which are congruent to i mod 
m provide a way to balance many concerns:
● Obtain an exact number of records.
● Quick and reproducible.
● Ensures disjoint samples
Twitter uses this method to govern API services  
(spritzer vs. garden hose vs. fire hose)



Stream Sampling

Often we seek a uniform sample of size k from 
a stream, where we don’t know n in advance.
Solution: keep an array of k active elements so 
far, then replace one of them with the nth 
element with probability k/n.
Select the position of the new element at 
random if it makes the cut.



Distributed vs. Parallel Processing

The distinction here is how tightly coupled the 
machines are, roughly:
● Parallel processing happens on one 

machine, through threads and OS processes
● Distributed processing happens on many 

machines, using network communication.
Easy parallel jobs do not communicate much.



Data Parallelism

The easiest way to exploit parallelism partitions 
big data among multiple machines and trains 
independent models.
Natural partitions are established by time, 
clustering algorithms, or natural categories.
It is typically hard to combine the results of 
these runs together later (think k-means)



Grid Search

The easiest way to exploit parallelism involves 
independent runs on independent data.
Grid search is the quest for the right 
meta-parameters for training, like deciding the 
right k for k-means clustering.
Multiple independent fits can run in parallel, 
where in the end we take the best one.



One, Two, Many...

The complexity of distributed processing grows 
rapidly with the number of machines:
● One: keep the cores of your box busy.
● Two: manually run programs on a few boxes
● Many: employ a system like MapReduce for 

efficiently managing multiple machines.



Complexities of Scale: Social Gatherings

● 1 person: easy to arrange.
● >2 persons: coordination.
● >10 persons: requires leader in charge.
● >100 persons: requires fixed menu.
● >1000 persons: no one knows many people.
● >10,000 persons: too few hotels for most cities.
● >100,000 persons: someone will die that day



MapReduce / Hadoop

Google’s MapReduce paradigm for distributed 
computing has spread widely through the 
open-source implementation Hadoop, offering:
● Simple parallel programming model
● Straightforward scaling to 

hundreds/thousands of machines.
● Fault tolerance through redundancy



Typical Big Data Problem

● Iterate over a large number of records
● Extract something of interest from each
● Shuffle and sort intermediate results
● Aggregate intermediate results
● Generate final output
Think word counting and k-means clustering



Divide and Conquer

 



Parallelization Challenges

● How do we assign work units to workers?
● What if we have more work units than workers?
● What if workers need to share partial results?
● How do we aggregate partial results?
● How do we know all the workers have finished?
● What if workers die?



Ideas Behind MapReduce

● Scale “out”, not “up”: recognize limits of large 
shared-memory machines

● Move processing to the data: clusters have limited 
bandwidth

● Process data sequentially, avoid random access: seeks 
are expensive, disk throughput is reasonable

● Seamless scalability: from the mythical man-month to 
the tradable machine-hour



Components of Hadoop

•Core Hadoop has two main systems:
–Hadoop/MapReduce: distributed big data processing 
infrastructure (abstract/paradigm, fault-tolerant, schedule, 
execution)
–HDFS (Hadoop Distributed File System): fault-tolerant, 
high-bandwidth, high availability distributed storage



Map and Reduce

•Programmers specify two 
functions:
map (k, v) → [(k’, v’)]
reduce (k’, [v’]) → [(k’, v’)]
–All values with the same key 
are sent to the same reducer



MapReduce Word Count
Map(String docid, String text):
     for each word w in text:
      Emit(w, 1);
Reduce(String term, Iterator<Int> values):
     int sum = 0;
     for each v in values:
      sum += v;
     Emit(term, sum);



Word Count Example



Word Count Execution

 



Other Programming Primitives
partition (k’, number of partitions) → partition for k’
–Often a simple hash of the key, e.g., hash(k’) mod n
–Divides up key space for parallel reduce operations
combine (k’, [v’]) → [(k’, v’’)]
–Mini-reducers that run in memory after the map phase
–Used as an optimization to reduce network traffic



Word Count with Combiner

 





MapReduce “RunTime”

•Handles scheduling: assigning workers to map and 
reduce tasks
•Handles “data distribution”: moves processes to 
data
•Handles synchronization: Gathers, sorts, and 
shuffles intermediate data
•Handles errors and faults: Detects worker failures 
and restarts



Hadoop Distributed File System (HDFS)

–Store data on the local disks of nodes in the cluster, 
because not enough RAM to hold all the data in 
memory
–Disk access is slow, but disk throughput is 
reasonable, so linear scans through files are fine.
--Replicate everything 3 times for reliability on 
commodity hardware.



Cloud Computing Services

Platforms like Amazon make it easy to rent 
large numbers of machines for short-term jobs.
There are charges on bandwidth, processors, 
memory, long-term storage: making it 
non-trivial to price exactly.
Spot pricing and reserved instances lower 
costs for special usage patterns.



Feel Free to Experiment

Micro instances are 
only 1GB, single 
processor virtual 
machines.
Reasonable 
machines rent for 10 
to 30 cents/hr.


