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Issues with Closed Form Solution

This closed form for linear regression is concise 
and elegant, but issues include:
● Inversion slow for large systems
● Formulation is brittle: the linear algebra 

magic is hard to extend to other formulations
This motivates the gradient descent approach 
to solving regression.



Regression as Parameter Fitting

We seek coefficients that minimize the sum of 
squared error of the points over all possible 
coefficients.

Here the regression line is:



Lines in Parameter Space

The error function J(w0,w1) is convex, making 
it easy to find the single local/global minima.



Gradient Descent Search

A space with only one local/global minima is 
called convex.
When a search space is convex, it is easy to 
find the minima: just keep walking down.
The fastest direction down is defined by the 
slope or tangent at the current point.



The Fastest Way Down

The direction down at a point is given by its 
derivative, which specified by its tangent line:
This could be approximately computed by 
finding the point (x+dx,y(x+dx))
and fitting the line with (x,y(x))



Partial Derivatives

The symbolic way of computing the gradient 
requires computing the partial derivative of the 
objective function:



Gradient Descent for Regression

 



Which Functions are Convex?

Remember your calculus!
Whenever the second derivative is zero, you 
get a maxima or minima.
Thus analysis of such derivatives can tell which 
functions are and are not convex.
Gradient descent search can get trapped in 
local minima only for non-convex functions.



Getting Trapped in Local Optima

Always going upward does not reach the ski 
slope from a two story cabin in the valley.



Effect of Learning Rate / Step Size

● Taking too small steps results in slow 
convergence to the optima.

● But too large a step overshoots the goal.



What is the Right Learning Rate?

Monitor the value of the loss function J() over 
the course of optimization.
If progress is too slow, increase by a 
multiplicative factor (say 3) or accept.
If J gets larger, the step size is too large, 
decrease by a multiplicative factor (say ⅓).
Library functions should use algorithms for this.



Stochastic Gradient Descent

Evaluating the partial derivative takes time 
linear in the number of examples for each step!
A good heuristic is to use only a few examples 
to estimate the derivative, and hope it is down.
Optimizing the learning rate and the batch size 
for gradient descent leads to very fast 
optimization for convex functions.



Too Many Features?

Providing a rich set of features to regression is 
good, but remember Occam’s Razor:
        “The simplest explanation is best.”
Ideally our regression would select the most 
important variables and fit them, but our 
objective function only tries to minimize sum of 
squares error. 



Regularization

The trick is to add terms to the objective 
function seeking to keep coefficients small:

We pay a penalty proportional to the sum of 
squares of the coefficients, thus ignoring sign.
This rewards us for setting coefficients to zero.



Interpreting/Penalizing Coefficients

When variables have mean zero, its coefficient 
magnitude is a measure of value to the 
objective function.
Penalizing the sum of squared coefficients is 
ridge regression or Tikhonov regularization.
Penalizing the absolute value of the coefficients 
(L_1 metric vs. L_2) is LASSO regularization.



What is the right Lambda?

How do we set the constant lambda:

Big-enough lambda emphasizes small 
parameters, i.e. set to all zeros.
Small-enough lambda freely uses all 
parameters to minimize training error.
We seek balance between over/under fitting.



Tradeoffs Between Fit / Complexity

A good fit to the training data with few 
parameters is more robust than a slightly better 
fit with many parameters.
Metrics to help with model selection include:
● Akaike Information Criteria: 
● Baysian Info Critera:
k is a parameter count and L an error metric.



Normal Form with Regularization

The normal form equation can be generalized 
to deal with regularization…

Or we can just use gradient descent with the 
proper loss function and derivatives.


