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Get the Matrix!

The most critical part of your data science 
project is reducing all the information you can 
find one or more data matrices, ideally as large 
as possible.
Rows are examples.
Columns are distinct features/attributes.
You need to be building your matrix now!



Linear Algebra

Linear algebra is the mathematics of matrices.
This makes it the language of data science.
Many machine learning algorithms are best 
understood through linear algebra.
You presumably had an undergraduate course 
in linear algebra, but here I will review what you 
need to know.



What Can n*m Matrices Represent?

● Data: rows are objects, columns features.
● Geometric point sets: rows are points, 

columns are dimensions
● Systems of Equations: rows are equations, 

columns are coefficients for each variable.
● Graphs/Networks: M[i,j] denotes the number 

of edges from vertex i to vertex j.
● Vectors: any row, column or d*1 matrix 



Linear Algebra Formulae

● Concise formulas written as products of 
matrices provides great power.

● Algebraic substitution coupled with a rich set 
of identities yields elegant,mechanical ways 
to manipulate such formulae.

● But such strings of operations can, I find, be 
difficult to interpret and understand.



Algebraic Proof: 2=1

 



Lessons from the Proof

● Algebraic proofs do not, to me, generally 
carry intuition about why things are work.

● They are easier to verify than to create.
● Even so, there are special cases / 

singularities to watch for, like division by 0.
● In linear algebra, such cases include 

singular / non-invertible matrices.



Points vs. Vectors

Points in d dimensions can be represented as 
unit vectors (points on the sphere), plus their 
magnitudes.
Distances between points become angles 
between vectors, for purposes of 
comparison.
Ignoring magnitudes is a form of scaling, 
making all points directly comparable.



Angles between Vectors

To compute angle AB:
Cos(0)=1, Cos(Pi/2)=0, Cos(Pi)=-1

Scores like correlation coefficients:
Cos = correlation of mean zero variables!

For unit vectors, ||A||=||B||=1, so the angle 
between A and B is defined by the dot product. 



Visualizing Matrix Operations

We use images to represent matrices



A Matrix and its Transpose

The transpose of a matrix M interchanges rows and 
columns, turning an a*b matrix to a b*a matrix.

Note that colors get 
rescaled when 
magnitudes change.



Addition and Transposition

A mix of scalar multiplication and addition.



Linear Combination: B=(A+C)/2

Mix of scalar multiplication/ addition.



Matrix Multiplication / Dot Products

The product A*B is defined by:
A*B must share inner dimensions to multiply.
Each element of the product matrix is a dot 
product of row/column vectors.

Dot products measure how “in sync” 
the two vectors are, as in computing 
covariance or correlation.



Properties of Matrix Multiplication

It is associative but not commutative:

Multiplication by the identity commutes:
Although the O(xyz) algorithm is simple to 
program, faster, more numerically stable 
algorithms exist in highly optimized libraries.



Multiplying Feature Matrices

Suppose A is an n*d data matrix. What is A 
times its transpose?:
●            is an n*n matrix of dot products, 

measuring “in sync-ness” among points.
●            is a d*d matrix of dot products, 

measuring “in sync-ness” among features.
These are called covariance matricies.



Row or Column Convariance Matrix?

 



Interpreting Matrix Multiplication

● Multiplying 0/1 adjacency matrices yield 
paths of length two:   a[i,k]=a[i,j]*a[j,k]

● Multiplication by permutation matrices 
rearrange rows/columns:



Interpreting Matrix Multiplication

● Rotating points in space:

Multiplying something by the right matrix can 
have magic properties, in arbitrary dimensions.



Dividing Matrices

The inverse operation to multiplication is 
division.
An important special case of division is 
inversion: A*A^{-1} = I implies A^{-1}=I/A
In fact it is equivalent, because A/B = A*B^{-1}



Matrix Inversion

 A^{-1} is the multiplicative 
inverse of A if A * A^{-1} = I, 
where I is the identity matrix.

If matrix A has an inverse, it 
can be computed by solving 
a linear system using 
Gaussian elimination.



Inverse of Lincoln

 



Matrix Inversion and Linear Systems

Multiplying both sides of Ax = b by the inverse 
of A yields:  (A^{-1}A)x = A^{-1}b or x = A^{-1}b
Thus solving linear equations is equivalent to 
matrix inversion.
The inverse makes it cheap to evaluate many b 
vectors.  However, Gaussian elimination is 
more numerically stable than inversion.



Matrix Rank

Systems of equations are underdetermined if 
rows can be expressed as linear combinations 
of other rows.
The rank of a matrix is a measure of the 
number of linearly independent rows.
An n*n matrix should be rank n for all 
operations to be properly defined on it.



Increasing Lincoln Memorial’s Rank

Some rows of the Lincoln Memorial are not 
linearly independent, so it is not full rank.
Adding small amounts of random noise 
increases rank without serious image distortion.



Factoring Matrices

Many important machine learning algorithms 
can be viewed as factoring a matrix.
Suppose n*m matrix A can be expressed as the 
product B*C, i.e an n*k matrix times a k*m 
matrix.
If k<min(n,m), B and C compress matrix A.
Further, B is a small feature matrix replacing A.



Factoring Word-Document Matricies

If A is a document/word co-ocurrence matrix, 
and A=BC, where B is d*k and C is k*w:
● B is a compressed feature vector for docs
● C is a compressed feature vector for words



LU Decomposition

Factoring a matrix M representing lower and 
upper triangular matrices L and U prove useful 
in solving linear systems.
The determinant of M is the product of the main 
diagonal elements of U.
A determinant of 0 means the matrix is not full 
rank.



LU Decomposition of Memorial

 Rows were permuted by this solver.



Lessons from Lincoln

● Multiplying the factors of the matrix did not 
reconstruct it exactly, due to numerical 
instability.

● The high matrix condition number should 
have tipped us off that we had trouble.

● Still, the gross features of the data are 
largely preserved.



Eigenvalues and Eigenvectors

Multiplying a vector U by a matrix A can have 
the same effect as multiplying it by a scalar l.

Thus the eigenvalue-eigenvector pair (U,l) must 
encode a lot of information about matrix A!



Computing Eigenvalues

The n distinct eigenvalues of a rank n matrix 
can be found by factoring its characteristic 
equation:

Faster algorithms exist to find the largest 
eigenvalues, which are the most important.



Properties of Eigenvalues

● A full-rank matrix has n vector-value pairs.
● Each pair of vectors from a symmetric matrix are 

mutually orthogonal, like x-y axes. E.g. the dot 
product is of (2,-1) and (1,2) is zero.

● Thus eigenvectors can play the role of 
dimensions or basis in n-dimensional space.

Vectors/values are found by solving linear systems.



Computing Eigenvectors

The vector associated with a given eigenvalue 
can be computed by solving a linear system:

Another approach uses v’ = (A*v)/l to compute 
approximations to v until it converges.



Eigenvalue Decomposition

Any n*n symmetric matrix M can be 
decomposed into its n eigenvector products:

Larger eigenvalues correspond to more 
important vector products.



Reconstructing a Covariance Matrix

Summing only the largest vector produces 
performs dimension reduction, identifying the 
most important features of the matrix.

Covariance matrix 
error for the Lincoln 
memorial reduces 
when summing the 
1, 5, and 50 largest 
eigenvectors for 
n=512



Singular Value Decomposition

The SVD of an n*m matrix M factors it                 
where D is diagonal (weighted identity matrix)
Thus UD weights each column of U by D, as 
does DV^T.
Retaining only the rows/column with large 
weights permits us to compress m features with 
relatively little loss.



Reconstruction from SVD

The outer product of vectors yields a matrix 

Matrix M can be expressed a sum of outer 
products from SVD: (UD)_k and (V^T)_k.

Summing only the largest matrix products 
produces an approximation of  M



Error Declines with Dimensionality



Reconstructing Lincoln

Lincoln’s face from 5 and 50 singular values, a 
substantial compression of the original matrix.


