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Financial Time Series as Random Walks

J. P. Morgan’s famous stock market prediction was that
“Prices will fluctuate.”
Bachelier’sTheory of Speculation in 1900 postulated that
prices fluctuate randomly.
Indeed, simple random processes can generate time series
which closely resemble real financial time series.



Why Random Price Changes?

Random price movements makes sense in a world where

• Most price changes result from temporary imbalances
between buyers and sellers,

• Stronger price shocks are inherently unpredictable, and

• The efficient market hypothesis, where the current price
of a stock reflects all information about it.

If the next price movement was predictable, the market
would have previously predicted it, leaving only random
fluctuations.



Monte Carlo Methods

Monte Carlo methods use statistics gathered from random
sampling to model and simulate a complicated distribution.

Generating random walks with the properties of financial
time series and analyzing the resulting price distributions is
a powerful technique in options pricing.



Models and Randomness

Models are useful when they have predictive power.
Simple models which capture large-scale phenomena are
useful.
The model that “the earth is flat” is a very useful model.
If “the future” is the random selection of one sequence of
events from a probability space, our focus should revolve
around modeling the distribution more so than identifying the
ultimate future path.
Random walk models give us a simple but powerful tool to
model financial price distributions.



Binomial Random Walks

In a simple discrete random walk model, each step we move
a distance of1 either up or down, with the probabilityp of an
upward move and1 − p of a downward move.
The path we take as a function of such moves defined a
random walk, and is akin to flipping a biased coin.
The probability that we get exactlyh heads andn − h tails
with a coin that comes up heads with probabilityp is

Pr(h, n, p) = (n

h)ph(1 − p)n−h

Closed forms eliminate the need to simulate random walks
for computing the underlying distribution, but typically exist
only for measuring very simple properties of very simple
walk models.



Mean and Variance

The expected number of heads on a binomial distribution is
np, with variancenp(1 − p).

For an unbiased coin (p = 0.5), the expected difference
between heads and tails is 0, but the expectedabsolute
difference between heads and tails isO(

√
n).



Additive Random Walks

A time series{Vt} is aadditive random walk if

Vt = Vt−1 + at

whereat is a random variable.
The binomial walk above is an example of an additive walk.
Selectingat from anormal distribution defines a continuous
random walk model.
Price series that tend to increase with time can be modeled as
a random walk with drift:

Vt = µ + Vt−1 + at



Multiplicative Random Walks

A time series{Vt} is amultiplicative random walk if

Vt = atVt−1

whereat is a random variable.
The simplest discrete case is whenat = c with probabilityp
andat = 1/c with probability(1 − p).
Up-moves still cancel down-moves, but the changes are fixed
percentages instead of fixedvalues, so they stay equally
significant asVt grows.



Logarithmic Returns

Observe that

Vt = atVt−1 → ln Vt = ln at + ln Vt−1

Additive random walks make sense to model a financial time
series only when modeling changes in the log price or
returns, since otherwise the impact of{at} will diminish with
time.



Caveats of Random Walk Models

Random walk models of prices does not make sense if
you believe in technical analysis, where it assume the price
trajectory to this point offers insight into the future.
One downside of conventional random walk models is that
they predict returns as being normally or log-normally
distributed.
Such distributions tend to underestimate the frequency of
extreme events.
Still, random walks can be very useful in modeling financial
risks and returns.



Applications of Random Walks

Estimating the probability distribution for the price of a stock
at a given future timet is critical to pricing certain options.
This probability distribution can be modeled as the distribu-
tion of positions afterf(t) steps of a random walk.
Simulations of random walks enable one to compute the
probabilities of more complicated events. . .
Suppose you want to know the probability that a stock will hit
a given price atsome point between now and timet, or what
is the expected high price reached over this interval.



Bankruptcy Prediction

Suppose you want to know the probability a company will go
bankrupt atsome point between now and timet.
We can define a company as bankrupt, say, when its
capitalization falls to less than its debt minus its assets.
Random walk models can simulate the fluctuations in stock
price and debt-levels. The probability of bankruptcy is
estimated by the fraction of simulated runs ending in doom.



Generating Random Numbers

Simulating random walks require a source of random
numbers, but truly random numbers cannot be produced by
a deterministic computer.
The accuracy of a simulation depends on generating truly
pseudo-random numbers. Would a random walk alternating
up and down look like a price series?
Statistical tests can measure the validity of a random number
generator, but library functionsshould be good until you
exceed theperiod where they start to repeat.



Linear Congruential Generators

Linear congruential generatorsare a reliable source of
random numbers, where

rn = (arn−1 + c) modm

for appropriate constantsa, c, andm.
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They generate random numbers by the same principle as a
roulette wheel!



Non-Uniform Random Number Generation

Complications exist when generating numbers from a given,
non-uniform distribution using a uniform generator.
How can you select random points in a disk?
Selecting the radius and angle either uniformly or normally
gives the wrong distribution!

The accept-rejectmethod generates uniform points over a
volume, and discards all points outside the target region.



Generating Normal Variables

Random numbers can be generated forany distributionD
by mapping uniform random numbers to the corresponding
value on theinverse cummulative distribution functionof D.

But performing the interpolation incurs some cost in time and
accuracy. . .



The Box-Muller Method

A clever, efficient method to constuct random normal
numbers relies on a polar transformation.
Let x1 and x2 be independent, uniformly generated (0,1]
random variables.
Then

y1 =
√
−2 ln x1 cos(2πx2), and

y2 =
√
−2 ln x1 sin(2πx2)

are both independent and normally distributed!



Generating Corrolated Random Sequences

Suppose we are generating two random time series, repre-
senting the price of Google and Yahoo stock.
These sequences are not independent but are correlated with
a coefficient of sayρ = 0.8
Let X1 andX2 be two uncorrelated random sequences.
DefineY1 = ρX1 +

√
1 − ρ2X2.

Then sequencesX1 andY1 have a correlation ofρ.



Cholesky factorization can be used to generated random
sequences with a specified pairwise correlation matrix.


