Lecture?2l:.
Competitive Analysis

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Motivation: Online Problems

Many problems in both finance and computer science red
to trying to predict the future. ..

Examples from computer science include cache and virt
memory management.

Examples from finance typically revolve around predictir
future returns for an asset, or designing a portfolio
maximize future returns.

Such problems become trivial if we know the future (i.e. tli
stream of future memory requests or tomorrow’s newspap
but typically we only have access to the past.

On Linevs. Off Line

An off-line problem provides access to all the releva
Information to compute a result.

An online problemcontinually produces new input anc
reguires answers in response.

Competitive Analysis

How can we theoretically evaluate how well an algorith
forecasts the future?

Statistical forecasts provide a predict the future that esa
some sense in practice. However, they offer no futt
guarantees, particularly if the data distribution changes
Competitive analysioffers a worst-casemeasure of the
guality of the behavior of an algorithm which predicts tt
future.

We seek to compare the performance of algoritAnwith
only knowledge of the past with an algorithm which h:
complete knowledge of past and future makgdimal use
of It.

Competitive Ratio

We say an online algorithm LG is c-competitivef there is
a constanty such that for all finite input sequencés

ALG(I) <c-OPT(I)+ «

Note that the additive constantis a fixed cost that become:!
unimportant as the size of the problem increases.

We do not particularly care about the run-time efficiency
ALG (except maybe that it is polynomial), but we do ca
about its competitive ratio.

The Ski Rental Problem

Consider the problem of deciding when to purchase skis.

Whenever you go skiing, you can either rent skis for the d
at costz, or buy them foi - .

If you buy them the first day, the worst case is you never :
again, and you spenttimes the optimal decision of simply
renting.

Suppose you never buy them. After> b days, you have
spentk /b times the optimal decision of buying from the firs
day.

When to Stop Renting. ..

But suppose you buy them after rentinggmes.

You did the right thing if you gok < b times. If you
go exactlyb times, you spent twice as much as the optin
decision, but never changes after that.

Thus this “balancing” algorithm i18-competitive.

We can view any online algorithm as a game between
online player (the skier) and a malicious adversary (hrs/I
anterior cruciate ligament).

Searching for a Price

Suppose that we want to sell a indivisible asset (say a hol
sometime over the next days.

Say the price fluctuates on a daily basis in the real inter
im, M|, wherem is the lowest possible price and is the
highest possible price.

What strategy can we use to sell the asset and get the hig
possible price?

Buy Low, Sell High

If we knew the future history, the optimal strategy would
to sell at themaximum pricevccurring over the: days.

We seek a strategy which optimizes competitive ratio, i
which minimizeghe maximum ratioof the price we get over
the maximum price.

We do not seek a price which is good related to the “averac
but good in the worst case.

What can we do?

Deter ministic Price Searching

Note that if the price was high at one point but we didn’t se
our adversary could immediately and permanently lower
price tom.

Note that once we sell, our adversary can immediately re
the price to)/.

At the end of the time period, we can always get a price of
leastm.

Together, this suggests that we should sell the instantibe
reaches somg* which is high enough that we do OK in eac
Instance.

The worst we do in the first caseps/m. The worst we do in
the second case ¥/ /p*. Balancing them yields:

oM
m p*
The reservation price policRPP) accepts the first price
greater than or equal {0 = v Mm.
Let = M /m define theglobal fluctuation ratio
The competitive rati@ we get is

c:m/m:%:@

This is the optimabeterministicstrategy.

Randomized Algorithms

Randomized algorithms use random numbers to des
algorithms unlikely to encounter the worst possible case.
Randomization is particularly useful to make things diffict
for an adversary to design a future that is bad for you.

We assume he has access to your program but not to ree
effect the random numbers.

In an analysis of a randomized algorithms, we determine
expected value over all random number sequences for
worstpossible input.

Thus our analysis is completely independent of the inf
distribution — randomized expectation has nothing to dovw
statistical expectation.

Example: Findinga Tire Leak

Suppose | ride over a tack and get a flat tire.

What is the best way | can find the location of the tac
assuming | can only exploreg/nth of the wheel at a time?

If | use thedeterministicstrategy of repeatedly turning the
wheel left27 /n radians until | find the tack, my adversar
can put the tack just right of the initial position.

This strategy yields a cost afversus the optimal off-line cost
of 1, for a competitive ratio of..

Suppose instead | spin the wheel around randomly and t
start walking to the left. Regardless of where the advers
puts the tack, my expected search cost (and competitiva re
ISn /2.

Randomized Price Searching

Suppose thap = M/m = 2F for some integek, i.e. M =
m2*.

Let RP P, be the deterministiczservation price policywhere
we sell as soon at the price hiig’.

The strategy X PO picks an integet uniformly at random
from1,...,k, and then sells as the price hit2'.

There must be somgsuch that the optimum off-line returr
Pmax 11€S betweenm?2’/ < poa.. < m2/HL,

What can the adversary do? Knowing we are restrictec
picking values of the fornmn2’, they will pick a value of the
form m2/™! — ¢ to frustrate us for somg

Analysis|dea

Suppose the adversary picks

Our target; was too big with probabilityk — 7)/k — if so we
were forced to settle for a price of.

Our target; was less thap,,., otherwise, meaning were abl
to realize our price.

Analysis

Our expected price Is:

k—j 1J -
EXPO(j) = ~“m+ . S m2
m Y
= (k—] + _2‘22)
k =1
— %(k—j+2j+1—2)
The competitive ratio is
OPT m2/ Tt — e
c = = :
EXPO(j) T(k—j+2/t1-2)
2j+1

Q

O(k)

k , . o
k—j42+t—2

(1)
(2)
3)

(4)
(5)

The competitive ratio is maximized whenis largest, for a
competitive ratio oD (log ¢).
Note that the finer gradations in price level are at the I

end of the range, not the high end where they mean m
In absolute dollars.

