
Lecture 21:
Competitive Analysis

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Motivation: Online Problems

Many problems in both finance and computer science reduce
to trying to predict the future. . .
Examples from computer science include cache and virtual
memory management.
Examples from finance typically revolve around predicting
future returns for an asset, or designing a portfolio to
maximize future returns.
Such problems become trivial if we know the future (i.e. the
stream of future memory requests or tomorrow’s newspaper),
but typically we only have access to the past.



On Line vs. Off Line

An off-line problem provides access to all the relevant
information to compute a result.
An online problem continually produces new input and
requires answers in response.



Competitive Analysis

How can we theoretically evaluate how well an algorithm
forecasts the future?
Statistical forecasts provide a predict the future that makes
some sense in practice. However, they offer no future
guarantees, particularly if the data distribution changes.
Competitive analysisoffers a worst-casemeasure of the
quality of the behavior of an algorithm which predicts the
future.
We seek to compare the performance of algorithmA with
only knowledge of the past with an algorithm which has
complete knowledge of past and future makesoptimal use
of it.



Competitive Ratio

We say an online algorithmALG is c-competitiveif there is
a constantα such that for all finite input sequencesI,

ALG(I) ≤ c · OPT (I) + α

Note that the additive constantα is a fixed cost that becomes
unimportant as the size of the problem increases.
We do not particularly care about the run-time efficiency of
ALG (except maybe that it is polynomial), but we do care
about its competitive ratioc.



The Ski Rental Problem

Consider the problem of deciding when to purchase skis.
Whenever you go skiing, you can either rent skis for the day
at costx, or buy them forb · x.
If you buy them the first day, the worst case is you never ski
again, and you spentb times the optimal decision of simply
renting.
Suppose you never buy them. Afterk > b days, you have
spentk/b times the optimal decision of buying from the first
day.



When to Stop Renting. . .

But suppose you buy them after rentingb times.
You did the right thing if you gok < b times. If you
go exactlyb times, you spent twice as much as the optimal
decision, but never changes after that.
Thus this “balancing” algorithm is2-competitive.
We can view any online algorithm as a game between an
online player (the skier) and a malicious adversary (his/her
anterior cruciate ligament).



Searching for a Price

Suppose that we want to sell a indivisible asset (say a house)
sometime over the nextn days.
Say the price fluctuates on a daily basis in the real interval
[m, M ], wherem is the lowest possible price andM is the
highest possible price.
What strategy can we use to sell the asset and get the highest
possible price?



Buy Low, Sell High

If we knew the future history, the optimal strategy would be
to sell at themaximum priceoccurring over then days.
We seek a strategy which optimizes competitive ratio, i.e.
which minimizesthemaximum ratioof the price we get over
the maximum price.
We do not seek a price which is good related to the “average”,
but good in the worst case.
What can we do?



Deterministic Price Searching

Note that if the price was high at one point but we didn’t sell,
our adversary could immediately and permanently lower the
price tom.
Note that once we sell, our adversary can immediately raise
the price toM .
At the end of the time period, we can always get a price of at
leastm.
Together, this suggests that we should sell the instant the price
reaches somep∗ which is high enough that we do OK in each
instance.
The worst we do in the first case isp∗/m. The worst we do in
the second case isM/p∗. Balancing them yields:



p∗

m
=

M

p∗
→ p∗ =

√
Mm

The reservation price policy(RPP) accepts the first price
greater than or equal top∗ =

√
Mm.

Let φ = M/m define theglobal fluctuation ratio.
The competitive ratioc we get is

c =
√

Mm/m =

√
M

√
m

=
√

φ

This is the optimaldeterministicstrategy.



Randomized Algorithms

Randomized algorithms use random numbers to design
algorithms unlikely to encounter the worst possible case.
Randomization is particularly useful to make things difficult
for an adversary to design a future that is bad for you.
We assume he has access to your program but not to read or
effect the random numbers.
In an analysis of a randomized algorithms, we determine the
expected value over all random number sequences for the
worstpossible input.
Thus our analysis is completely independent of the input
distribution – randomized expectation has nothing to do with
statistical expectation.



Example: Finding a Tire Leak

Suppose I ride over a tack and get a flat tire.
What is the best way I can find the location of the tack,
assuming I can only explore1/nth of the wheel at a time?
If I use thedeterministicstrategy of repeatedly turning the
wheel left2π/n radians until I find the tack, my adversary
can put the tack just right of the initial position.
This strategy yields a cost ofn versus the optimal off-line cost
of 1, for a competitive ratio ofn.
Suppose instead I spin the wheel around randomly and then
start walking to the left. Regardless of where the adversary
puts the tack, my expected search cost (and competitive ratio)
is n/2.



Randomized Price Searching

Suppose thatφ = M/m = 2k for some integerk, i.e. M =
m2k.
Let RPPi be the deterministicreservation price policywhere
we sell as soon at the price hitsm2i.
The strategyEXPO picks an integeri uniformly at random
from 1, . . . , k, and then sells as the price hitsm2i.
There must be somej such that the optimum off-line return
pmax lies betweenm2j ≤ pmax < m2j+1.
What can the adversary do? Knowing we are restricted to
picking values of the formm2i, they will pick a value of the
form m2j+1 − ǫ to frustrate us for somej.



Analysis Idea

Suppose the adversary picksj.
Our targeti was too big with probability(k − j)/k – if so we
were forced to settle for a price ofm.
Our targeti was less thanpmax otherwise, meaning were able
to realize our price.



Analysis

Our expected price is:

EXPO(j) =
k − j

k
m +

1

k

j
∑

i=i
m2i (1)

=
m

k





k − j +
j

∑

i=i
2i





 (2)

=
m

k

(

k − j + 2j+1 − 2
)

(3)

The competitive ratio is

c =
OPT

EXPO(j)
=

m2j+1 − ǫ
m
k

(k − j + 2j+1 − 2)
(4)

≈ k
2j+1

k − j + 2j+1 − 2
→ O(k) (5)



The competitive ratio is maximized whenk is largest, for a
competitive ratio ofO(log φ).
Note that the finer gradations in price level are at the low
end of the range, not the high end where they mean more
in absolute dollars.


