
Lecture 17:
Spectral Analysis

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Spectral Analysis

Certain phenomena of financial (and other) time series data
is best revealed in thefrequency domain, or equivalently
represented by theirspectra.
A duality transformis a one-to-one mathematical function
that takes a mathematical object of type-1 and maps it to an
equivalent type-2 mathematical object.
Sample duality relations are point-line duality in compu-
tational geometry, and Laplace transforms used solving
differential equations.
Such transforms are useful if there are interesting algorithms
and tools for manipulating data of type 2.



Fourier Transforms

Perhaps the most useful duality transform known is the
Fourier transform for representing time-series data as the
sums of sine and cosine functions.
Its wide applicability is due to the existence ofFast Fourier
Transformalgorithm orFFT which computes what seems like
an inherently quadratic function inO(n lg n) time.



Filtering via the FFT

On the left, we construct a time series of points sampled from
a sine function with added random noise.
On the right we take the Fourier transform of this series,
plotting the coefficients of the resulting sine functions:

50 100 150 200 250

-1.5

-1

-0.5

0.5

1

1.5

50 100 150 200 250

2

4

6

8



• Filtering – By eliminating undesirable high- and/or low-
frequency components (i.e. dropping some of the sine
functions) and taking an inverse Fourier transform to get
us back into the time domain, we can filter a function to
remove noise and other artifacts.

• Compression– A smoothed function less information than
a noisy function, while retaining a similar appearance.
We can perform lossy compression by eliminating the
coefficients of sine functions that contribute relatively
little to the function.



A Fourier Transform Tale

We add white noise to points sampled from the sum of two
trigonometric series:



A Periodic Function, with White Noise

The behavior of the sampled function remains apparent even
in the presence of noise:



Transformed Data

The Fourier transform convertsn real numbers inton
complex numbers.
Note that many of the magnitudes are small, i.e. near zero.



Transforming Back

The inverse Fourier transform convertsn complex numbers
into n real numbers.
The resulting series should look familiar. . .



Near Perfect Inversion

The inverse transform recovers the original sequence modulo
tiny floating point errors.



Filtering the Transformed Data

We can filter/compress the transformed data by replacing all
small magnitude numbers by zero:

Only three complex numbers remain, defining a very simple
model. Note the symmetry.



Recovering the Series From Filtered Data



Garbage In, Data Out?

The random noise has been filtered away, leaving smaller
residuals with the “correct” sequence than the input sequence.



FFT Image Filtering Example

Note how very particular cross-hatching was removed by
eliminating the appropriate transform coefficients.



Convolutions and Correlation

• Convolution and Deconvolution– A convolution is
the pairwise product of elements from two different
sequences, such as in multiplying twon-variable poly-
nomials f and g or multiplying two long integers.
Implementing the product directly takesO(n2), while
O(n lg n) suffices using the fast Fourier transform.

• Computing the correlation of functions– Thecorrelation
functionof two functionsf(t) andg(t) is defined by

z(t) =
∫ ∞
−∞ f(τ )g(t + τ )

and can be easily computed using Fourier transforms.



If the two functions are similar in shape but one is shifted
relative to the other (such asf(t) = sin(t) and g(t) =
cos(t)), the value ofz(t0) will be large at this shift offset
t0.

As an application, suppose that we want to detect whether
there are any funny periodicities (autocorrelations) in a
time series or random number generator. When we take
the Fourier transform of this series, any large spikes will
correspond to potential periodicities.



Polynomials: A Refresher

We can represent a given polynomial

A(x) = a0 + a1x + a2x
2 + . . . + an1

xn−1

by either (1) the set of coefficientsai, or (2) a set ofn points
(xi, yi) on the polynomial, i.e.yi = A(xi).



Fast Operations on Polynomials

Given the coefficient representation, we can add or subtract
two polynomials inO(n) time by just adding or subtracting
each pair of corresponding terms.
Given the coefficient representation, we canevaluate a
polynomial in linear time usingHorner’s rule

A(x) = a0 + x(a1 + x(a2 + x(a3 + . . .)))

But it is not clear how to multiply two polynomials in
coefficient representation in less thanO(n2).



Fast Operations on Point Sets

However, it is easy to add and subtract pairs of polynomials in
point-value representation (assuming the same set ofxi values
is used in both polynomials) by operating on the pair of points
for eachx value.
We can multiply coefficient polynomials by (1) converting
them to point-value representation, (2) multiply these point-
wise inO(n), and (3) interpolate these2n points back to a
polynomial.



Multiplication Example

Note that the product of twon-degree polynomials has degree
2n.



Multiplication by Interpolation

Steps 1 (conversion) and 3 (interpolation) look quadratic,but
can in fact be done onO(n log n) by using the DFT and
inverse transform.
Lagrange’s formula solves the interpolation problem in
O(n2), but it is too slow.



Complex Numbers: A Refresher

Although any polynomial of degreed should haved
roots/solutions, they sometimes requirecomplex numbers:

x2 + 1 = 0

If i =
√
−1, the two solutions arei and−i.

Then roots of unityare then solutions to the equation

xn = 1

These roots are defined by then powersωi
n for 0 ≤ i ≤ n−1,

where
ωn = cos(2π/n) + i sin(2π/n) = e2πi/n

The identity linking the trigonometric functions toe is

eiu = cos u + i sin u



The Discrete Fourier Transform

The discrete Fourier transform takes as inputn a time series
of n equally-spaced complex numbershk, 0 ≤ k ≤ n − 1.
It outputsn complex numbersHk, 0 ≤ k ≤ n − 1, each
describing a trigonometric function of the given frequency.
The discrete Fourier transform is defined by

Hm =
n−1∑
k=0

hke
−2πikm/n

and the inverse Fourier transform is defined by

hm =
1

n

n−1∑
k=0

Hke
2πikm/n

which enables us move easily betweenh andH.
But the complexity of a naive implementation isO(n2).



The FFT Algorithm

The critical step in efficiently computing the DFT takes as
input a set ofn complex numbersa0, a1, . . . , an−1 and outputs
the sequence ofn complex numbers

A(1), A(ωn
1), A(ωn

2), . . . , A(ωn
n−1)

resulting from evaluating the polynomial

A(x) = a0 + a1x + a2x
2 + . . . + an1

xn−1

In particular, to evaluateA(x) whenn is even, let

Aeven(y) = a0 + a2y + . . . + an−2y
n/2−1

Aodd(y) = a1 + a3y + . . . + an−1y
n/2−1



It should be clear that

A(x) = Aeven(x2) + xAodd(x
2)

FFT algorithms are based on divide-and-conquer. Essentially,
the problem of computing the discrete Fourier transform onn
points is reduced to computing two transforms onn/2 points
each and is then applied recursively.
By itself, this recurrence does not help us, since we have to
spend linear time to evaluate it at each ofn points.
But the fact that then points are all the complex roots of unity
provide the magic to speed things up.



Implementation Details

The FFT algorithm assumes thatn is a power of two.
If this is not the case for your data, you are better off padding
your data with zeros to createn = 2k elements rather than
hunting for a more general code.
Some care is needed to determine where to best pad the zeros.
Historically, the FFT has been implemented in assembler or
even hardware for performance optimization.
Highly optimized FFT implementation exist which tune
themselves to your specific hardware configurations (e.g.
cache size). Check out the FFTW (Fastest Fourier Transform
in the West).



Wavelets

In recent years, wavelets have been proposed as a generaliza-
tion of Fourier transforms in filtering.
Wavelets are ‘small waves’, sinusoids are ‘big waves’.
A real-valued functionΦ(.) defined over the real axis is a
wavelet if

• its integral is zero,∫ Φ(u)du = 0, and

• the integral ofΦ2(.) is unity, ∫
Φ2(u)du = 1,

Such properties hold forΦ(u) = sin(x)/
√

π.
The wavelet transforms work for more general basis functions
than just sine waves.


