Lecturel/:
Spectral Analysis

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Spectral Analysis

Certain phenomena of financial (and other) time series c
IS best revealed in thérequency domainor equivalently
represented by thespectra

A duality transformis a one-to-one mathematical functio
that takes a mathematical object of type-1 and maps it to
equivalent type-2 mathematical object.

Sample duality relations are point-line duality in comp
tational geometry, and Laplace transforms used solv
differential equations.

Such transforms are useful if there are interesting algmst
and tools for manipulating data of type 2.

Fourier Transforms

Perhaps the most useful duality transform known is t
Fourier transformfor representing time-series data as tl
sums of sine and cosine functions.

Its wide applicability is due to the existence [edst Fourier
Transformalgorithm orFFT which computes what seems lik
an inherently quadratic function Q(nlgn) time.

Filtering viathe FFT

On the left, we construct a time series of points sampled fr

a sine function with added random noise.
On the right we take the Fourier transform of this serie

plotting the coefficients of the resulting sine functions:

Wb

e Filtering — By eliminating undesirable high- and/or low
frequency components (i.e. dropping some of the s
functions) and taking an inverse Fourier transform to ¢
us back into the time domain, we can filter a function
remove noise and other artifacts.

e Compressior A smoothed function less information tha
a noisy function, while retaining a similar appearanc
We can perform lossy compression by eliminating tl
coefficients of sine functions that contribute relative
little to the function.

A Fourier Transform Tale

We add white noise to points sampled from the sum
trigonometric series:

ng1= 1 = Table[Sin[0.4x +13] + Cos[0.2x + 3] + 0.2 Random([] - 0.1, {x, 1, 64}]

oulet= {-0.183214, 0.0115578, 0.117295, 0.106259, -0.0166452, -0.222081,
0.344536, -0.635477, -0.776783, -0.74836, -0.579215, -0.321453,
0.18585, 0.710202, 1.01455, 1.43947, 1.8363, 1.83773, 1.76286,
1.64739, 1.26115, 0.545806, 0.0255235, -0.427877, -1.07094, -1.34346,
1.42551, -1.49432, -1.28492, -1.12593, -0.799886, -0.442298,
0.086881, 0.152393, 0.183246, -0.0196448, -0.199358, -0.394554,
0.452834, -0.751565, -0.724113, -0.700645, -0.317517, -0.0571138,
0.419771, 1.00528, 1.33118, 1.66632, 1.85816, 1.91232, 1.72641,
1.43238, 0.886765, 0.27576, -0.207603, -0.774586, -1.30129, -1.44468,
1.47826, -1.39623, -1.26818, -0.869516, -0.447508, -0.212533}

nfgz= lpure = Table[Sin[0.4x +13] + Cos[0.2x + 3], {x, 1, 64}]

ouez= {-0.257919, -0.0231025, 0.101268, 0.103823, -0.00335578, -0.187142,
0.39924, -0.584575, -0.690853, -0.677735, -0.524143, -0.232509,
0.170733, 0.638546, 1.11005, 1.51061, 1.80686, 1.92605, 1.8533,
1.59056, 1.16567, 0.628534, 0.0439234, -0.51797, -0.99172, -1.32607,
1.49109, -1.48198, -1.31899, -1.04348, -0.710755, -0.380858,
0.108807, 0.0642185, 0.117304, 0.0528507, -0.104238, -0.311073,
0.51427, -0.659208, -0.69955, -0.605491, -0.369402, -0.00792829,
0.439816, 0.917708, 1.3608%, 1.7056, 1.89898, 1.90736, 1.72169,
1.35931, 0.861655, 0.288347, -0.291445, -0.809088, - 1.2064, -1.44392,
1.50616, -1.40323, -1.16841, -0.852236, -0.513973, -0.211889]

of t

A Periodic Function, with White Noise

The behavior of the sampled function remains apparent e
In the presence of noise:

ing#5)= ListPlot[l] infg3)= ListPlot[l - lpure]
0P

¥l g

ttttttt
lop

osf .
Out[8s)= . - . Cut[&d]=

osf ; : ¥ = ! 005
* t® .

1o

~I5F

Transformed Data

Fourier{iist] finds the discrete Fourier transform of a list of complex numbers. =

injg4}= £1 = Fourier[l]

(~0.135941 +0. i, -0.0462964 + 0.00493187 -3.79724 + 0.676884 1,
0.425804+0.119301 4, 3.58253 +1.912214, -0.218379-0.1831181,
0.0496241 - 0.0565358 4, -0.0913887 - 0.0978157 i, -0.0794855- 0.0237135 1,
0.0354598 - 0.101264 i, 0.0813031 - 0.00133164 i, -0.0429433 - 0.084499 i,
0.00673334+0.0225598 0.0408751 - 0.06529221,

0.0169496 + 0.0045055 0.0538408 - 0.08324161,

0.0605559 - 0.0196128 1 0.0152506 + 0.0449888 0.142273 - 0.01B086 i
0.0223775-0.046142 0.105622+0.0338323 3, -0.0144533+ 0.0366011
0.0327174 - 0.030309 1, 0.00269534 + 0.0349625 i 0.0292956 - 0.0138169 1
0.00114514- 0.00634114 4, -0.0296572 + 0.0691516 1, 0.00947061 - 0.03806
0.0336343 -0.0162104 1, 0.00947445+0.01491371, 0.0206745 - 0.0623818 1,
0.0561327 - 0.0153702 0.0239225+0. 1, -0.0561327+0.015370214,
0.0206745+ 0.0623818 1, 0.00947445 - 0.014913 0.0336343 + 0.0162104 1
0.00947061+ 0.03806 1, -0.0296572 - 0.0691516 i, 0.00114514+ 0.00634114
0.0232956 + 0.0138169 0.00269534 - 0.03496251, -0.0327174 + 0.030309
0.0144533 - 0.0366011 0.105622 - 0.0338323 1, -0.0223775+ 0.0461421
0.142273 +0.018086 1, -0.0152506 - 0.0449888 i, -0.0605559 + 0.0196128 1,
0.0538408 + 0.0832416 1 0.0169496 - 0.004505568 1, -0.0408751 + 0.06529221,
0.00673334 - 0.0225598 i, -0.0429433 + 0.084499 0.0813031+0.00133164 1,
0.0354598 +0.101264 i, -0.07948554 0.02371351, ~0.0913887+ 0.0978157 1,
0.0496241 +0.05653584, -0.218379+ 0.183118 1, 3.58253 - 1.912211,
0.425804 - 0.1193014, -3.79724 - 0.6768841, -0.0462964 - 0.00493187 1}

The Fourier transform converta real numbers inton
complex numbers.
Note that many of the magnitudes are small, i.e. near zerc

Transforming Back

Infge]:= 7 InverseFourier

InverseFourier[lis] finds the discrete inverse Fourier transform of a list of complex numbers. =

infgs]= ifl = InverseFourier[fl]

OuEsl= {-0.183214, 0.0115578, 0.117295, 0.106259, -0.0166452, -0.222081,
0.344536, -0.635477, -0.776783, -0.74836, -0.579215, -0.321453,
0.18585, 0.710202, 1.01455, 1.43947, 1.8363, 1.83773, 1.76286,
1.64739, 1.26115, 0.545806, 0.0255235, -0.427877, -1.07094, -1.34348,
1.42551, -1.49432, -1.28492, -1.12593, -0.799886, -0.442298,
0.08881, 0.152393, 0.183246, -0.0196448, -0.199358, -0.394554,
0.452834, -0.751565, -0.724113, -0.700645, -0.317517, -0.0571138,
0.419771, 1.00528, 1.33118, 1.66632, 1.85816, 1.91232, 1.72641,
1.43238, 0.886765, 0.27576, -0.297603, -0.774586, -1.30129, -1.44468,
1.47826, -1.39623, -1.26818, -0.869516, -0.447508, -0.212533}

The inverse Fourier transform convertscomplex numbers
Into n real numbers.

The resulting series should look familiar. . .

Near Perfect |nversion

infgz)= ListPlot[l - 1f1]

I 311 el R

Ouifsgl= 2.2 10 '6j

L el

S

The inverse transform recovers the original sequence moc
tiny floating point errors.

Filtering the Transformed Data

We can filter/compress the transformed data by replacing
small magnitude numbers by zero:

infgg]= ? Chop

Choplegpr] replaces approximate real
numbers in expr that are close to zero by the exact integer 0. =

Inficz)= ChopCl[x] := If[Abs[Re[x"2]] < 0.05, 0, x]

Infiod4]= 8£1 = Map[ChopC, £1]

cuiod= {0, 0, -3.79724 + 0.676884 i, 0.425804+0.119301 i, 3.58253 + 1.912214, 0, 0,
0,
O Bl By W Bl W B D 0 B 0 M B g W B 0 W Bl W B 0 0 B
0, 3.58253 - 1.912213, 0.425804 - 0.119301 3.79724 - 0.6768841, 0]

Only three complex numbers remain, defining a very simj
model. Note the symmetry.

Recovering the Series From Filtered Data

Infez= 1i8fl = InverseFourier[sfl]

ouwsz= [0.052773, 0.222868, 0.264133, 0.179686, -0.00526127, -0.247671,
0.493734, -0.687622, -0.780594, -0.73905, -0.550304, -0.225158,
0.203106, 0.683208, 1.15314, 1.54915, 1.81512, 1.91082, 1.81797,
1.54308, 1.11659, 0.588641, 0.0218966, -0.517341, -0.966491,
1.28508, -1.44095, -1.43327, ~1.28216, -1.02673, -0.7168474,
0.412779, -0.160129, 0.00181806, 0.0539711, -0.00148848, -0.141845,
0.327902, -0.510703, -0.639868, -0.672229, -0.579407, -0.35313,
0.00743453, 0.42263, 0.885626, 1.32102, 1.66804, 1.87477, 1.9061,
1.74929, 1.41635, 0.942725, 0.382611, -0.198552, -0.733223, -1.16122,
1.43605, -1.54099, -1.47177, -1.25579, -0.93778, -0.574582, -0.22636)

Infgz):= ListPlot[isfl]

0

Garbage In, Data Out?

Infg7):= ListPlot[l - isfl] Infze]= ListPlot[lpure - isfl]
(IS0 o = .
(RN
.
S 1C 4] Al 50 60
i, 20 o 4 50, 6 .
Cun[a7]= o . e o Cui#él= _pos |
=01 010 |
=01
02,
020 F

The random noise has been filtered away, leaving sma
residuals with the “correct” sequence than the input secpler

FFT Image Filtering Example

Note how very particular cross-hatching was removed
eliminating the appropriate transform coefficients.

Convolutions and Correlation

e Convolution and Deconvolution- A convolution is
the pairwise product of elements from two differet
sequences, such as in multiplying twevariable poly-
nomials f and g or multiplying two long integers.
Implementing the product directly take$(n?), while
O(nlgn) suffices using the fast Fourier transform.

e Computing the correlation of functionsThecorrelation
functionof two functionsf(¢) andg(t) is defined by

2(t) = [f(r)g(t +7)

and can be easily computed using Fourier transforms.

If the two functions are similar in shape but one is shifte
relative to the other (such a&t) = sin(¢) andg(t) =
cos(t)), the value ofz(¢y) will be large at this shift offset
to.

As an application, suppose that we want to detect whet
there are any funny periodicities (autocorrelations) in
time series or random number generator. When we t:
the Fourier transform of this series, any large spikes v
correspond to potential periodicities.

Polynomials: A Refresher

We can represent a given polynomial

A(r) = ag + a17 + asz® + ...+ ap, a7}

by either (1) the set of coefficients, or (2) a set of, points
(x;, ;) on the polynomial, i.ey; = A(x;).

Fast Operationson Polynomials

Given the coefficient representation, we can add or subt
two polynomials inO(n) time by just adding or subtracting
each pair of corresponding terms.

Given the coefficient representation, we cawmaluate a
polynomial in linear time usinglorner’s rule

Alx) =ap+ x(a; + xz(as + x(az + .. .)))

But it is not clear how to multiply two polynomials in
coefficient representation in less thain?).

Fast Operationson Point Sets

However, it is easy to add and subtract pairs of polynomimals
point-value representation (assuming the same setaflues
IS used in both polynomials) by operating on the pair of Eoir
for eachx value.

We can multiply coefficient polynomials by (1) converti
them to point-value representation, (2) multiply thesenpoi
wise inO(n), and (3) interpolate thes2n points back to a

polynomial.

Multiplication Example

n122)= pl[x] = 3 x"2 -6x + 3

In[t123):= Table[{x, pl[(x]}, {(x, 0, §}]

ouftas= ({0, 3}, {1, 0}, (2, 3}, {3, 12}, (4, 27}, {5, 48}]
infi3d]:= p2[x] 2= 6272 -Tx + 12

inf135:= Table[{x, p2[x]}, {x, 0, 5}]

Ouftasl= {{0, 12}, {1, 11}, {2, 22}, {3, 45}, {4, 80}, {5, 127}}

in(136}= data = Table[{x, pl[x] »p2[x]}, {x, O, 5}]
oureel= ({0, 36}, {1, 0}, {2,686}, (3, 540}, (4, 2160}, (5, 6096} }

Note that the product of two-degree polynomials has degre
2n.

Multiplication by I nterpolation

In[121]= ?Fit

Fitldata, funs, vars] finds a least-squares fit to a list of
data as a linear combination of the functions funs of variables vars. ==

in[137)= Fit[data, {1, x, x*2, x*3, x4}, x]

Oullt37l= 36. - 93. x+ 96. x* - 57.x" + 18, x°

inf13g]= Expand[(3 x"2 -6x + 3) (6x"2 - Tx +12)]

oufiss= 36 -93x+ 96 x" - 57 x7+ 18 x°

Steps 1 (conversion) and 3 (interpolation) look quadraiict,
can in fact be done oW (nlogn) by using the DFT and
Inverse transform.

Lagrange’s formula solves the interpolation problem

O(n?), but it is too slow.

Complex Numbers: A Refresher

Although any polynomial of degreel should haved

roots/solutions, they sometimes requmanplex numbers
2 +1=0

If - = /—1, the two solutions aréand —:.
Then roots of unityare then solutions to the equation

" =1

These roots are defined by thgpowersw! for0 <i < n-—1,
where

wy, = cos(2m/n) + isin(2m /n) = 27/m

The identity linking the trigonometric functions tas

e =cosu+ isinu

TheDiscrete Fourier Transform

The discrete Fourier transform takes as inp# time series
of n equally-spaced complex numbérs 0 < k < n — 1.

It outputsn complex numberd?,, 0 < £ < n — 1, each
describing a trigonometric function of the given frequency
The discrete Fourier transform is defined by

n—1 .
H, =Y hk€—2mkm/n
k=0

and the inverse Fourier transform is defined by

1 n—-1 .
h, =— % Hk€27m/€m/n
1 k=0

which enables us move easily betweéeand H.
But the complexity of a naive implementation(isn?).

The FFT Algorithm

The critical step in efficiently computing the DFT takes
Input a set ol complex numbers, a4, . .., a,—; and outputs
the sequence of complex numbers

A1), A(w,h), Alw,?), ..., Alw,™™)
resulting from evaluating the polynomial
A(r) = ag + a1z + asx® + ...+ ap,a" !
In particular, to evaluaté(x) whenn is even, let
Acven(y) = ap + a2y + ... + ay—2y

Aga(y) = a1 +asy + ... + ap—1y

It should be clear that
Alz) = Aeven(a;Q) + ZEAOdd(ZU2>

FFT algorithms are based on divide-and-conquer. Essbmnti:
the problem of computing the discrete Fourier transform or
points is reduced to computing two transformsrof2 points
each and is then applied recursively.

By itself, this recurrence does not help us, since we have
spend linear time to evaluate it at eacmgboints.

But the fact that the points are all the complex roots of unit
provide the magic to speed things up.

| mplementation Details

The FFT algorithm assumes thats a power of two.

If this is not the case for your data, you are better off pagldi
your data with zeros to create = 2* elements rather thar
hunting for a more general code.

Some care is needed to determine where to best pad the z
Historically, the FFT has been implemented in assemblet
even hardware for performance optimization.

Highly optimized FFT implementation exist which tun
themselves to your specific hardware configurations (e
cache size). Check out the FFTW (Fastest Fourier Transf
In the West).

Wavelets

In recent years, wavelets have been proposed as a gener:
tion of Fourier transforms in filtering.

Wavelets are ‘small waves’, sinusoids are ‘big waves'.

A real-valued function®(.) defined over the real axis is ¢
wavelet if

e its integral is zeroj ®(u)du = 0, and
e the integral ofd?(.) is unity, r *(u)du = 1,

Such properties hold fob(u) = sin(x)//7.
The wavelet transforms work for more general basis funstic
than just sine waves.

