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Moving Average Models

A time series is said to be amoving averageprocess of order
q if it is a weighted linear sum of the lastq random shocks /
errors.
In general, anMA(q) model has form

rt = c0 +
i=q−1∑

i=0

θiat−i

The history of the model dictates how long the effects of the
random shocks last. For anMA(2) model,

rt = c0 + θ0at + θ1at−1

The order of such a model can be determined by analysis of
the autocorrelation function, which is zero for all lags greater
thanq.



Fitting Moving Average Models

The parameters of this model cannot be set using least
squares, because (1) the random shocks themselves are not
given, and (2) solving for the error termsat from rt depends
upon the parameters being known.
A numerical fitting method tries all coefficient sets on a finite
grid/space of parameter values, and selects the one which
minimizes the sum of the random shocks, i.e.∑ at.



Transformations

Linear time series methods do not work well on non-linear
functions.
Defining the transformyt = ln xt converts an exponential
function to a linear one.
Any trend fn observed in the time series (say, through
curve fitting, regression analysis or first principles) can be
subtracted out to leave what remaines to be modeled:

yt = xt − fn



Differencing Models

Differencingtransforms a time seriesX into another seriesY
whereyt = xt − xt−1, trying to find a better fitting model.
Differencing does not require estimating a parameter, al-
though it costs us one series point per difference.
Differencing is a better way to remove locally varying trends
to make it stationary than explicitly subtracting a fitted trend.
The first difference accounts for a trend that impacts the
change of the mean of the time series, the second for a change
in the slope.

zt = yt − yt−1 = xt − 2xt−1 + xt−2



Autocorrelation Analysis of GDP

**** Demonstration of Analysis of U.S. Quarterly Real GDP: 1967-2002.

**** "<====" indicates my explanation of the command.
--

input x1,x. file ’q-rgdpf6702.dat’ <=== Load data into SCA.

X1 , A 144 BY 1 VARIABLE, IS STORED IN THE WORKSPACE
X , A 144 BY 1 VARIABLE, IS STORED IN THE WORKSPACE
--

y=ln(x) <=== Take natural log transformation
--

diff old y. new dy. comp. <=== Take first difference of the log series.

1
DIFFERENCE ORDERS ARE (1-B )
SERIES Y IS DIFFERENCED, THE RESULT IS STORED IN VARIABLE DY
SERIES DY HAS 143 ENTRIES
--

iden dy. <=== Compute ACF and PACF of the differenced series.

NAME OF THE SERIES . . . . . . . . . . DY
TIME PERIOD ANALYZED . . . . . . . . . 1 TO 143
MEAN OF THE (DIFFERENCED) SERIES . . . 0.0071
STANDARD DEVIATION OF THE SERIES . . . 0.0079
T-VALUE OF MEAN (AGAINST ZERO) . . . . 10.7080

AUTOCORRELATIONS

1- 12 .29 .22 .07 .05 -.06 -.04 -.10 -.23 -.03 -.02 -.01 -.18
ST.E. .08 .09 .09 .09 .09 .10 .10 .10 .10 .10 .10 .10
Q 12.4 19.8 20.4 20.9 21.4 21.7 23.2 31.1 31.3 31.3 31.4 36.5

13- 24 -.09 -.18 -.13 -.00 -.05 .02 .05 .09 .07 .05 -.01 -.02
ST.E. .10 .10 .10 .11 .11 .11 .11 .11 .11 .11 .11 .11
Q 37.9 43.1 45.7 45.7 46.1 46.2 46.5 47.9 48.7 49.2 49.2 49.3



-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
+----+----+----+----+----+----+----+----+----+----+

I
1 0.29 + IXXX+XXX
2 0.22 + IXXX+XX
3 0.07 + IXX +
4 0.05 + IX +
5 -0.06 + XI +
6 -0.04 + XI +
7 -0.10 + XXXI +
8 -0.23 X+XXXXI +
9 -0.03 + XI +

10 -0.02 + XI +
11 -0.01 + I +
12 -0.18 +XXXXI +
13 -0.09 + XXI +
14 -0.18 XXXXXI +
15 -0.13 + XXXI +
16 0.00 + I +
17 -0.05 + XI +
18 0.02 + IX +
19 0.05 + IX +
20 0.09 + IXX +
21 0.07 + IXX +
22 0.05 + IX +
23 -0.01 + I +
24 -0.02 + XI +

Thus autocorrelation analysis enables us to identify periodic
cycles in the time series.



Autoregressive Integrated Moving Average
(ARIMA) Models

An ARIMA(p, d, q) model hasp autoregressive (history)
terms,q moving average terms, andd differencing operations.
Integrated refers to the differencing process.
This describes a rich set of models for which numerical
methods exist to fix models for any givenp, d, andq.
This suggests an automated approach to try all models in
some subset of parameter space and select the best one.



Error in Time Series Models

Evaluating a forecasting model requires quantifying the
prediction error∆t = (Ft − St).
The mean squared errorcriteria ∑n+s

t=s (∆t)
2/n is commonly

used, but makes sense only if twice the∆t is four times as
undesirable.
The mean absolute prediction error∑n+s

t=s (∆t/St)/n is akin
to percentage error, and appropriate for comparing resultson
different time series.



In Sample Testing vs. Best Fit

A model may perfectly fit the data but be useless for
prediction (e.g. a degreen-polynomial.)
In sampletesting separates some evaluation data from the
training data, so the results measure ability to forecast instead
of overfitting.



Evaluating Models

The quality of a model is a function of both thefit, the sum of
squared residuals (S), and the number of parametersp.
Akaike’s information criteria states

AIC ≈ n ln(S/n) + 2p

The Baysian information criteria punishes extra parameters
more:

BIC ≈ n ln(S/n) + p + p ln n

These measures provide a way to compare models and select
the most meaningful one.



GARCH Models

GARCH (generalized autoregressive conditional
heteroscedastic) models are often used to model volatility.
Heteroscedasticmeans a set of statistical distributions having
different variances.
Let Vl be the long run average variance rate.
The GARCH(1,1) model is defined by

σt
2 = γVl + αa2

t−1 + βσt−1
2

where0 ≤ α, β, γ ≤ 1 and(α + β + γ) = 1
This reduces to EWMA smoothing whenγ = 0.



Mean Reversion

These conditions imply that the model ismean reverting,
which implies that it returns to an average value after reaching
extremes, i.e.

E[σn+t
2] = Vl + (α + β)t(σn

2 − Vl)

The speed with which it reverts depends uponγ.



Maximum Likelihood Methods

An alternate model fitting criteria than minimizing residual
error is based on probablity.
In maximum likelihood methods, we seek the parameters
which maximize the probability that our observed data
occurred.
As an example, suppose we want to estimate the probability
p that a given stock went down on a given day.
Suppose we sample ten stocks and only one went down. What
is p?



The Maximum Likelihood Approach

If p is the probability of an individual decline, the probability
of seeing one up and nine down isp(1 − p)9.
To maximize this, take the derivative with respect top and set
to 0:

(1 − p)9 − 9(1 − p)8p = 0

which implies that indeedp = 1/10.



Maximum likelihood methods provide well-defined and
defensible criteria for model selection.



Estimating GARCH(1,1) Parameters

Assume that daily returns/observations are normally dis-
tributed around a mean.
Then each day’s observationui maps to a probability which
is a function ofσn

2, namely

P (ui) =
1√
2πvi

exp(
−ui

2

2vi
)

wherevi = σi
2.

The probability of the complete set of observations is

Πm
i=1P (ui)



Taking Logarithms

Maximizing this probability is the same as maximizing its
logarithm, so we seek to maximize

m∑

i=1

(− ln(vi) −
−ui

2

vi
)

Given this criteria, the best values forα, β, andγ can be
found numerically.



Asymmetric Volatility Models

Volatility modeling can get very sophisticated.
The volatility of a stock’s price tends to be inversely related
to its price.
If so, a negative move/observationun−1 should have a bigger
effect onσn than a positive move.
Accordingly, asymmetric GARCH models have been devel-
oped whereσn depends upon the sign ofun−1.


