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Moving Aver age M odels

A time series is said to beraoving averag@rocess of order
q if it Is a weighted linear sum of the lagtrandom shocks /
errors.

In general, an/ A(q) model has form

1=q—

1
Ty = co+ 0;a;_;

1=0
The history of the model dictates how long the effects of t
random shocks last. For ai A(2) model,

T+ = Cp -+ QQCLt -+ (91&15_1

The order of such a model can be determined by analysi:
the autocorrelation function, which is zero for all lagsajes
thang.



Fitting Moving Aver age M odels

The parameters of this model cannot be set using le
squares, because (1) the random shocks themselves ar
given, and (2) solving for the error termgfrom r; depends
upon the parameters being known.

A numerical fitting method tries all coefficient sets on a éni
grid/space of parameter values, and selects the one w
minimizes the sum of the random shocks, te;.



Transformations

Linear time series methods do not work well on non-line
functions.

Defining the transformy, = Inax; converts an exponentia
function to a linear one.

Any trend f, observed in the time series (say, throuc
curve fitting, regression analysis or first principles) can
subtracted out to leave what remaines to be modeled:

Yy = Ty — fn



Differencing M odels

Differencingtransforms a time serie¥ into another serie¥
wherey;, = x; — x;_1, trying to find a better fitting model.
Differencing does not require estimating a parameter,
though it costs us one series point per difference.
Differencing is a better way to remove locally varying trent
to make it stationary than explicitly subtracting a fitteeh.
The first difference accounts for a trend that impacts
change of the mean of the time series, the second for a ch:

In the slope.

2t =Yp — Yp—1 = Tt — 2041 + T4—9



Autocorrelation Analysis of GDP

+***x+ Denpnstration of Analysis of U S. Quarterly Real GDP: 1967-2002.
***%x "<====" jndicates nmy explanation of the command.

input x1,x. file 'qg-rgdpf6702.dat’ <=== Load data into SCA.

X1 , A 144 BY 1 VAR ABLE, |S STORED I N THE WORKSPACE
X , A 144 BY 1 VAR ABLE, |S STORED I N THE WORKSPACE
y=In(x) <=== Take natural |og transformation

diff old y. newdy. conp. <=== Take first difference of the log series.

1
DI FFERENCE ORDERS ARE (1-B
SERI ES Y |'S DI FFERENCED, THE RESULT IS STORED | N VARI ABLE DY
SERI ES DY HAS 143 ENTRI ES
i den dy. <=== Conpute ACF and PACF of the differenced series.
NAME OF THE SERIES . . . . . . . . . . DY
TIME PERIOD ANALYZED . . . . . . . . . 1 TO 143
MEAN OF THE (DI FFERENCED) SERIES . . . 0. 0071
STANDARD DEVI ATION OF THE SERIES . . . 0. 0079
T-VALUE OF MEAN (AGAINST ZERO . . . . 10. 7080

AUTOCORRELATI ONS

1- 12 .29 .22 .07 .05-.06 -.04 -.10 -.23 -.03 -.02 -.01 -.18
ST. E. .08 .09 .09 .09 .09 .10 .10 .10 .10 .10 .10 .10
Q 12.4 19.8 20.4 20.9 21.4 21.7 23.2 31.1 31.3 31.3 31.4 36.5
13- 24 -.09 -.18 -.13 -.00 -.05 .02 .05 .09 .07 .05 -.01-.02
ST.E. .10 .10 .10 .11 .11 .11 .11 .11 .11 .11 .11 .11

Q 37.9 43.1 45.7 45.7 46.1 46.2 46.5 47.9 48.7 49.2 49.2 49.3



-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

e T e T r
|
1 0.29 + I XXX+XXX
2 0.22 + 1 XXX+XX
3 0.07 + I XX+
4 0.05 + IX +
5 -0.06 + X +
6 -0.04 + X +
7 -0.10 + XXXI +
8 -0.23 X XXXXI +
9 -0.03 + X +
10 -0.02 + X +
11 -0.01 + 1 +
12 -0.18 +XXXXI +
13 -0.09 + XX +
14 -0.18 XXXXXI +
15 -0.13 + XXXI +
16 0.00 + | +
17 -0.05 + X +
18 0.02 + IX +
19 0.05 + X +
20 0.09 + I XX+
21 0.07 + I XX+
22 0.05 + IX +
23 -0.01 + 1 +
24 -0.02 + X +

Thus autocorrelation analysis enables us to identify plezio
cycles in the time series.



Autoregressive | ntegrated Moving Aver age
(ARIMA) Models

An ARIMA(p,d,q) model hasp autoregressive (history)
terms,g moving average terms, andlifferencing operations.
Integrated refers to the differencing process.

This describes a rich set of models for which numeric
methods exist to fix models for any givend, andg.

This suggests an automated approach to try all models
some subset of parameter space and select the best one.



Error iIn Time Series M odels

Evaluating a forecasting model requires quantifying t
prediction error; = (F; — S).

The mean squared errocriteria ="*(A;)*/n is commonly
used, but makes sense only if twice theis four times as
undesirable.

The mean absolute prediction error}=5(A;/S;)/n is akin
to percentage error, and appropriate for comparing resalt:
different time series.



In Sample Testing vs. Best Fit

A model may perfectly fit the data but be useless f
prediction (e.g. a degreepolynomial.)

In sampletesting separates some evaluation data from
training data, so the results measure ability to forecaséad

of overfitting.



Evaluating M odels

The quality of a model is a function of both the the sum of
squared residuals{, and the number of parameters
Akaike’s information criteria states

AIC =~ nlIn(S/n)+ 2p

The Baysian information criteria punishes extra paranset
more:

BIC ~nIn(S/n)+p+plnn
These measures provide a way to compare models and s
the most meaningful one.



GARCH Modeéls

GARCH (generalized autoregressive condition
heteroscedastic) models are often used to model volatility
Heteroscedastimeans a set of statistical distributions havir
different variances.

Let V; be the long run average variance rate.

The GARCH(1,1) model is defined by

O'tQ — ’7‘/2 + ozaf_l + 60}_12

where0 < a, 8,y < land(a+ (+~) =1
This reduces to EWMA smoothing when= 0.



M ean Reversion

These conditions imply that the model mgean reverting
which implies that it returns to an average value after reswch
extremes, i.e.

Eloy’] = Vi+ (a+ B)(0,° — V)

The speed with which it reverts depends upon



Maximum Likelthood M ethods

An alternate model fitting criteria than minimizing resitlu
error is based on probablity.

In  maximum likelihood methodswe seek the parameter
which maximize the probability that our observed da
occurred.

As an example, suppose we want to estimate the probab
p that a given stock went down on a given day.

Suppose we sample ten stocks and only one went down. V

IS p?



The Maximum Likelihood Approach

If p is the probability of an individual decline, the probalwlit
of seeing one up and nine downyid — p)°.
To maximize this, take the derivative with respecptand set
to O:

(1—=p)° =91 —p)P°p=0
which implies that indeed = 1/10.



init= D[P {(1-p} "9, p]

outl= {1-p)*-8(1-p)°p

B elot[(1-p)®-9 (1-p)°p, {p, 0, 1}]

Outlzl=

0.0 |

Maximum likelihood methods provide well-defined an
defensible criteria for model selection.



Estimating GARCH(1,1) Parameters

Assume that daily returns/observations are normally c

tributed around a mean.
Then each day’s observatian maps to a probability which

is a function ofz,,2, namely
2

1 —U;
P(u;) =
(1) = 5o ep( 5, 5)

wherev, = ¢,°.
The probability of the complete set of observations is

1



Taking Logarithms

Maximizing this probability is the same as maximizing i
logarithm, so we seek to maximize

m —’U,Z'2

—In(v;) —
£ (= Inw) = =)
Given this criteria, the best values fof, 5, and~ can be
found numerically.




Asymmetric Volatility Models

Volatility modeling can get very sophisticated.

The volatility of a stock’s price tends to be inversely retht
to its price.

If so, a negative move/observatiap_; should have a bigger
effect ong,, than a positive move.

Accordingly, asymmetric GARCH models have been dev
oped wherer,, depends upon the sign of _;.



