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Modeling and Forecasting

We seek to construct amodel of a function so as toforecast
future values of it.
Certain models are proposed on theoretical grounds from first
principles.
If stock prices are defined by an unbiased random walk, the
best forecast is the last observation,Fn = Sn−1.
Other models are constructed by fitting observed time series
data.



Statisticians vs. Computer Scientists

There is tension between the way different disciplines view
the world of modeling/forecasting.
Statisticians are concerned with the limits of what can
rigorously be inferred from data.
Computer Scientists are concerned with building the best
model they can, regardless of whether it can be justified.
We will first explore standard statistical time series models
before introducing data mining/pattern recognition methods.



A Model Building Strategy

• Model selection / specificationidentifies the right class of
models from observation or a priori knowledge of the time
series

• Model fitting finds the best possible estimates for the
parameters underlying the model.

• Model diagnosis / evaluationassesses how well the model
fits the original data and whether it can be improved.

The principle of parsimony states a model should use the
smallest number of parameters to represent it adequately.
Anything can be fit by annth degree polynomial.



Estimating Volatility

Volatility is a measure of the uncertainty of prices in a given
market.
The deviation from expectation in a series of observations is
typically measured by itsstandard deviation σ.
The more points we observe, the more accurate our estima-
tion of σ, if it isn’t changing.
If it is changing, the more recent observations should receive
higher weight.



EWMA models for Volatility Prediction

Exponential moving average models are often used for
volatility prediction,

Vn = λVn−1 + (1 − λ)V ′
n−1

where V is the predicting volatility andV ′ the observed
volatility.
Volatility is fairly stable, as shown by the fact that the last 30
to 90 days still has predictive power. Thus the exponential
decay must be small.
The RiskMetrics model usesλ ≈ 0.944 for volatility
estimation.



Estimating the Parameter

Such exponenetial weighting can be used to smooth a series
of observations, once one has selected the parameter.
The least squares method / regression can be generally be
used to find the coefficients best defining a linear function
of history, as will be discussed with respect to autoregressive
functions.
However, the “coefficients” here are not independent,λi.
Binary search / trial-and-error (forMA(1) models) against
some gold standard or more sophisticated numerical methods
are needed.



Volatility Index

The Chicago Board Options Exchange Volatility Index (VIX)
is an important measure of the market’s expectation of
volatility over the next 30 day period.
It is computed as a weighted blend of prices for options on a
given stock index (primarily the S&P 500 index).
Recall that all parameters of the Black-Scholes formula are
directly observableexcept volatility. The implied volatility
can be computed given the other parameters, including the
current options price.
The VIX is quoted in percentage points, and translates to the
expected movement in the index over the next 30-day period,
on an annualized basis.



VIX Securities

VIX-based derivatives include actively traded future contracts
and options.
The price of a contract is 1,000 times the index; call and put
options are offered at a variety of strike prices.
A VIX at 15 implies an annual 15% change, or15%/

√
12 =

4.33% over the next 30 day period, meaning that there is
a 68% likelihood (one standard deviation) that the absolute
value of the 30-day return will be≤ 4.33%.



VIX Index

The VIX hit a record of 81.17 on October 16, 2008.
Looking at the graph, one can conclude that (1) volatility
shows a high degree of short-term correlation, (2) is subject
to sudden shocks, and (3) reverts to a fairly consistent mean
level in quiet times.



Autoregressive (AR) Models

A simpleautoregressive model to capture a significant lag-1
autocorrelation is

rt = φ0 + φ1rt−1 + at

where{at} is assumed to be awhite noise series with mean
zero andσa

2.
The autocorrelation function of white noise should be near
zero.
The order of the model is the number of terms of history;
this is anAR(1) model, which can readily be generalized into
AR(p) models for arbitraryp.



Building Autoregressive Models

For a given return series and desired history, theφi parameters
can be found using the least squares method.
Build an(n− p)× (p + 1) matrix where thelth column is the
lag-(l − 1) return series.
If p ≈ n, we have a complete linear system, and Gaussian
elimination will set all of the parameters.
Whenp ≤ n, we can find theφ coefficients which minimize
least-square errors.
A model has likely captured enough history if the autocorre-
lation function of the residuals is small.



Capturing Seasonality

We seek to limit the history in an autoregressive model to
minimize the number of parameters needed.
Seasonal effects can be captured using a few appropriate
longer terms:

rt = φ0 + φ1rt−1 + φ2rt−7 + φ3rt−365 + at



Forecasting with Autoregressive Models

The value of the model at the next time step can be easily
predicted by plugging in terms.

rt = φ0 + φ1rt−1

The observed variance of the residual terms provides error
bounds on the reliability of our forecast.
By plugging the predicted next value into the model and
repeating, we can forecast indefinitely into the future but the
error bounds on our predictions will deteriorate.


