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Quasi-random Number Generation

Quasi-randomsequences fill space more uniformly than
uncorrelated random points.

Intuition: on a line, consider repeatedly picking the next point
in the middle of the largest remaining interval.
Note these are (1) not “randomly” ordered, and (2) will not be
uniform if you don’t know the ultimate number in advance.



Random Walks with Memory

Successive movements in the random walks models to
discussed to date areindependent, which contradicts our
perception about how markets move.
Hurst random walksare discrete random walks which reverse
direction with probabilityh.
A value of h = 0.5 generates a coin flipping random walk,
while a value ofh = 1.0 generates a walk which moves in
only one direction.
Intermediate values ofh should generate walks more “driven”
than simple coin-flipping, although the eye often mistakenly
identifies trends in such walks.
Hurst walks arise in the analysis offractal phenomenon.



Building a Price Distribution Model

Several design decisions remain to build a reasonable stock
price distribution model:

• The number of steps per simulated time period.

• The up-tick and down-tick probabilities.

• The drift rate, perhaps the historical stock market average
returns.

• The step size, which is a function of each given stock’s
volatility.

• The number of walks simulated per distribution.



Volatility Prediction

Stock volatility (measured by the absolute value of returns)
tends to show much stronger short term correlation than
returns itself.

Lag Volatility Corr. Return Corr.
1 0.441 0.021
2 0.371 -0.016
3 0.337 -0.024
4 0.311 -0.016
5 0.319 0.004

10 0.287 0.005
20 0.249 -0.012
30 0.264 -0.001
40 0.233 0.005
50 0.209 -0.002

We used an exponentially weighted moving average model to
update the volatilityσ2

n in response to each day’s observation
u, with λ = 0.94:

σ2

n = λσ2

n−1
+ (1 − λ)un−1



Setting the Parameters

To incorporate the volatility prediction into our random walk
model, we must map volatility to parameters for (1) the
simulated number of steps per day, and (2) the step size.
We modeled each trading day by a walk of 1000 steps, and
adjusted the step size so as to produce the step size to achieve
the desired volatility.
We used a Hurst random walk model withh = .57, which
gave us the best results.
We did not model any drift, because we were interested in
predictions over very short time intervals.



Night Moves

Usually there is a substantial difference between one days
closingprice and the next day’sopening price, reflecting the
news that occurred in the interim.
The NYSE is open 9:30AM-3:30PM each day. Does more or
less activity happen in the 18 hours until the next session?
This can be established by plotting the average daily ratio of
night-to-day changes for Dow stocks:



The average night-move over this period was 0.567 that of the
day-move, with a mean of 0.527.
The impact of these moves can be simulated by running the
random walk the equivalent of this many steps each night and
starting the next day from there.



Price Distributions for Real Stocks
(www.textbiz.org)



Results: Predicting the Expected High

We used our random walk to predict the range of the expected
high achieved over the next 1 day and 10 days for a wide
range of stocks:

Each observed price maps to a cumulative probability in our
distribution; the degree to which they fall into buckets as
predicted are a measure of the accuracy of our model.



Interpreting the Results

The leftmost point on each plot records the frequency the
actually highneverexceeded the close of the start period.
The rightmost point records the frequency the actually high
exceeded our prediction of what is possible in the time period.
The random walks do a good, but not perfect job, of
predicting the actual distribution.



Results: Predicting Closing Prices

We also do a good, but not perfect, job of predicting closing
prices:

The punch line is that simple random walk models can do a
reasonable job of modeling future price distributions.



Binomial Trees

Additive or multiplicative walk models withfixed up and
down step sizesgives rise to a graph of possible paths called
a binomial treewithin the finance literature:

Although there are2n distinct paths through thisn-stage
network there are only(n

2) nodes, so we can efficiently
compute theexactdistribution of paths through this network!



Pascal’s Triangle

No doubt you played with this arrangement of numbers in
high school. Each number is the sum of the two numbers
directly above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1



Pascal’s Recurrence

The binomial coefficient(n

k) counts the number of ways to
choosek things out ofn possibilities.
A stable way to compute binomial coefficients uses the
recurrence relation implicit in the construction of Pascal’s
triangle, namely, that

(n

k) = (n − 1

k − 1) + (n − 1

k )

It works because thenth element either appears or does not
appear in one of the(n

k) subsets ofk elements.
The basis cases are(n

0) = 1 and(k

k) = 1.



Binomial Coefficients Implementation

long binomialcoefficient(n,m)
int n,m; (* compute n choose m *)
{

int i,j; (* counters *)
long bc[MAXN][MAXN]; (* table of binomial coefficients *)

for (i=0; i<=n; i++) bc[i][0] = 1;

for (j=0; j<=n; j++) bc[j][j] = 1;

for (i=1; i<=n; i++)
for (j=1; j<i; j++)

bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

return( bc[n][m] );
}



Computing Path Probability Distributions

The same idea can be used to efficiently compute the
probabilityPr[n, k] of reaching then-level node with exactly
k up-moves in the binomial tree,

Pr[n, k] = pdPr[n − 1, k] + puPr[n − 1, k − 1]

Binomial trees compute option prices using this approach.
Note this algorithm works fine even if the up and down edge
probabilites differ at each node.
But what is a principled way to set the up and down edge
probabilities?



Risk-Neutral Probabilities

We can use an arbitrage argument to set the “right”
probability of an upward move (β) as a function of the risk-
free rate.
At any point, investors can either (a) hold $1 stock or (b)
invest $1 at the risk-free rater.
A risk-neutral investor would not care which portfolio they
owned if they had the same return.
Setting equal the returns from the stock (βα+(1−β)/α) and
the risk-free portfolio (1+r), we can solve forβ to determine
therisk-neutral probability.
But in truth, investors are not risk-neutral. In order to take the
riskier investment they must be paid a premium.


