Final Exam

Name: ______________________ Signature: ______________________

ID #: __________________

INSTRUCTIONS:

• This is a closed book, closed mouth exam.
• You may use either pen or pencil.
• Check to see that you have 6 exam pages plus this cover.
• Use only the space allotted. Do not write on the back of the page.
• Each fill-in is worth two points.
• Good luck!!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio 1</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Bio 2</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Bio Total</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>CS 1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>CS 2</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>CS 3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>CS Total</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

(up to 20 points) Are you certifiably a biologist but not a computer scientist? If so, explain your training in both biology and computer science/engineering to see if you should get algorithm handicap points.
Biology Questions

1. The four letters of the DNA alphabet are ______________

2. A gene is a DNA sequence that ______________

3. The genome of a bacteria is typically about ______________ base pairs long.

4. The human genome is about ______________ bases long.

5. The homology between genes in different organisms is a natural consequence of ______________

6. PCR stands for ______________ and is used to ______________

7. Gel electrophoresis separates DNA fragments by ______________

8. High levels of coverage is needed in a sequencing project to avoid the problem of ______________

9. List three problems that make fragment assembly difficult:
 1. ______________
 2. ______________
 3. ______________

10. A chimera is a ______________

11. One reason why gaps occur in homologous sequences is ______________

12. ______________ and ______________ are the names of heuristic algorithms for sequence alignment.
13. Smith-Waterman differs from edit distance computation because it computes

14. (5 points) What is an advantage of a curated sequence database over an uncurated database?

What is an advantage of an uncurated sequence database over a curated one?

15. (6 points) You are given two sequence alignments. One is the alignment of two DNA sequences with an identity of 36% (i.e. 36% of the bases match in the alignment). The other is the alignment of two amino acid sequences, with an identity of 22%. Which of the two alignments represents greater biological similarity between sequences? Explain why.
Computer Science Questions

1. Describe an $O(mn)$ algorithm for exact string matching, i.e. which tests whether string S occurs as a substring of string T, where $|S| = m$ and $|T| = n$. (5 points)

2. Describe how to use suffix trees to efficiently search if a string s is a substring of string t. (5 points)

3. Construct the suffix array of abracadabra. (5 points)

4. To find the longest common subsequence of two strings, we can modify the edit distance function by make the cost of _______ very high. (5 points)
5. (15 points) Consider the following simple incremental-insertion suffix tree construction algorithm for a string S. Start by inserting the first suffix $S[1, \ldots, n]$ (the entire string), then the second suffix $(S[2, \ldots, n])$ by walking down from the root until the suffix separates, and so on for all $n + 1$ suffixes.

Assume you are using a compressed (i.e. linear space) suffix tree representation. Also assume there is a distinct end of string character, so every suffix is associated with a distinct leaf in the tree.

- What is the worst case running time for this algorithm on an n character string for a constant-sized alphabet (e.g. $\alpha = 4$)? Why?

- What is the expected running time for this algorithm on a random n character string for a constant-sized alphabet (e.g. $\alpha = 4$)? Why?

- What is the best case running time for this algorithm on an n character string for a constant-sized alphabet (e.g. $\alpha = 4$)? Why?
6. (20 points) Define a no-deletion alignment between two strings \(X \) and \(Y \) of length \(n \) and \(m \) as one where only insertion, match, and substitution are allowed. No deletions from \(Y \) are allowed. Clearly \(m \geq n \).

(a) Briefly explain how to modify our standard edit distance algorithm to solve this problem in \(O(mn) \) time.

(b) Let \(k = m - n \). Give an \(O(kn) \) algorithm to find the optimal no-deletion alignment.