
Lecture 9:
Graph Traversal

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Graphs

Graphs are one of the unifying themes of computer science.
A graphG = (V, E) is defined by a set ofvertices V , and
a set ofedges E consisting of ordered or unordered pairs of
vertices fromV .
In modeling a road network, the vertices may represent the
cities or junctions, certain pairs of which are connected by
roads/edges. In analyzing human interactions, the vertices
typically represent people, with edges connecting pairs of
related souls.

Flavors of Graphs

The first step in any graph problem is determining which
flavor of graph you are dealing with:

• Undirected vs. Directed – A graph G = (V, E) is
undirected if edge (x, y) ∈ E implies that(y, x) is also
in E.

• Weighted vs. Unweighted – In weighted graphs, each
edge (or vertex) ofG is assigned a numerical value, or
weight.

• Cyclic vs. Acyclic – An acyclic graph does not contain
any cycles.Trees are connected acyclicundirected graphs.

Directed acyclic graphs are calledDAGs.

• Implicit vs. Explicit – Many graphs are not explicitly
constructed and then traversed, but built as we use them.
A good example is in backtrack search.

Data Structures for Graphs

There are several possible ways to represent graphs. Say
graphG = (V, E) containsn vertices andm edges.

• Adjacency Matrix – We can representG using ann × n

matrix M , where elementM [i, j] is, say, 1, if(i, j) is an
edge ofG, and 0 if it isn’t. It may use excessive space
for graphs with many vertices and relatively few edges,
however.

• Adjacency Lists in Lists – We can more efficiently
represent sparse graphs by using linked lists to store the
neighbors adjacent to each vertex. Adjacency lists require
pointers but are not frightening.

• Adjacency Lists in Matrices – Adjacency lists can
also embedded in matrices, thus eliminating the need for
pointers. We can represent a list in an array counting how
many elements there are, and packing them into the first
elements of the array. Now we can visit successive the
elements from the first to last by incrementing an index in
a loop instead of cruising through pointers.

This data structure looks like it combines the worst
properties of adjacency matrices (large space) with the
worst properties of adjacency lists (the need to search for
edges). However, it is simple to program and understand
– and what I will use in my examples.

List in Array Representation

For each graph, we keep count of the number of vertices, and
assign each vertex a unique number from 1 tonvertices.
The edges go in anMAXV × MAXDEGREE array, so each
vertex can be adjacent toMAXDEGREE others. Defining
MAXDEGREE to beMAXV can be wasteful of space for low-
degree graphs:
#define MAXV 100 /* maximum number of vertices */
#define MAXDEGREE 50 /* maximum vertex outdegree */

typedef struct {
int edges[MAXV+1][MAXDEGREE]; /* adjacency info */
int degree[MAXV+1]; /* outdegree of each vertex */
int nvertices; /* number of vertices in graph */
int nedges; /* number of edges in graph */

} graph;

Directed and Undirected Edges

We represent a directed edge(x, y) by the integer y

in x’s adjacency list, which is located in the subarray
graph->edges[x].
The degree field counts the number of meaningful entries for
the given vertex.
An undirected edge(x, y) appears twice in any adjacency-
based graph structure, once asy in x’s list, and once asx in
y’s list.

Reading a Graph

A typical graph format consists of an initial line featuring
the number of vertices and edges in the graph, followed by
a listing of the edges at one vertex pair per line.
read_graph(graph *g, bool directed)
{

int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (x,y) */

initialize_graph(g);
scanf("%d %d",&(g->nvertices),&m);
for (i=1; i<=m; i++) {

scanf("%d %d",&x,&y);
insert_edge(g,x,y,directed);

}
}

initialize_graph(graph *g)
{

int i; /* counter */

g -> nvertices = 0;
g -> nedges = 0;
for (i=1; i<=MAXV; i++) g->degree[i] = 0;

}

Inserting an Edge

The critical routine isinsert edge. We parameterize it
with a Boolean flagdirected to identify whether we need
to insert two copies of each edge or only one. Note the use of
recursion to solve the problem:
insert_edge(graph *g, int x, int y, bool directed)
{

if (g->degree[x] > MAXDEGREE)
printf("Warning: insertion(%d,%d) exceeds max degree\n",x,y);

g->edges[x][g->degree[x]] = y;
g->degree[x] ++;

if (directed == FALSE)
insert_edge(g,y,x,TRUE);

else
g->nedges ++;

}

Breadth-First Traversal

The basic operation in most graph algorithms is completely
and systematically traversing the graph. We want to visit
every vertex and every edge exactly once in some well-
defined order.
Breadth-first search is appropriate if we are interested in
shortest paths on unweighted graphs.

Discovered vs. Processed Vertices

Our implementationbfs uses two Boolean arrays to
maintain our knowledge about each vertex in the graph.
A vertex isdiscovered the first time we visit it. A vertex is
consideredprocessed after we have traversed all outgoing
edges from it. Thus each vertex passes from undiscovered to
discovered to processed over the search.
Once a vertex is discovered, it is placed on a queue. Since
we process these vertices in first-in, first-out order, the oldest
vertices are expanded first, which are exactly those closestto
the root:

Initializing Search

bool processed[MAXV]; /* which vertices have been processed */
bool discovered[MAXV]; /* which vertices have been found */
int parent[MAXV]; /* discovery relation */

initialize_search(graph *g)
{

int i; /* counter */

for (i=1; i<=g->nvertices; i++) {
processed[i] = discovered[i] = FALSE;
parent[i] = -1;

}
}

BFS Implementation

bfs(graph *g, int start)
{

queue q; /* queue of vertices to visit */
int v; /* current vertex */
int i; /* counter */

init_queue(&q);
enqueue(&q,start);
discovered[start] = TRUE;

while (empty(&q) == FALSE) {
v = dequeue(&q);
process_vertex(v);
processed[v] = TRUE;
for (i=0; i<g->degree[v]; i++)

if (valid_edge(g->edges[v][i]) == TRUE) {
if (discovered[g->edges[v][i]] == FALSE) {

enqueue(&q,g->edges[v][i]);
discovered[g->edges[v][i]] = TRUE;
parent[g->edges[v][i]] = v;

}
if (processed[g->edges[v][i]] == FALSE)

process_edge(v,g->edges[v][i]);
}

}
}

Exploiting Traversal

The exact behavior ofbfs depends upon the functions
process vertex() and process edge(). Through
these functions, we can easily customize what the traversal
does as it makes one official visit to each edge and each
vertex. By setting the functions to
process_vertex(int v)
{

printf("processed vertex %d\n",v);
}

process_edge(int x, int y)
{

printf("processed edge (%d,%d)\n",x,y);
}

we print each vertex and edge exactly once.

Finding Paths

The vertex which discovered vertexi is defined as
parent[i]. The parent relation defines a tree of discovery
with the initial search node as the root of the tree.
The unique BFS tree path from the root to any node
x ∈ V uses the smallest number of edges (or equivalently,
intermediate nodes) possible on any root-to-x path in the
graph.
We can reconstruct this path by following the chain of
ancestors backwards fromx to the root. We cannot find
the path from the root tox, since that does not follow the
direction of the parent pointers.

Since this is the reverse of how we normally want the path,
we can either (1) store it and then explicitly reverse it using a
stack, or (2) let recursion reverse it for us, as in the following
slick routine:
find_path(int start, int end, int parents[])
{

if ((start == end) || (end == -1))
printf("\n%d",start);

else {
find_path(start,parents[end],parents);
printf(" %d",end);

}
}

Depth-First Search

Depth-first search uses essentially the same idea as backtrack-
ing. Both involve exhaustively searching all possibilities, and
backing up as soon as there is no unexplored possibility for
further advancement. Both are best understood as recursive
algorithms.
Depth-first search can be thought of as breadth-first search
with a stack instead of a queue. The beauty of implementing
dfs recursively is that recursion eliminates the need to keep
an explicit stack:

DFS Implementation

dfs(graph *g, int v)
{

int i; /* counter */
int y; /* successor vertex */

if (finished) return; /* allow for search termination */

discovered[v] = TRUE;
process_vertex(v);

for (i=0; i<g->degree[v]; i++) {
y = g->edges[v][i];
if (valid_edge(g->edges[v][i]) == TRUE) {

if (discovered[y] == FALSE) {
parent[y] = v;
dfs(g,y);

} else
if (processed[y] == FALSE)

process_edge(v,y);
}
if (finished) return;

}

processed[v] = TRUE;
}

Connected Components

The connected components of an undirected graph are the
separate “pieces” of the graph such that there is no connection
between the pieces.
Many seemingly complicated problems reduce to finding
connected components. Testing whether Rubik’s cube or the
15-puzzle can be solved from any position is really asking
whether the graph of legal configurations is connected.
Connected components can found using DFS or BFS.
Anything we discover during this search must be part of the
same connected component. We then repeat the search from
any undiscovered vertex (if one exists) to define the next
component, until all vertices have been found:

Connected Components Implementation

connected_components(graph *g)
{

int c; /* component number */
int i; /* counter */

initialize_search(g);

c = 0;
for (i=1; i<=g->nvertices; i++)

if (discovered[i] == FALSE) {
c = c+1;
printf("Component %d:",c);
dfs(g,i);
printf("\n");

}
}

Topological Sorting

Topological sorting is the fundamental operation on directed
acyclic graphs (DAGs). It constructs an ordering of the
vertices such that all directed edges go from left to right.
Such an ordering clearly cannot exist if the graph contains
any directed cycles, because there is no way you can keep
going right on a line and still return back to where you started
from!

Longest Path in a DAG

The importance of topological sorting is that it gives us a way
to process each vertex before any of its successors.
Suppose we seek the shortest (or longest) path fromx toy in a
DAG. Certainly no vertex appearing aftery in the topological
order can contribute to any such path, because there will be
no way to get back toy.
We can appropriately process all the vertices from left to right
in topological order, considering the impact of their outgoing
edges, and know that we will look at everything we need
before we need it.

Topological Sorting Algorithms

Topological sorting can be performed using DFS.
However, a more straightforward algorithm does an analysis
of the in-degrees of each vertex in a DAG. Any in-degree 0
vertex may safely be placed first in topological order.
Deleting its outgoing edges may create new in-degree 0
vertices, continuing the process.
compute_indegrees(graph *g, int in[])
{

int i,j; /* counters */

for (i=1; i<=g->nvertices; i++) in[i] = 0;

for (i=1; i<=g->nvertices; i++)
for (j=0; j<g->degree[i]; j++) in[g->edges[i][j]] ++;

}

topsort(graph *g, int sorted[])
{

int indegree[MAXV]; /* indegree of each vertex */
queue zeroin; /* vertices of indegree 0 */
int x, y; /* current and next vertex */
int i, j; /* counters */

compute_indegrees(g,indegree);
init_queue(&zeroin);
for (i=1; i<=g->nvertices; i++)

if (indegree[i] == 0) enqueue(&zeroin,i);

j=0;
while (empty(&zeroin) == FALSE) {

j = j+1;
x = dequeue(&zeroin);
sorted[j] = x;
for (i=0; i<g->degree[x]; i++) {

y = g->edges[x][i];
indegree[y] --;
if (indegree[y] == 0) enqueue(&zeroin,y);

}
}

if (j != g->nvertices)
printf("Not a DAG -- only %d vertices found\n",j);

}

110902 (Playing with Wheels)

Move from one number to another number using a minimum
number of steps, while avoiding forbidden states.
What is the graph, and is it weighted or unweighted?

110903 (The Tourist Guide)

Minimize the number of trips a guide needs to make in order
to ferry a group of tourists from one place to another.
What is the graph theoretic problem being solved here?

110906 (Tower of Cubes)

Build the tallest possible of cubes such that touching face
colors match and lighter cubes are always on top of heavier
cubes.
What is the graph, and is it directed or undirected?

110907 (From Dusk Till Dawn)

Find the shortest train trip between two different cities subject
to a vampire’s particular constraints.
What is the graph, and is it weighted or unweighted?

