
Lecture 8:
Backtracking

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Backtracking

Backtracking is a systematic method to iterate through all
the possible configurations of a search space. It is a general
algorithm/technique which must be customized for each
individual application.
In the general case, we will model our solution as a vector
a = (a1, a2, ..., an), where each elementai is selected from a
finite ordered setSi.
Such a vector might represent an arrangement whereai

contains theith element of the permutation. Or the vector
might represent a given subsetS, whereai is true if and only
if the ith element of the universe is inS.

At each step in the backtracking algorithm, we start from
a given partial solution, say,a = (a1, a2, ..., ak), and try to
extend it by adding another element at the end.
After extending it, we must test whether what we have so far
is a solution.
If not, we must then check whether the partial solution is still
potentially extendible to some complete solution.
If so, recur and continue. If not, we delete the last element
from a and try another possibility for that position, if one
exists.

Implementation

We include a globalfinished flag to allow for premature
termination, which could be set in any application-specific
routine.
bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input)
{

int c[MAXCANDIDATES]; /* candidates for next position */
int ncandidates; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a,k,input))
process_solution(a,k,input);

else {
k = k+1;
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {

a[k] = c[i];
backtrack(a,k,input);
if (finished) return; /* terminate early */

}
}

}

Application-Specific Routines

The application-specific parts of this algorithm consists of
three subroutines:

• is a solution(a,k,input) – This Boolean
function tests whether the firstk elements of vectora
are a complete solution for the given problem. The last
argument,input, allows us to pass general information
into the routine.

• construct candidates(a,k,input,c,ncandidat
– This routine fills an arrayc with the complete
set of possible candidates for thekth position of a,
given the contents of the firstk − 1 positions. The

number of candidates returned in this array is denoted by
ncandidates.

• process solution(a,k) – This routine prints,
counts, or somehow processes a complete solution once
it is constructed.

Backtracking ensures correctness by enumerating all possi-
bilities. It ensures efficiency by never visiting a state more
than once.
Because a new candidates arrayc is allocated with each
recursive procedure call, the subsets of not-yet-considered
extension candidates at each position will not interfere with
each other.

Constructing All Subsets

We can construct the2n subsets ofn items by iterating
through all possible2n length-n vectors of true or false,
letting theith element denote whether itemi is or is not in
the subset.
Using the notation of the general backtrack algorithm,Sk =
(true, false), anda is a solution wheneverk ≥ n.

is_a_solution(int a[], int k, int n)
{

return (k == n); /* is k == n? */
}

construct_candidates(int a[], int k, int n, int c[], int *ncandidates)
{

c[0] = TRUE;
c[1] = FALSE;

*ncandidates = 2;
}

process_solution(int a[], int k)
{

int i; /* counter */

printf("{");
for (i=1; i<=k; i++)

if (a[i] == TRUE) printf(" %d",i);

printf(" }\n");
}

Finally, we must instantiate the call tobacktrack with the
right arguments.
generate_subsets(int n)
{

int a[NMAX]; /* solution vector */

backtrack(a,0,n);
}

Constructing All Permutations

To avoid repeating permutation elements, we must ensure that
theith element is distinct from all elements before it.
To use the notation of the general backtrack algorithm,Sk =
{1, . . . , n} − a, anda is a solution wheneverk = n:
construct_candidates(int a[], int k, int n, int c[], int *ncandidates)
{

int i; /* counter */
bool in_perm[NMAX]; /* who is in the permutation? */

for (i=1; i<NMAX; i++) in_perm[i] = FALSE;
for (i=0; i<k; i++) in_perm[a[i]] = TRUE;

*ncandidates = 0;
for (i=1; i<=n; i++)

if (in_perm[i] == FALSE) {
c[*ncandidates] = i;

*ncandidates = *ncandidates + 1;
}

}

Completing the job of generating permutations requires
specifyingprocess solution andis a solution, as
well as setting the appropriate arguments tobacktrack.
All are essentially the same as for subsets:
process_solution(int a[], int k)
{

int i; /* counter */

for (i=1; i<=k; i++) printf(" %d",a[i]);
printf("\n");

}

is_a_solution(int a[], int k, int n)
{

return (k == n);
}

generate_permutations(int n)
{

int a[NMAX]; /* solution vector */

backtrack(a,0,n);
}

The Eight-Queens Problem

The eight queens problem is a classical puzzle of positioning
eight queens on an8 × 8 chessboard such that no two queens
threaten each other.
Implementing abacktrack search requires us to think
carefully about the most concise, efficient way to represent
our solutions as a vector. What is a reasonable representation
for ann-queens solution, and how big must it be?
To make a backtracking program efficient enough to solve
interesting problems, we must prune the search space by
terminating every search path the instant it becomes clear it
cannot lead to a solution.

Since no two queens can occupy the same column, we know
that the n columns of a complete solution must form a
permutation ofn. By avoiding repetitive elements, we reduce
our search space to just8! = 40,320 – clearly short work for
any reasonably fast machine.
The critical routine is the candidate constructor. We
repeatedly check whether thekth square on the given row
is threatened by any previously positioned queen. If so, we
move on, but if not we include it as a possible candidate:

Implmementation

construct_candidates(int a[], int k, int n, int c[], int *ncandidates)
{

int i,j; /* counters */
bool legal_move; /* might the move be legal? */

*ncandidates = 0;
for (i=1; i<=n; i++) {

legal_move = TRUE;
for (j=1; j<k; j++) {

if (abs((k)-j) == abs(i-a[j])) /* diagonal threat */
legal_move = FALSE;

if (i == a[j]) /* column threat */
legal_move = FALSE;

}
if (legal_move == TRUE) {

c[*ncandidates] = i;

*ncandidates = *ncandidates + 1;
}

}
}

The remaining routines are simple, particularly since we are
only interested in counting the solutions, not displaying them:
process_solution(int a[], int k)
{

int i; /* counter */

solution_count ++;
}

is_a_solution(int a[], int k, int n)
{

return (k == n);
}

Finding the Queens

The main program is as follows:
nqueens(int n)
{

int a[NMAX]; /* solution vector */

solution_count = 0;
backtrack(a,0,n);
printf("n=%d solution_count=%d\n",n,solution_count);

}

and yields the following answers:
n=1 solution_count=1
n=2 solution_count=0
n=3 solution_count=0
n=4 solution_count=2
n=5 solution_count=10
n=6 solution_count=4
n=7 solution_count=40
n=8 solution_count=92
n=9 solution_count=352
n=10 solution_count=724
n=11 solution_count=2680
n=12 solution_count=14200
n=13 solution_count=73712
n=14 solution_count=365596

110801 (Little Bishops)

How many ways can we put downk mutally non-attacking
bishops on ann × n board?
Can we count the bishops without explicitly constructing
every configuration?

110802 (15-Puzzle Problem)

Can you find a minimum- or near-minimum length path to
solve the 15-puzzle?
How do we prune quickly, and how do we eliminate
duplicates?

110806 (Garden of Eden)

Given a cellular automata statet and a transition rule, does
there exist a previous states such thats goes tot?

110807 (Colour Hash)

Does there exist a sequence of moves to reorder the pieces of
this puzzle?
What is the right representation of the puzzle?

