
Lecture 3:
Strings

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Character Codes

Character codes are mappings between numbers and the
symbols which make up a particular alphabet.
The American Standard Code for Information Interchange
(ASCII) is a single-byte character code where27 = 128
characters are specified. Bytes are eight-bit entities; so that
means the highest-order bit is left as zero.

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 SP 33 ! 34 ” 35 # 36 $ 37 % 38 & 39 ’
40 ( 41 ) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [ 92 / 93 ] 94 ˆ 95
96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 — 125 } 126 ∼ 127 DEL



Properties of ASCII

Several properties of the design make programming tasks
easier:

• All non-printable characters have either the first three bits
as zero or all seven lowest bits as one. This makes it very
easy to eliminate them before displaying junk.

• Both the upper- and lowercase letters and the numerical
digits appear sequentially. Thus we can iterate through all
the letters/digits simply by looping from the value of the
first symbol (say, “a”) to value of the last symbol (say,
“z”).



• We can convert a character (say, “I ”) to its rank in the
collating sequence (eighth, if “A” is the zeroth character)
simply by subtracting off the first symbol (“A”).

• We can convert (say “C”) from upper- to lowercase by
adding the difference of the upper and lowercase starting
character (“C” - “A”+“a”). Similarly, a characterx is
uppercase if and only if it lies between “A ” and “Z”.

• The character code tells us what will happen when
naively sorting text files. Which of “x” or “ 3” or “ C”
appears first in alphabetical order? Sorting alphabetically
means sorting by character code. Using a different
collating sequence requires more complicated comparison
functions.



• Non-printable character codes for new-line (10) and
carriage return (13) are designed to delimit the end of text
lines. Inconsistent use of these codes is one of the pains in
moving text files between UNIX and Windows systems.



Unicode

More modern international character code designs such as
Unicode use two or even three bytes per symbol, and can
represent virtually any symbol in every language on earth.
Older languages, like Pascal, C, and C++, view thechar
type as virtually synonymous with 8-bit entities. However,
good old ASCII remains alive embedded in Unicode.
Java, on the other hand, was designed to support Unicode,
so characters are 16-bit entities. The upper byte is all zeros
when working with ASCII/ISO Latin 1 text.



Representing Strings

Strings are sequences of characters, where order clearly
matters. It is important to be aware of how your favorite
programming language represents strings, because there are
several different possibilities:

• Null-terminated Arrays – C/C++ treats strings as arrays
of characters. The string ends the instant it hits the null
character “\ 0”, i.e., zero ASCII. Failing to end your string
explicitly with a null typically extends it by a bunch of
unprintable characters.



• Array Plus Length – Another scheme uses the first array
location to store the length of the string, thus avoiding the
need for any terminating null character. Presumably this
is what Java implementations do internally.

• Linked Lists of Characters – Text strings can be
represented using linked lists, but this is typically
avoided because of the high space-overhead associated
with having a several-byte pointer for each single byte
character.



Which String Representation?

The underlying string representation can have a big impact
on which operations are easily or efficiently supported.
Compare each of these three data structures with respect to
the following properties:

• Which uses the least amount of space? On what sized
strings?

• Which constrains the content of the strings which can
possibly be represented?

• Which allow constant-time access to theith character?



• Which allow efficient checks that theith character is in
fact within the string, thus avoiding out-of-bounds errors?

• Which allow efficient deletion or insertion of new
characters at theith position?

• Which representation is used when users are limited to
strings of length at most 255, e.g., file names in Windows?



Searching for Patterns

The simplest algorithm to search for the pattern stringp in
text t overlays the pattern string on the text, and checks
whether every pattern character matches the corresponding
text character:
/ * Return position of the first occurrence of pattern

p in the text t, and -1 if it does not occur.

* /

int findmatch(char * p, char * t)
{

int i,j; / * counters * /
int plen, tlen; / * string lengths * /

plen = strlen(p);
tlen = strlen(t);

for (i=0; i<=(tlen-plen); i=i+1) {
j=0;
while ((j<plen) && (t[i+j]==p[j]))

j = j+1;
if (j == plen) return(i);

}

return(-1);
}



Note that this routine only searches for exact pattern matches.
If a letter is capitalized in the pattern but not in the text there
is no match.
This algorithm runs inO(|p| × |q|) time. More complicated
but efficientlinear-time algorithms exist for substring pattern
matching.



C String Library Functions

The C languagecharacter library ctype.h contains several
simple tests and manipulations on character codes. As with
all C predicates, true is defined as any non-zero quantity, and
false as zero.
#include <ctype.h> / * include the character library * /

int isalpha(int c); / * true if c is either upper or lower case * /
int isupper(int c); / * true if c is upper case * /
int islower(int c); / * true if c is lower case * /
int isdigit(int c); / * true if c is a numerical digit (0-9) * /
int ispunct(int c); / * true if c is a punctuation symbol * /
int isxdigit(int c); / * true if c is a hexadecimal digit (0-9,A-F) * /
int isprint(int c); / * true if c is any printable character * /

int toupper(int c); / * convert c to upper case -- no error checking * /
int tolower(int c); / * convert c to lower case -- no error checking * /



These appear in the C languagestring library string.h .
#include <string.h> / * include the string library * /

char * strcat(char * dst, const char * src); / * concatenation * /
int strcmp(const char * s1, const char * s2); / * is s1 == s2? * /
char * strcpy(char * dst, const char * src); / * copy src to dist * /
size_t strlen(const char * s); / * length of string * /
char * strstr(const char * s1, const char * s2); / * search for s2 in s1 * /
char * strtok(char * s1, const char * s2); / * iterate words in s1 * /



C++ String Library Functions

In addition to supporting C-style strings, C++ has a string
class which contains methods for these operations and more:
string::size() / * string length * /
string::empty() / * is it empty * /

string::c_str() / * return a pointer to a C style string * /

string::operator [](size_type i) / * access the ith character * /

string::append(s) / * append to string * /
string::erase(n,m) / * delete a run of characters * /
string::insert(size_type n, const string&s) / * insert string s at n * /

string::find(s)
string::rfind(s) / * search left or right for the given string * /

string::first()
string::last() / * get characters, also there are iterators * /

Overloaded operators exist for concatenation and string
comparison.



Java String Objects

Java strings are first-class objects deriving either from the
String class or theStringBuffer class. TheString
class is for static strings which do not change, while
StringBuffer is designed for dynamic strings.
Recall that Java was designed to support Unicode, so its
characters are 16-bit entities.
The java.text package contains more advanced opera-
tions on strings, including routines to parse dates and other
structured text.



110302 (Where’s Waldorf)

Find words in a grid a letters.
What is the easiest way to write a comparison function for all
eight directions?



110304 (Crypt Kicker II)

Solve a substition cipher via a known plain text attack.
How do we identify what the plaintext sentence is?



110306 (File Fragmentation)

Put together a collection of broken copies of a given text
string.
Which pair of fragments go together?
How can we find the right order of the pair?



110307 (Doublets)

Build word ladders on a dictionary of strings.
How do we represent and traverse the underlying graph? (if
necessary, look ahead to Chapter 9)


