
Lecture 2:
Data Structures

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

String/Character I/O

There are several approaches to reading in the text input
required by many of these problems. Either you can:

• Repeatedly get single characters (perhaps using a library
function likegetchar);

• Repeatedly get strings (perhaps using a library function
like scanf) and break them down into single characters.

• Read the entire line as a string (perhaps using a library
function like gets), and then parsing it by accessing
characters in the string.

• Perhaps more modern ways using streams are easier,
perhaps not.

Basic Data Types

Selecting the right data structure makes a trememdous
difference in the organization and complexity of a given
program.
Be aware of your basic structured data types (arrays, records,
multidimensional arrays, enumerated types) and what they
are used for.

Pointer Structures

Linked structures provide greatflexibility in how memory is
used, but are often unnecessary when the largest possible size
structure is known in advance.
Except for argument passing, pointers were not used in any
of the example programs in the book.
Pointer structures are often more complex to work with and
debug than arrays (KISS).

Abstract Data Types

Abstract data types provide a higher-order way to think about
program organization than “data structures”.
Abstract data types are defined by theoperationsyou want to
perform on the data. The correct implementation (i.e. arrays
or linked structures) is determinedafter you have defined the
abstract data type.
Modern object-oriented languages like C++ and Java come
with standard libraries of fundamental data structures.
These eliminate the need to reinvent the wheel, once you
know the wheel has been invented.

Queues and Stacks

Stacks and queues are containers where items are retrieved
according to the order of insertion, independent of content.
Stacksmaintainlast-in, first-outorder.
Push(x,s)– Insert itemx on top of stacks.
Pop(s)– Return (and remove) the top item of stacks.
Initialize(s)– Create an empty stack.
Full(s), Empty(s)– Test whether the stack can accept more
pushes or pops, respectively.
Note that there is no element search operation defined on
standard stacks and queues.

Applications of Stacks

• Processing parenthesized formulas (push on a “(”, pop on
“)”)

• Recursive program calls (push on a procedure entry, pop
on a procedure exit), and

• Depth-first traversals of graphs (push on discovering a
vertex, pop on leaving it for the last time).

Most important is when the insertion order does not matter at
all, since stacks are a very simple container.

Queues

Queuesmaintainfirst-in, first-outorder.
Enqueue(x,q)– Insert itemx at the back of queueq.
Dequeue(q)– Return (and remove) front item from queueq

Initialize(q), Full(q), Empty(q)– Analogous to these opera-
tion on stacks.
Applications include (1) implementing buffers, (2) simulating
waiting lines, and (3) representing card decks for shuffling.
Implementations include circular queues and linked lists.

Dictionaries

Dictionaries permit content-based retrieval, unlike the
position-based retrieval of stacks and queues.
Insert(x,d)– Insert itemx into dictionaryd.
Delete(x,d)– Remove itemx (or the item pointed to byx)
from dictionaryd.
Search(k,d)– Return an item with keyk if one exists in
dictionaryd.
Classical dictionary implementations include (1) sorted
arrays, (2) binary search trees, and (3) hash tables.
Hash tables are often the right answer in practice, for reasons
of simplicity and performance.

Priority Queues

Priority queuesare data structures on sets of items supporting
three operations:
Insert(x,p)– Insert itemx into priority queuep.
Maximum(p)– Return the item with the largest key in priority
queuep.
ExtractMax(p)– Return and remove the item with the largest
key inp.

Applications of Priority Queues

Priority queues are used to (1) to maintain schedules and
calendars and (2) in sweepline geometric algorithms where
operations go from left to right.
The most famous implementation of priority queues is the
binary heap, but it is often simpler to maintain a sorted array,
particularly if you will not be performing too many insertions.

Sets

Sets (or more strictly speakingsubsets) are unordered
collections of elements drawn from a given universal setU .
Member(x,S)– Is an itemx an element of subsetS?
Union(A,B)– Construct subsetA∪B of all elements in subset
A or in subsetB.
Intersection(A,B)– Construct subsetA∩B of all elements in
subsetA and in subsetB.
Insert(x,S), Delete(x,S)– Insert/delete elementx into/from
subsetS.

Set Data Structures

Set data structures get distinguished from dictionaries be-
cause there is at least an implicit need to encode which
elements fromU arenot in the given subset.
For sets of a large or unbounded universe, the obvious
solution is representing a subset using a dictionary.
For sets drawn from small, unchanging universes, bit vectors
provide a convenient representation.

Bit Vectors

An n-bit vector or array can represent any subsetS from an
n-element universe. Biti will be 1 iff i ∈ S.
Element insertion and deletion operations simply flip the
appropriate bit.
Intersection and union are done by “and-ing” or “or-ing” the
corresponding bits together.

The Efficiency of Bit Vectors

Since only one bit is used per element, bit vectors can be
space efficient for surprisingly large values of|U |. For
example, an array of 1,000 standard four-byte integers can
represent any subset on 32,000 elements.

Object Libraries

A general library of abstract data types cannot really existin
C language because functions in C can’t tell the type of their
arguments. Thus we would have to define separate routines
such aspush int() andpush char() for every possible
data type.

Standard Template Library

However, C++ has been designed to support object libraries.
In particular, theStandard Template Libraryprovides imple-
mentations of all the data structures defined above and much
more. Each data object must have the type of its elements
fixed (i.e., templated) at compilation time, so

#include <stl.h>

stack<int> S;
stack<char> T;

declares two stacks with different element types.

Java Libraries

Useful standard Java objects appear in thejava.util
package. Almost all ofjava.util is available on the
judge.
Appropriate implementations of the basic data structures
include:

Data Structure Abstract class Concrete class Methods
Stack No interface Stack pop, push, empty, peek
Queue List ArrayList,LinkedList add, remove, clear
Dictionaries Map HashMap, Hashtable put, get, contains
Priority Queue SortedMap TreeMap firstKey,lastKey, headMap
Sets Set HashSet add, remove, contains

Ranking and Unranking Functions

Whenever we can create a numericalranking function and a
dual unrankingfunction which hold over a particular set of
itemss ∈ S, we can represent any item by its integer rank.
The key property is thats = unrank(rank(s)). Thus the
ranking function can be thought of as a hash function without
collisions.

Ranking and Unranking Playing Cards

One can define ranking/unranking functions for permutations
(1 ton!), subsets (1 to2n), and playing cards (1 to 52).
We can use ranking/unranking functions to (1) generate all of
the objects, (2) pick one at random, and (3) sort and compare
them.
To rank and unrank playing cards, we order the card values
(low to high) and note that there are four distinct cards of each
value. Multiplication and division are the key to mapping
them from 0 to 51:

#define NCARDS 52 /* number of cards */
#define NSUITS 4 /* number of suits */

char values[] = "23456789TJQKA";
char suits[] = "cdhs";

int rank_card(char value, char suit)
{

int i,j; /* counters */

for (i=0; i<(NCARDS/NSUITS); i++)
if (values[i]==value)

for (j=0; j<NSUITS; j++)
if (suits[j]==suit)

return(i*NSUITS + j);

printf("Warning: bad input value=%d, suit=%d\n",value,suit);
}

char suit(int card)
{

return(suits[card % NSUITS]);
}

char value(int card)
{

return(values[card/NSUITS]);
}

110201 (Jolly Jumpers)

Does the distances defined between neighbors of a set ofn

numerical steps realize all values from1 to n − 1?
What data structure should you use?
What graphs (other than a path) allow such structures?

110204 (Crypt Kicker)

Decode an alphabet permutation-encrypted message using a
dictionary of words.
What constraints does the dictionary imply?

110205 (Stack ’em Up)

Rearrange a deck of cards according to a set of allowable
shuffle operations.
How do shuffles operate as rearrangement operations (permu-
tations)?
How good are the traditional perfect shuffles at mixing up a
deck?

110208 (Yahtzee)

How do we assign dice roles to categories so as to maximize
our score?
Do we need to try all possibilities, or can we be more clever?

