
Lecture 11:
Dynamic Programming

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Dynamic Programming

Dynamic programming is a very powerful, general tool for
solving optimization problems on left-right-ordered items
such as character strings. Once understood it is relativelyeasy
to apply, but many people have trouble understanding it.
Start by reviewing the binomial coefficient function in the
combinatorics section, as an example of how we stored partial
results to help us compute what we were looking for.
Floyd’s all-pairs shortest-path algorithm discussed in the
graph algorithms chapter is another example of dynamic
programming.

Greedy Algorithms

Greedyalgorithms focus on making the best local choice at
each decision point. For example, a natural way to compute a
shortest path fromx to y might be to walk out ofx, repeatedly
following the cheapest edge until we get toy. Natural, but
wrong!
In the absence of a correctness proof greedy algorithms are
very likely to fail.
Dynamic programming gives us a way to design custom
algorithms which systematically search all possibilities(thus
guaranteeing correctness) while storing results to avoid
recomputing (thus providing efficiency).

Evaluating Recurrence Relations

Dynamic programming algorithms are defined by recursive
algorithms/functions that describe the solution to the entire
problem in terms of solutions to smaller problems. Back-
tracking is one such recursive procedure we have seen, as is
depth-first search in graphs.
Efficiency in any such recursive algorithm requires storing
enough information to avoid repeating computations we have
done before. Depth-first search in graphs is efficient because
we mark the vertices we have visited so we don’t visit them
again.

Dynamic programming is a technique for efficiently imple-
menting a recursive algorithm by storing partial results. The
trick is to see that the naive recursive algorithm repeatedly
computes the same subproblems over and over and over
again. If so, storing the answers to them in a table instead
of recomputing can lead to an efficient algorithm.
Thus we must first hunt for a correct recursive algorithm –
later we can worry about speeding it up by using a results
matrix.

Edit Distance

Misspellings and changes in word usage (“Thou shalt
not kill” morphs into “You should not murder.”) make
approximate pattern matchingan important problem.
A reasonable distance measure minimizes the cost of the
changeswhich have to be made to convert one string to
another.
There are three natural types of changes:

• Substitution – Change a single character from patterns

to a different character in textt, such as changing “shot”
to “spot”.

• Insertion – Insert a single character into patterns to help
it match textt, such as changing “ago” to “agog”.

• Deletion – Delete a single character from patterns to
help it match textt, such as changing “hour” to “our”.

Properly posing the question of string similarity requiresus
to set the cost of each of these string transform operations.
Setting each operation to cost one step defines theedit
distancebetween two strings.

Recursive Algorithm

We can compute the edit distance with recursive algorithm
using the observation that the last character in the string must
either be matched, substituted, inserted, or deleted.If we
knew the cost of editing the three pairs of smaller strings,
we could decide which option leads to the best solution
and choose that option accordingly. Wecan learn this cost,
through the magic of recursion:

#define MATCH 0 /* enumerated type symbol for match */
#define INSERT 1 /* enumerated type symbol for insert */
#define DELETE 2 /* enumerated type symbol for delete */

int string_compare(char *s, char *t, int i, int j)
{

int k; /* counter */
int opt[3]; /* cost of the three options */
int lowest_cost; /* lowest cost */

if (i == 0) return(j * indel(’ ’));
if (j == 0) return(i * indel(’ ’));

opt[MATCH] = string_compare(s,t,i-1,j-1) + match(s[i],t[j]);
opt[INSERT] = string_compare(s,t,i,j-1) + indel(t[j]);
opt[DELETE] = string_compare(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)

if (opt[k] < lowest_cost) lowest_cost = opt[k];

return(lowest_cost);
}

Speeding it Up

This program is absolutely correct but impossibly slow to
compare two 12-character strings! It takes exponential time
because it recomputes values again and again.
But there can only be|s| · |t| possible unique recursive calls,
since there are only that many distinct(i, j) pairs to serve as
the parameters of recursive calls. By storing the values for
each of these(i, j) pairs in a table, we can just look them up
as needed.
The table is a two-dimensional matrixm where each of the
|s| · |t| cells contains the cost of the optimal solution of this
subproblem, as well as a parent pointer explaining how we
got to this location:

typedef struct {
int cost; /* cost of reaching this cell */
int parent; /* parent cell */

} cell;

cell m[MAXLEN+1][MAXLEN+1]; /* dynamic programming table */

The dynamic programming version has three differences
from the recursive version:

• It gets its intermediate values using table lookup instead
of recursive calls.

• It updates theparent field of each cell, which will
enable us to reconstruct the edit-sequence later.

• It is instrumented using a more generalgoal cell()
function instead of just returningm[|s|][|t|].cost.
This will enable us to apply this routine to a wider class
of problems.

Be aware that we adhere to certain unusual string and index
conventions in the following routines. In particular, we
assume that each string has been padded with an initial blank
character, so the first real character of strings sits ins[1].

int string_compare(char *s, char *t)
{

int i,j,k; /* counters */
int opt[3]; /* cost of the three options */

for (i=0; i<MAXLEN; i++) {
row_init(i);
column_init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[MATCH];
m[i][j].parent = MATCH;
for (k=INSERT; k<=DELETE; k++)

if (opt[k] < m[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

goal_cell(s,t,&i,&j);
return(m[i][j].cost);

}

Example

To determine the value of cell(i, j) we need three values
sitting and waiting for us, namely, the cells(i − 1, j − 1),
(i, j − 1), and (i − 1, j). Any evaluation order with this
property will do, including row-major order.
“thou shalt not” goes to “you should not” in 5 moves:
DSMMMMMISMSMMMM

y o u - s h o u l d - n o t
: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t: 1 1 2 3 4 5 6 7 8 9 10 11 12 13 13
h: 2 2 2 3 4 5 5 6 7 8 9 10 11 12 13
o: 3 3 2 3 4 5 6 5 6 7 8 9 10 11 12
u: 4 4 3 2 3 4 5 6 5 6 7 8 9 10 11
-: 5 5 4 3 2 3 4 5 6 6 7 7 8 9 10
s: 6 6 5 4 3 2 3 4 5 6 7 8 8 9 10
h: 7 7 6 5 4 3 2 3 4 5 6 7 8 9 10
a: 8 8 7 6 5 4 3 3 4 5 6 7 8 9 10
l: 9 9 8 7 6 5 4 4 4 4 5 6 7 8 9
t: 10 10 9 8 7 6 5 5 5 5 5 6 7 8 8
-: 11 11 10 9 8 7 6 6 6 6 6 5 6 7 8
n: 12 12 11 10 9 8 7 7 7 7 7 6 5 6 7
o: 13 13 12 11 10 9 8 7 8 8 8 7 6 5 6
t: 14 14 13 12 11 10 9 8 8 9 9 8 7 6 5

Reconstructing the Path

The possible solutions are described by paths through
the dynamic programming matrix, starting from the initial
configuration(0, 0) to the final goal state(|s|, |t|).
Reconstructing these decisions is done by walking backward
from the goal state, following theparent pointer to an
earlier cell. Theparent field for m[i,j] tells us whether
the transform at(i, j) wasMATCH, INSERT, orDELETE.

Walking backward reconstructs the solution in reverse order.
However, clever use of recursion can do the reversing for us:
reconstruct_path(char *s, char *t, int i, int j)
{

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {
reconstruct_path(s,t,i-1,j-1);
match_out(s, t, i, j);
return;

}
if (m[i][j].parent == INSERT) {

reconstruct_path(s,t,i,j-1);
insert_out(t,j);
return;

}
if (m[i][j].parent == DELETE) {

reconstruct_path(s,t,i-1,j);
delete_out(s,i);
return;

}
}

Customizing Edit Distance

• Table Initialization – The functionsrow init() and
column init() initialize the zeroth row and column
of the dynamic programming table, respectively.

• Penalty Costs – The functionsmatch(c,d) and
indel(c) present the costs for transforming character
c to d and inserting/deleting characterc. For standard edit
distance,match costs 0 for matching characters, and 1
otherwise, whileindel returns 1.

• Goal Cell Identification – The functiongoal cell
returns the indices of the cell marking the endpoint of the

solution. For edit distance, this is defined by the length of
the two input strings.

• Traceback Actions – The functionsmatch out,
insert out, anddelete out perform the appropri-
ate actions for each edit-operation during traceback. For
edit distance, this might mean printing out the name of
the operation or character involved, as determined by the
needs of the application.

Substring Matching

Suppose that we want to find where a short patterns best
occurs within a long textt, say, searching for “Skiena” in all
its misspellings (Skienna, Skena, Skina, . . .).
We want an edit distance search where the cost of starting
the match is independent of the position in the text, so that a
match in the middle is not prejudiced against.
Likewise, the goal state is not necessarily at the end of both
strings, but the cheapest place to match the entire pattern
somewhere in the text. Modifying these two functions gives
us the correct solution:

row_init(int i)
{

m[0][i].cost = 0; /* note change */
m[0][i].parent = -1; /* note change */

}

goal_cell(char *s, char *t, int *i, int *j)
{

int k; /* counter */

*i = strlen(s) - 1;

*j = 0;
for (k=1; k<strlen(t); k++)

if (m[*i][k].cost < m[*i][*j].cost) *j = k;
}

Longest Common Subsequence

Often we are interested in finding the longest scattered string
of characters which is included within both words. The
longest common subsequence(LCS) between “democrat” and
“republican” iseca.
A common subsequence is defined by identical-character
matches in an edit trace. To maximize such traces, we must
prevent substitution of non-identical characters by changing
the match-cost function:
int match(char c, char d)
{

if (c == d) return(0);
else return(MAXLEN);

}

Maximum Monotone Subsequence

A numerical sequence ismonotonically increasingif the ith
element is at least as big as the(i − 1)st element. The
maximum monotone subsequenceproblem seeks to delete the
fewest number of elements from an input stringS to leave
a monotonically increasing subsequence. Thus a longest
increasing subsequence of “243517698” is “23568.”
In fact, this is just a longest common subsequence problem,
where the second string is the elements ofS sorted in
increasing order.
The trick to using edit distance is observing that your problem
is just a special case of approximate string matching.

111101 (Is Bigger Smarter?)

Find the longest sequence of elephants whose weights are
increasing but whose IQ’s are decreasing.
Can this be done as a special case of edit distance?

111103 (Weights and Measures)

Find the tallest possible stack of turtles you can build, where
each turtle has a strength and weight.
Can this be done as a special case of edit distance?

111104 (Unidirectional TSP)

Find the cheapest left-right path across a matrix.
Is this shortest path or dynamic programming, or is Dijkstra’s
algorithm really dynamic programming?

111106 (Ferry Loading)

How can we fit the most amount of cars on a two-lane ferry?
Does always putting the next car on the side with the most
remaining room solve the problem?
Can we exploit the fact that the sum of accumulated car
lengths on each lane of the ferry is always an integer?

