
Lecture 10:
Graph Algorithms

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Properties of Graphs

Graph theory is the study of the properties of graph
structures. It provides us with a language with which to talk
about graphs.
The key to solving many problems is identifying the
fundamental graph-theoretic notion underlying the situation
and then using classical algorithms to solve the resulting
problem.



Connectivity

A graph isconnectedif there is an undirected path between
every pair of vertices.
The existence of a spanning tree is sufficient to prove
connectivity. A breadth-first or depth-first search-based
connected components algorithm can be used to find such a
spanning tree.
However, there are other notions of connectivity. The most
interesting special case when there is a single weak link in the
graph. A single vertex whose deletion disconnects the graph
is called anarticulation vertex; any graph without such a
vertex is said to bebiconnected. A single edge whose deletion
disconnects the graph is called abridge.



Testing for articulation vertices or bridges is easy via brute
force. For each vertex/edge, delete it from the graph and test
whether the resulting graph remains connected. Be sure to
add that vertex/edge back before doing the next deletion!
In directed graphs we are often concerned withstrongly
connected components, that is, partitioning the graph into
chunks such that there are directed paths between all pairs
of vertices within a given chunk. Road networks should be
strongly connected, or else there will be places you can drive
to but not drive home from without violating one-way signs.



Cycles in Graphs

All non-tree connected graphs contain cycles.
An Eulerian cycleis a tour which visits every edge of the
graph exactly once. A mailman’s route is ideally an Eulerian
cycle, so he can visit every street (edge) in the neighborhood
once before returning home.
An undirected graph contains an Eulerian cycle if it is
connected and every vertex is of even degree. Why?
The circuit must enter and exit every vertex it encounters,
implying that all degrees must be even.



Finding an Eulerian Cycle

We can find an Eulerian cycle by building it one cycle at a
time. We can find a simple cycle in the graph by finding a
back edge using DFS. Deleting the edges on this cycle leaves
each vertex with even degree. Once we have partitioned the
edges into edge-disjoint cycles, we can merge these cycles
arbitrarily at common vertices to build an Eulerian cycle.
A Hamiltonian cycleis a tour which visits every vertex of the
graph exactly once. The traveling salesman problem asks for
the shortest such tour on a weighted graph.
Unfortunately, no efficient algorithm exists for solving
Hamiltonian cycle problems. If the graph is sufficiently
small, it can be solved via backtracking.



Minimum Spanning Trees

A spanning treeof a graphG = (V, E) is a subset of edges
from E forming a tree connecting all vertices ofV .
For edge-weighted graphs, we are particularly interested in
theminimum spanning tree, the spanning tree whose sum of
edge weights is the smallest possible.
Minimum spanning trees are the answer whenever we need to
connect a set of points (representing cities, junctions, orother
locations) by the smallest amount of roadway, wire, or pipe.
We present Prim’s algorithm because it is simpler to program,
and because it gives Dijkstra’s shortest path algorithm with
very minimal changes.



Representing Weighted Graphs

We generalize the graph data structure to support edge-
weighted graphs. Each edge-entry previously contained only
the other endpoint of the given edge. We must replace this by
a record allowing us to annotate the edge with weights:
typedef struct {

int v; /* neighboring vertex */
int weight; /* edge weight */

} edge;

typedef struct {
edge edges[MAXV+1][MAXDEGREE]; /* adjacency info */
int degree[MAXV+1]; /* outdegree of vertex */
int nvertices; /* number of vertices */
int nedges; /* number of edges in graph */

} graph;



Prim’s Algorithm

Prim’s algorithm grows the minimum spanning tree in stages
starting from a given vertex. At each iteration, we add one
new vertex into the spanning tree. We greedily add the
lowest-weight edge linking a vertex in the tree to a vertex
on the outside.
Our implementation keeps track of the cheapest edge from
the tree to every non-tree vertex in the graph. The cheapest
edge over all remaining non-tree vertices gets added in each
iteration.
We must update the costs of getting to the non-tree vertices
after each insertion.



Prim’s Implementation

prim(graph *g, int start) {
int i,j; /* counters */
bool intree[MAXV]; /* is vertex in the tree yet? */
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* shortest current distance */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}
distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
for (i=0; i<g->degree[v]; i++) {

w = g->edges[v][i].v;
weight = g->edges[v][i].weight;
if ((distance[w] > weight) && (intree[w]==FALSE)) {

distance[w] = weight;
parent[w] = v;

}
}

v = 1;
dist = MAXINT;
for (i=2; i<=g->nvertices; i++)

if ((intree[i]==FALSE) && (dist > distance[i])) {
dist = distance[i];

v = i;
}

}
}



Dijkstra’s Algorithm for Shortest Paths

BFS doesnot suffice for finding shortest paths in weighted
graphs, because the shortest weighted path froma to b does
not necessarily contain the fewest number of edges.
Dijkstra’s algorithm is the method of choice for finding the
shortest path between two vertices in an edge- and/or vertex-
weighted graph. It finds the shortest path from start vertexs

to every other vertex, including your desired destinationt.
The basic idea is very similar to Prim’s algorithm. In each
iteration, we are going to add exactly one vertex to the tree of
vertices for which weknowthe shortest path froms.



The difference between Dijkstra’s and Prim’s algorithms is
how they rate the desirability of each outside vertex. In
shortest path, we want to include the outside vertex which
is closest (in shortest-path distance) to the start. This isa
function of both the new edge weightand the distance from
the start of the tree-vertex it is adjacent to.
In fact, this change is very minor. Below we give an
implementation of Dijkstra’s algorithm based on changing
exactly three lines from our Prim’s implementation – one of
which is simply the name of the function!
Unlike Prim’s, Dijkstra’s algorithm only works on graphs
without negative-cost edges. But most applications do not
feature negative-weight edges. . .



Implementation of Dijkstra

dijkstra(graph *g, int start) /* WAS prim(g,start) */
{

int i,j; /* counters */
bool intree[MAXV]; /* is vertex in the tree yet? */
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* shortest current distance */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}
distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
for (i=0; i<g->degree[v]; i++) {

w = g->edges[v][i].v;
weight = g->edges[v][i].weight;

/* CHANGED */ if (distance[w] > (distance[v]+weight)) {
/* CHANGED */ distance[w] = distance[v]+weight;

parent[w] = v;
}

}
v = 1;
dist = MAXINT;
for (i=2; i<=g->nvertices; i++)

if ((intree[i]==FALSE) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}



All-Pairs Shortest Path

Many applications need to know the length of the shortest
path between all pairs of vertices in a given graph. For
example, suppose you want to find the “center” vertex, the
one which minimizes the longest or average distance to all
the other nodes. This might be the best place to start a new
business.
We could solve this problem by calling Dijkstra’s algorithm
from each of then possible starting vertices. But Floyd’s
all-pairs shortest-path algorithm is an amazingly slick way to
construct this distance matrix from the original weight matrix
of the graph.



Floyd’s Algorithm

Floyd’s algorithm is best employed on an adjacency matrix
data structure, which is OK since we have to store alln2

pairwise distances anyway.
Our adjacency matrix type allocates space for the
largest possible matrix, and keeps track of how many vertices
there are:
typedef struct {

int weight[MAXV+1][MAXV+1]; /* adjacency/weight info */
int nvertices; /* number of vertices in graph */

} adjacency_matrix;



Initializing the Adjacency Matrix

A critical issue in any adjacency matrix implementation is
how we denote the edges which are not present in the graph.
For unweighted graphs, a common convention is that graph
edges are denoted by1 and non-edges by0.
This gives exactly the wrong interpretation if the numbers
denote edge weights, for the non-edges get interpreted as a
free ride between vertices. Instead, we should initialize each
non-edge toMAXINT.
initialize_adjacency_matrix(adjacency_matrix *g)
{

int i,j; /* counters */

g -> nvertices = 0;

for (i=1; i<=MAXV; i++)
for (j=1; j<=MAXV; j++)

g->weight[i][j] = MAXINT;
}



Floyd’s Idea

Floyd’s algorithm numbers the vertices ofG from 1 to n,
using these numbers not to label the vertices but to order
them.
We will perform n iterations, where thekth iteration allows
only the firstk vertices as possible intermediate steps on the
path between each pair of verticesx andy.
Allowing thekth vertex as a new possible intermediary helps
iff there is a short path that goes throughk, so

W [i, j]k = min(W [i, j]k−1, W [i, k]k−1 + W [k, j]k−1)



Implementation of Floyd’s Algorithm

The correctness of this is somewhat subtle, and we encourage
you to convince yourself of it. But there is nothing subtle
about how short and sweet the implementation is:
floyd(adjacency_matrix *g)
{

int i,j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through vertex k */

for (k=1; k<=g->nvertices; k++)
for (i=1; i<=g->nvertices; i++)

for (j=1; j<=g->nvertices; j++) {
through_k = g->weight[i][k]+g->weight[k][j];
if (through_k < g->weight[i][j])

g->weight[i][j] = through_k;
}

}



Transitive Closure

Floyd’s algorithm has another important application, thatof
computing thetransitive closureof a directed graph. In
analyzing a directed graph, we are often interested in which
vertices are reachable from a given node.
For example, consider theblackmail graphdefined on a set
of n people, where there is a directed edge(i, j) if i has
sensitive-enough private information onj so thati can get
him to do whatever he wants. You wish to hire one of thesen

people to be your personal representative. Who has the most
power in terms of blackmail potential?



A simplistic answer would be the vertex of highest degree.
But Steve might only be able to blackmail Miguel directly,
but if Miguel can blackmail everyone else then Steve is the
man you want to hire.
The vertices reachable from any single node can be computed
using using breadth-first or depth-first search. But the whole
batch can be computed as an all-pairs shortest-path problem.
If the shortest path fromi to j remainsMAXINT after running
Floyd’s algorithm, you can be sure there is no directed path
from i to j.



Network Flow

Any edge-weighted graph can be thought of as a network of
pipes, where the weight of edge(i, j) measures thecapacity
of the pipe. For a given weighted graphG and two vertices
s and t, the network flow problemasks for the maximum
amount of flow which can be sent froms to t while respecting
the maximum capacities of each pipe.
While the network flow problem is of independent interest,
its primary importance is that of being able to solve other
important graph problems. Classic examples are bipartite
matching and edge/vertex connectivity testing.



Bipartite Graphs

GraphG is bipartite or two-colorableif the vertices can be
divided into two sets, say,L andR, such that all edges inG
have one vertex inL and one vertex inR.
Many naturally defined graphs are bipartite. For example,
suppose certain vertices represent jobs to be done and the
remaining vertices people who can potentially do them. The
existence of edge(j, p) means that jobj can potentially done
by personp. Or let certain vertices represent boys and certain
vertices girls, with edges representing compatible pairs.



Bipartite Matching

A matching in a graphG = (V, E) is a subset of edges
E ′

⊂ E such that no two edges inE ′ share a vertex. Thus
a matching pairs off certain vertices such that every vertexis
in at most one such pair.
Matchings in bipartitie graphs have natural interpretations as
job assignments or as marriages.
The largest possible bipartite matching can be found using
network flow. The maximum weighted bipartite matching can
be found using the Hungarian algorithm. See the textbook for
details.



111001 (Freckles)

Connect the dots using as little ink as possible.
What classical graph problem does this correspond to?



111002 (The Necklace)

Does there exist a way to lace up bicolored beads so that each
pair of neighboring bead-faces share a color?
What classical graph problem does this correspond to?
What efficiently computedclassical graph problem does this
also correspond to?



111006 (Tourist Guide)

What vertices in the graph separate the graph into two pieces,
i.e. all paths betweena andb must go through them for anya
andb?
How can we efficiently test whetherv is such a vertex?



111007 (The Grand Dinner)

Match team members to tables so that no two team members
sit at the same table.
Can this be done using bipartite matching/network flow?


