L ecture 10:
Graph Algorithms

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Properties of Graphs

Graph theoryis the study of the properties of grap
structures. It provides us with a language with which to te
about graphs.

The key to solving many problems is identifying th
fundamental graph-theoretic notion underlying the situnat
and then using classical algorithms to solve the result

problem.

Connectivity

A graph isconnectedf there is an undirected path betwee
every pair of vertices.

The existence of a spanning tree is sufficient to prc
connectivity. A breadth-first or depth-first search-bas
connected components algorithm can be used to find su
spanning tree.

However, there are other notions of connectivity. The mq
Interesting special case when there is a single weak lirtkan
graph. A single vertex whose deletion disconnects the gr
IS called anarticulation vertex any graph without such a
vertex is said to bbiconnectedA single edge whose deletior
disconnects the graph is calledhadge

Testing for articulation vertices or bridges is easy viat@ri
force. For each vertex/edge, delete it from the graph ard
whether the resulting graph remains connected. Be sur
add that vertex/edge back before doing the next deletion!

In directed graphs we are often concerned wstlongly

connected componenttat is, partitioning the graph intc
chunks such that there are directed paths between all
of vertices within a given chunk. Road networks should

strongly connected, or else there will be places you cared
to but not drive home from without violating one-way signs

Cyclesin Graphs

All non-tree connected graphs contain cycles.

An Eulerian cycleis a tour which visits every edge of the
graph exactly once. A mailman’s route is ideally an Euleri
cycle, so he can visit every street (edge) in the neighbarh:
once before returning home.

An undirected graph contains an Eulerian cycle if it
connected and every vertex Is of even degree. WI
The circuit must enter and exit every vertex it encounte
Implying that all degrees must be even.

Finding an Eulerian Cycle

We can find an Eulerian cycle by building it one cycle at
time. We can find a simple cycle in the graph by finding
back edge using DFS. Deleting the edges on this cycle lec
each vertex with even degree. Once we have partitioned
edges into edge-disjoint cycles, we can merge these cy
arbitrarily at common vertices to build an Eulerian cycle.
A Hamiltonian cyclas a tour which visits every vertex of the
graph exactly once. The traveling salesman problem asks
the shortest such tour on a weighted graph.
Unfortunately, no efficient algorithm exists for solvin
Hamiltonian cycle problems. |If the graph is sufficientl
small, it can be solved via backtracking.

Minimum Spanning Trees

A spanning treeof a graphG = (V, F) is a subset of edges
from E forming a tree connecting all vertices &t

For edge-weighted graphs, we are particularly interestec
the minimum spanning treghe spanning tree whose sum ¢
edge weights is the smallest possible.

Minimum spanning trees are the answer whenever we nee
connect a set of points (representing cities, junctionstloer
locations) by the smallest amount of roadway, wire, or pip
We present Prim’s algorithm because it is simpler to progre
and because it gives Dijkstra’s shortest path algorithninw
very minimal changes.

Representing Weighted Graphs

We generalize the graph data structure to support ec
weighted graphs. Each edge-entry previously containeg ¢
the other endpoint of the given edge. We must replace this
a record allowing us to annotate the edge with weights:

typedef struct {
int v; /* nei ghboring vertex */
int weight; [+ edge wei ght =/

} edge;

typedef struct {
edge edges[MAXV+1] [MAXDEGREE] ; [/ adjacency info =/
int degree[MAXV+1] ; /= outdegree of vertex =/
int nvertices; [+ nunber of vertices */
i nt nedges; /+* nunmber of edges in graph */

} graph;

Prim’s Algorithm

Prim’s algorithm grows the minimum spanning tree in stac
starting from a given vertex. At each iteration, we add o
new vertex into the spanning tree. We greedily add t
lowest-weight edge linking a vertex in the tree to a vert
on the outside.

Our implementation keeps track of the cheapest edge fi
the tree to every non-tree vertex in the graph. The cheaj
edge over all remaining non-tree vertices gets added Iin €
iteration.

We must update the costs of getting to the non-tree verti
after each insertion.

Prim’s Implementation

prin(graph *g, int start) {

int i,j; /+ counters */

bool intree[MAXV]; I+ is vertex in the tree yet? */
int di stance[MAXV] ; I+ vertex distance fromstart */
int v; /+ current vertex to process */
int w /* candi date next vertex x/

int weight; /+ edge wei ght */

int dist; /* shortest current distance x/

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;

di stance[i] = MAXI NT;
parent[i] = -1;

}

di stance[start] = 0;

v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE
for (i=0; i<g->degree[v]; i++) {
w = g->edges[Vv][i].v;
wei ght = g->edges[Vv][i].weight;
if ((distance[w] > weight) && (intree[w ==FALSE)) {
di stance[w] = weight;
parent[w] = v;

}

v = 1;
di st = MAXI NT;
for (i=2; i<=g->nvertices; i++)
if ((intree[i]==FALSE) && (dist > distance[i])) {
dist = distance[i];
v =i

Dijkstra’'s Algorithm for Shortest Paths

BFS doesnot suffice for finding shortest paths in weighte
graphs, because the shortest weighted path tramb does
not necessarily contain the fewest number of edges.
Dijkstra’s algorithm is the method of choice for finding th
shortest path between two vertices in an edge- and/or ver
weighted graph. It finds the shortest path from start veste
to every other vertex, including your desired destination
The basic idea is very similar to Prim’s algorithm. In eax
iteration, we are going to add exactly one vertex to the tfee
vertices for which w&knowthe shortest path from

The difference between Dijkstra’'s and Prim’s algorithms
how they rate the desirability of each outside vertex.
shortest path, we want to include the outside vertex wh
IS closest (in shortest-path distance) to the start. Thes i
function of both the new edge weigahdthe distance from
the start of the tree-vertex it is adjacent to.

In fact, this change is very minor. Below we give a
Implementation of Dijkstra’s algorithm based on changit
exactly three lines from our Prim’s implementation — one
which is simply the name of the function!

Unlike Prim’s, Dijkstra’s algorithm only works on graph:
without negative-cost edges. But most applications do
feature negative-weight edges. ..

| mplementation of Dijkstra

dijkstra(graph g, int start)
{
int i, j; /*
bool intree[MAXV]; [*
int di stance[MAXV]; [*
int v; | *
int w | *
int weight; | *
int dist; | *
for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
di stance[i] = MAXI NT;
parent[i] = -1;
}
di stance[start] = 0;
v = start;
while (intree[v] == FALSE) {
intree[v] = TRUE
for (i=0; i<g->degree[v]; i++)

w = g->edges[Vv][i].v;

/+ WAS prinm(g,start) =/

counters */

is vertex in the tree yet? »/
vertex distance fromstart */
current vertex to process */
candi date next vertex x/
edge wei ght */

shortest current distance */

{

wei ght = g->edges[Vv][i].weight;

if (distance[w] > (distance[v]+weight)) {

di st ance[v] +wei ght ;

Vi

if ((intree[i]==FALSE) && (dist > distance[i])) {

I+ CHANGED */
I+ CHANGED */ di stance[w]
parent[w] =
}
}
v = 1;
di st = MAXI NT;
for (i=2; i<=g->nvertices; i++)
dist = distance[i];
v =i
}
}

All-Pair s Shortest Path

Many applications need to know the length of the short
path between all pairs of vertices in a given graph. F
example, suppose you want to find the “center” vertex, 1
one which minimizes the longest or average distance to
the other nodes. This might be the best place to start a
business.

We could solve this problem by calling Dijkstra’s algorithr
from each of then possible starting vertices. But Floyd*
all-pairs shortest-path algorithm is an amazingly slick/wa
construct this distance matrix from the original weight mat
of the graph.

Floyd’'s Algorithm

Floyd's algorithm is best employed on an adjacency mat
data structure, which is OK since we have to storenall
pairwise distances anyway.

Our adj acency_matri x type allocates space for the
largest possible matrix, and keeps track of how many vesti
there are:

typedef struct {

int wei ght [MAXV+1] [MAXV+1] ; [+ adj acency/ wei ght info =/

int nvertices; [+ nunber of vertices in graph x/
} adjacency_matri x;

Initializing the Adjacency Matrix

A critical issue in any adjacency matrix implementation
how we denote the edges which are not present in the gra
For unweighted graphs, a common convention is that gr:
edges are denoted hyand non-edges hy.

This gives exactly the wrong interpretation if the numbe
denote edge weights, for the non-edges get interpreted
free ride between vertices. Instead, we should initialeehe
non-edge tdvAXI NT.

initialize_adjacency_matrix(adjacency_matrix *g)

{

int i,j; /* counters =*/
g -> nvertices = 0;
for (i=1; i<=NMAXV; i++)

for (j=1; j<=MAXV, j++)
g->weight[i][j] = MAXI NT;

Floyd’'s |dea

Floyd’s algorithm numbers the vertices 6f from 1 to n,
using these numbers not to label the vertices but to or

them.
We will performn iterations, where théth iteration allows

only the firstk vertices as possible intermediate steps on
path between each pair of verticeandy.
Allowing the kth vertex as a new possible intermediary hel

Iff there is a short path that goes throughso
Wi, j1" = min(Wli, 51, Wi, k" + Wk, 517

| mplementation of Floyd’s Algorithm

The correctness of this is somewhat subtle, and we encou
you to convince yourself of it. But there is nothing subt
about how short and sweet the implementation is:

floyd(adj acency_matrix *Q)

int i,j; [+ di mensi on counters */
int k; [+ intermedi ate vertex counter */
int through_k; [+ di stance through vertex k x/

for (k=1; k<=g->nvertices; k++)
for (i=1; i<=g->nvertices; i++)
for (j=1; j<=g->nvertices; j++) {
through_k = g->wei ght[i][k]+g->weight[K][]];
if (through k < g->weight[i][j])
g->weight[i][j] = through_k;
}

Transitive Closure

Floyd’s algorithm has another important application, thft
computing thetransitive closureof a directed graph. In
analyzing a directed graph, we are often interested in wh
vertices are reachable from a given node.

For example, consider tHdackmail graphdefined on a set
of n people, where there is a directed edgej) if i has
sensitive-enough private information gnso that: can get
him to do whatever he wants. You wish to hire one of these
people to be your personal representative. Who has the r
power in terms of blackmail potential?

A simplistic answer would be the vertex of highest degre
But Steve might only be able to blackmail Miguel directl
but if Miguel can blackmail everyone else then Steve is t
man you want to hire.

The vertices reachable from any single node can be compt
using using breadth-first or depth-first search. But the @h
batch can be computed as an all-pairs shortest-path prob
If the shortest path fromto 5 remaindViAXI NT after running

Floyd’s algorithm, you can be sure there is no directed p
from s to j.

Networ k Flow

Any edge-weighted graph can be thought of as a network
pipes, where the weight of ed@é j) measures theapacity
of the pipe. For a given weighted graghand two vertices
s andt, the network flow problemasks for the maximum
amount of flow which can be sent frogto ¢ while respecting
the maximum capacities of each pipe.

While the network flow problem is of independent intere:
its primary importance is that of being able to solve oth
Important graph problems. Classic examples are bipar
matching and edge/vertex connectivity testing.

Bipartite Graphs

Graphd is bipartite or two-colorableif the vertices can be
divided into two sets, say, and R, such that all edges i&
have one vertex il and one vertex ImR.

Many naturally defined graphs are bipartite. For examg
suppose certain vertices represent jobs to be done anc
remaining vertices people who can potentially do them. T
existence of edgéj, p) means that jo can potentially done
by persorp. Or let certain vertices represent boys and cert:
vertices girls, with edges representing compatible pairs.

Bipartite Matching

A matchingin a graphG = (V. F) is a subset of edges
E'" C FE such that no two edges iR’ share a vertex. Thus
a matching pairs off certain vertices such that every vage:
In at most one such pair.

Matchings in bipartitie graphs have natural interpretstias
job assignments or as marriages.

The largest possible bipartite matching can be found us
network flow. The maximum weighted bipartite matching c:
be found using the Hungarian algorithm. See the textbook
details.

111001 (Freckles)

Connect the dots using as little ink as possible.
What classical graph problem does this correspond to?

111002 (The Necklace)

Does there exist a way to lace up bicolored beads so that ¢
pair of neighboring bead-faces share a color?

What classical graph problem does this correspond to?
What efficiently computedlassical graph problem does thi

also correspond to?

111006 (Tourist Guide)

What vertices in the graph separate the graph into two piet
l.e. all paths betweem andb must go through them for any

andb?
How can we efficiently test whetheris such a vertex?

111007 (The Grand Dinner)

Match team members to tables so that no two team meml

sit at the same table.
Can this be done using bipartite matching/network flow?

