Character Codes

Character codes are mappings between numbers and
the symbols which make up a particular alphabet.

The American Standard Code for Information Inter-
change (ASCII) is a single-byte character code where
27 = 128 characters are specified. Bytes are eight-bit
entities; so that means the highest-order bit is left as

Zero.

0
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120

NUL
BS

DLE

CAN

X T = —XﬂI(aoooA%’

1
9
17
25
33
41
49
57
65
73
81
89
o7
105
113
121

SOH
HT
DC1

<Q-m<OH>©Hv_g

2
10
18
26
34
42
50
58
66
74
82
90
o8

106
114
122

STX
NL
DC2
SUB

N=—OTNIDC@m-N ¥

3
11
19
27
35
43
51
59
67
75
83
91
99
107
115
123

ETX
VT
DC3
ESC

A~ xXOo—OXO-- w+FH

4
12
20
28
36
44
52
60
68
76
84
92

100

108

116

124

EOT
NP
DC4
FS
$

| +—a~4r oA s

More modern international character code designs such
as Unicode use two or even three bytes per symbol, and
can represent virtually any symbol in every language on
earth. However, good old ASCII remains alive embed-
ded in Unicode.

(YN (YN | NS (T N 0 MYMNY s

===
bd ™M

NDY



Properties of ASCII

Several interesting properties of the design make pro-
gramming tasks easier:

e All non-printable characters have either the first
three bits as zero or all seven lowest bits as one.
This makes it very easy to eliminate them before
displaying junk.

e Both the upper- and lowercase letters and the nu-
merical digits appear sequentially. Thus we can it-
erate through all the letters/digits simply by loop-
ing from the value of the first symbol (say, “a”
to value of the last symbol (say, “z").

e Another consequence of this sequential placement
is that we can convert a character (say, “I") to
its rank in the collating sequenc e (eighth, if “A”
is the zeroth character) simply by subtracting off
the first symbol (“A").

e We can convert a character (say “C") from upper-
to lowercase by adding the difference of the upper
and lowercase starting character (“C"-“A"+"a").
Similarly, a character = is uppercase if and only if
it lies between “A " and “Z".

e Given the character code, we can predict what will
happen when naively sorting text files. Which of



__1

x" or “3" or “C" appears first in alphabetical or-
der? Sorting alphabetically means sorting by char-
acter code. Using a different collating sequence
requires more complicated comparison functions.

e Non-printable character codes for new-line (10)
and carriage return (13) are designed to delimit
the end of text lines. Inconsistent use of these
codes is one of the pains in moving text files be-
tween UNIX and Windows systems.

All of this makes a big difference in manipulating text
in different programming languages. Older languages,
like Pascal, C, and C++, view the char type as virtually
synonymous with 8-bit entities.

Java, on the other hand, was designed to support Uni-
code, so characters are 16-bit entities. The upper byte
is all zeros when working with ASCII/ISO Latin 1 text.



Representing Strings

Strings are sequences of characters, where order clearly
matters. It is important to be aware of how your fa-
vorite programming language represents strings, be-
cause there are several different possibilities:

e Null-terminated Arrays — C/C++ treats strings
as arrays of characters. The string ends the in-
stant it hits the null character “\0", i.e., zero
ASCII. Failing to end your string explicitly with a
null typically extends it by a bunch of unprintable
characters.

e Array Plus Length — Another scheme uses the
first array location to store the length of the string,
thus avoiding the need for any terminating null
character. Presumably this is what Java imple-
mentations do internally.

e [inked Lists of Characters — Text strings can be
represented using linked lists, but this is typically
avoided because of the high space-overhead asso-
ciated with having a several-byte pointer for each
single byte character.



Which String Representation?

The underlying string representation can have a big im-
pact on which operations are easily or efficiently sup-
ported. Compare each of these three data structures
with respect to the following properties:

e Which uses the least amount of space? On what
sized strings?

e Which constrains the content of the strings which
can possibly be represented?

e Which allow constant-time access to the zth char-
acter?

e Which allow efficient checks that the ¢th character
is in fact within the string, thus avoiding out-of-
bounds errors?

e Which allow efficient deletion or insertion of new
characters at the :th position?

e \Which representation is used when users are lim-
ited to strings of length at most 255, e.g., file
names in Windows?



Searching for Patterns

The simplest algorithm to search for the presence of
pattern string p in text t overlays the pattern string
at every position in the text, and checks whether ev-
ery pattern character matches the corresponding text
character:

/* Return position of the first occurrence of pattern
p in the text t, and -1 if it does not occur.
*/
int findmatch(char *p, char *t)
{
int 1i,j; /* counters */
int plen, tlen; /* string lengths */
plen = strlen(p);
tlen = strlen(t);
for (i=0; i<=(tlen-plen); i=i+1) {
J=0;
while ((j<plen) && (t[i+jl==p[jl1))
J o= 31
if (j == plen) return(i);
}
return(-1);
}

Note that this routine only searches for exact pattern
matches. If a letter is capitalized in the pattern but
not in the text there is no match.



C String Library Functions

The C language character library ctype.h contains sev-
eral simple tests and manipulations on character codes.
As with all C predicates, true is defined as any non-zero

quantity, and false as zero.

#include <ctype.h> /* include the character library */
int isalpha(int c); /* true if c is either upper or lowe
int isupper(int c); /* true if c is upper case */

int islower(int c); /* true if ¢ is lower case */

int isdigit(int c); /* true if c is a numerical digit (¢
int ispunct(int c); /* true if c¢ is a punctuation symbol
int isxdigit(int c); /* true if c is a hexadecimal digit
int isprint(int c); /* true if c¢ is any printable charac
int toupper(int c); /* convert c to upper case —- no er:z
int tolower(int c); /* convert ¢ to lower case —-- no eri

These appear in the C language string library string.h.

#include <string.h> /* include the string library */

char *strcat(char *dst, const char *src); /* concatenat:
int strcmp(const char *sl1, const char *s2); /* is sl == s:
char *strcpy(char *dst, const char *src); /* copy src tc

size_t strlen(const char *s); /*
char *strstr(const char *sl1l, const char *s2); /x*
char *strtok(char *sl1l, const char *s2); /*

length of =
search for
iterate woz1



C++ String Library Functions

In addition to supporting C-style strings, C++ has a
string class which contains methods for these opera-
tions and more:

string::size() /* string length */

string: :empty() /* is it empty */

string::c_str() /* return a pointer to a C style stz
string: :operator [](size_type i) /* access the ith ct
string: :append(s) /* append to string */

string: :erase(n,m) /* delete a run of characters */
string::insert(size_type n, const string&s) /* insert string
string::find(s)

string: :rfind(s) /* search left or right for the give
string::first()

string::last() /* get characters, also there are if

Overloaded operators exist for concatenation and string
comparison.



Java String Objects

Java strings are first-class objects deriving either from
the String class or the StringBuffer class. The String
class is for static strings which do not change, while
StringBuffer is designed for dynamic strings.

Recall that Java was designhed to support Unicode, so
its characters are 16-bit entities.

The java.text package contains more advanced oper-
ations on strings, including routines to parse dates and
other structured text.



Assigned Problems

110302 (Where's Waldorf) — Find words in a grid a
letters. What is the easiest way to write a comparison
function for all eight directions?

110304 (Crypt Kicker II) — Solve a substition cipher via
a known plain text attack. How do we identify what
the plaintext sentence is?

110306 (File Fragmentation) — Put together a collec-
tion of broken copies of a given text string. Which pair
of fragments go together? How can we find the right
order of the pair?

110307 (Doublets) — Build word ladders on a dictio-
nary of strings. How do we represent and traverse the
underlying graph? (if necessary, look ahead to Chapter
9)



