Properties of Graphs

Graph theory is the study of the properties of graph
structures. It provides us with a language with which
to talk about graphs.

The key to solving many problems is identifying the
fundamental graph-theoretic notion underlying the sit-
uation and then using classical algorithms to solve the
resulting problem.

Graphs are made up of vertices and edges. The sim-
plest property of a vertex is its degree, the number of
edges incident upon it.

The sum of the vertex degrees in any undirected graph
is twice the number of edges, since every edge con-
tributes one to the degree of both adjacent vertices.

Trees are undirected graphs which contain no cycles.
Vertex degrees are important in the analysis of trees.
A leaf of a tree is a vertex of degree 1. Every n-vertex
tree contains n—1 edges, so all non-trivial trees contain
at least two leaf vertices.



Connectivity

A graph is connected if there is an undirected path
between every pair of vertices.

The existence of a spanning tree is sufficient to prove
connectivity. A breadth-first or depth-first search-based
connected components algorithm can be used to find
such a spanning tree.

However, there are other notions of connectivity. The
most interesting special case when there is a single
weak link in the graph. A single vertex whose deletion
disconnects the graph is called an articulation vertex;
any graph without such a vertex is said to be bicon-
nected. A single edge whose deletion disconnects the
graph is called a bridge.

Testing for articulation vertices or bridges is easy via
brute force. For each vertex/edge, delete it from the
graph and test whether the resulting graph remains
connected. Be sure to add that vertex/edge back be-
fore doing the next deletion!

In directed graphs we are often concerned with strongly
connected components, that is, partitioning the graph
into chunks such that there are directed paths between
all pairs of vertices within a given chunk. Road net-
works should be strongly connected, or else there will
be places you can drive to but not drive home from
without violating one-way signs.



Cycles in Graphs

All non-tree connected graphs contain cycles. Partic-
ularly interesting are cycles which visit all the edges or
vertices of the graph.

An Eulerian cycle is a tour which visits every edge of
the graph exactly once. A mailman’s route is ideally
an Eulerian cycle, so he can visit every street (edge) in
the neighborhood once before returning home.

An undirected graph contains an Eulerian cycle if it is
connected and every vertex is of even degree. Why?
The circuit must enter and exit every vertex it encoun-
ters, implying that all degrees must be even.

We can find an Eulerian cycle by building it one cycle
at a time. We can find a simple cycle in the graph by
finding a back edge using DFS. Deleting the edges on
this cycle leaves each vertex with even degree. Once we
have partitioned the edges into edge-disjoint cycles, we
can merge these cycles arbitrarily at common vertices
to build an Eulerian cycle.

A Hamiltonian cycle is a tour which visits every vertex
of the graph exactly once. The traveling salesman
problem asks for the shortest such tour on a weighted
graph.

Unfortunately, no efficient algorithm exists for solving
Hamiltonian cycle problems. If the graph is sufficiently
small, it can be solved via backtracking.



Minimum Spanning Trees

A spanning tree of a graph G = (V,FE) is a subset of
edges from E forming a tree connecting all vertices of
V.

For edge-weighted graphs, we are particularly inter-
ested in the minimum spanning tree, the spanning tree
whose sum of edge weights is the smallest possible.

Minimum spanning trees are the answer whenever we
need to connect a set of points (representing cities,
junctions, or other locations) by the smallest amount
of roadway, wire, or pipe.

We will present Prim’s algorithm here because we think
it is simpler to program, and because it gives us Dijk-
stra’s shortest path algorithm with very minimal changes.

We generalize the graph data structure to support edge-
weighted graphs. Each edge-entry previously contained
only the other endpoint of the given edge. We must
replace this by a record allowing us to annotate the
edge with weights:

typedef struct {
int v; /* neighboring vertex */
int weight; /* edge weight */

} edge;

typedef struct {
edge edges[MAXV+1] [MAXDEGREE]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of vertex */
int nvertices; /* number of vertices x*/
int nedges; /* number of edges in graph */

} graph;



Prim's Algorithm

Prim’s algorithm grows the minimum spanning tree in
stages starting from a given vertex. At each iteration,
we add one new vertex into the spanning tree. A greedy
algorithm suffices for correctness: we always add the
lowest-weight edge linking a vertex in the tree to a
vertex on the outside.

Our implementation keeps track of the cheapest edge
from any tree vertex to every non-tree vertex in the
graph. The cheapest edge over all remaining non-tree
vertices gets added in each iteration. We must update
the costs of getting to the non-tree vertices after each
insertion.

The minimum spanning tree itself or its cost can be re-
constructed in two different ways. The simplest method
would be to augment this procedure with statements
that print the edges as they are found or total the
weight of all selected edges in a variable for later re-
turn. Alternately, since the tree topology is encoded
by the parent array it plus the original graph tells you
everything about the minimum spanning tree.



Prim’s Implementation

prim(graph *g, int start) {

int i,j; /* counters x/

bool intree[MAXV]; /* is vertex in the tree yet? */
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */

int weight; /* edge weight */

int dist; /* shortest current distance x*/

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;

v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
for (i=0; i<g->degreel[v]; i++) {
w = g->edges([v][i].v;
weight = g->edges[v][i].weight;
if ((distance[w] > weight) && (intree[w]==FALSE)) A
distance[w] = weight;
parent[w] = v;

v =1;
dist = MAXINT;
for (i=2; i<=g->nvertices; i++)
if ((intreel[i]==FALSE) && (dist > distancel[i])) {
dist = distancel[i];
v = 1i;



Dijkstra’s Algorithm for
Shortest Paths

BFS does not suffice for finding shortest paths in weighted
graphs, because the shortest weighted path from a to

b does not necessarily contain the fewest number of
edges.

Dijkstra’s algorithm is the method of choice for finding
the shortest path between two vertices in an edge-
and/or vertex-weighted graph. Given a particular start
vertex s, it finds the shortest path from s to every other
vertex in the graph, including your desired destination
t.

The basic idea is very similar to Prim’s algorithm. In
each iteration, we are going to add exactly one vertex
to the tree of vertices for which we know the shortest
path from s.

The difference between Dijkstra’s and Prim’'s algorithms
is how they rate the desirability of each outside vertex.
In shortest path, we want to include the outside ver-
tex which is closest (in shortest-path distance) to the
start. This is a function of both the new edge weight
and the distance from the start of the tree-vertex it is
adjacent to.

In fact, this change is very minor. Below we give an im-
plementation of Dijkstra’s algorithm based on changing
exactly three lines from our Prim's implementation —
one of which is simply the name of the function!



Implementation of Dijkstra

dijkstra(graph *g, int start) /* WAS prim(g,start) x*/

{
int i,j; /* counters x/
bool intree[MAXV]; /* is vertex in the tree yet? x/
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* shortest current distance x*/

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;

v = start;

while (intree[v] == FALSE) A
intree[v] = TRUE;
for (i=0; i<g->degreel[v]; i++) {
w = g->edges([v][i].v;
weight = g->edges[v][i].weight;

/* CHANGED x*/ if (distancel[w] > (distancel[v]+weight)) A

/* CHANGED x*/ distance[w] = distance[v]+weight;
parent[w] = v;
}
}
v = 1;
dist = MAXINT;

for (i=2; i<=g->nvertices; i++)
if ((intree[i]==FALSE) && (dist > distancel[i])) {
dist = distancel[i];
v = i;



How do we use dijkstra to find the length of the short-
est path from start to a given vertex t? This is exactly
the value of distance[t]. How can we reconstruct the
actual path? By following the backward parent point-
ers from ¢ until we hit start (or -1 if no such path
exists)

Unlike Prim’s, Dijkstra’s algorithm only works on graphs
without negative-cost edges. Most applications do not
feature negative-weight edges, making this discussion
academic.



All-Pairs Shortest Path

Many applications need to know the length of the
shortest path between all pairs of vertices in a given
graph. For example, suppose you want to find the
“center” vertex, the one which minimizes the longest
or average distance to all the other nodes. This might
be the best place to start a new business.

We could solve this problem by calling Dijkstra’s algo-
rithm from each of the n possible starting vertices. But
Floyd's all-pairs shortest-path algorithm is an amaz-
ingly slick way to construct this distance matrix from
the original weight matrix of the graph.

Floyd’'s algorithm is best employed on an adjacency
matrix data structure, which is no extravagance since
we have to store all n? pairwise distances anyway. Our
adjacency matrix type allocates space for the largest
possible matrix, and keeps track of how many vertices
are in the graph:

typedef struct {

int weight [MAXV+1] [MAXV+1]; /* adjacency/weight info */

int nvertices; /* number of vertices in graph */
} adjacency_matrix;

A critical issue in any adjacency matrix implementation
is how we denote the edges which are not present in the
graph. For unweighted graphs, a common convention
is that graph edges are denoted by 1 and non-edges by
0. This gives exactly the wrong interpretation if the
numbers denote edge weights, for the non-edges get
interpreted as a free ride between vertices. Instead, we
should initialize each non-edge to MAXINT.



initialize_adjacency_matrix(adjacency_matrix *g)
{

int i,j; /* counters */
g —-> nvertices = 0;

for (i=1; i<=MAXV; i++)
for (j=1; j<=MAXV; j++)
g->weight[i] [j] = MAXINT;
}

Floyd's algorithm starts by numbering the vertices of
the graph from 1 to n, using these numbers not to
label the vertices but to order them.

We will perform n iterations, where the kth iteration
allows only the first k vertices as possible intermediate
steps on the path between each pair of vertices z and
y. When k£ = 0, we are allowed no intermediate ver-
tices, so the only allowed paths consist of the original
edges in the graph. Thus the initial all-pairs shortest-
path matrix consists of the initial adjacency matrix. At
each iteration, we allow a richer set of possible shortest
paths. Allowing the kth vertex as a new possible in-
termediary helps only if there is a short path that goes
through k, so

Wi, 51" = min(W[i, 51"~ 1, Wi, k)"~ 4+ Wk, 517 1)



Implementation of Floyd’s
Algorithm

The correctness of this is somewhat subtle, and we
encourage you to convince yourself of it. But there is

nothing subtle about how short and sweet the imple-
mentation is:

floyd(adjacency_matrix *g)

{
int 1i,j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through vertex k */

for (k=1; k<=g->nvertices; k++)
for (i=1; i<=g->nvertices; i++)
for (j=1; j<=g->nvertices; j++) {
through_k = g->weight[i] [k]+g->weight [k] [j];
if (through_k < g->weight[i][j])
g->weight[i] [j] = through_k;



Transitive Closure

Floyd's algorithm has another important application,
that of computing the transitive closure of a directed
graph. In analyzing a directed graph, we are often
interested in which vertices are reachable from a given
node.

For example, consider the blackmail graph defined on
a set of n people, where there is a directed edge (7,7)
if ¢+ has sensitive-enough private information on 3 so
that 2 can get him to do whatever he wants. You
wish to hire one of these n people to be your personal
representative. Who has the most power in terms of
blackmail potential?

A simplistic answer would be the vertex of highest de-
gree, but an even better representative would be the
person who has blackmail chains to the most other
parties. Steve might only be able to blackmail Miguel
directly, but if Miguel can blackmail everyone else then
Steve is the man you want to hire.

The vertices reachable from any single node can be
computed using using breadth-first or depth-first search.
But the whole batch can be computed as an all-pairs
shortest-path problem. If the shortest path from 2 to
7 remains MAXINT after running Floyd’'s algorithm, you
can be sure there is no directed path from 2 to 5. Any
vertex pair of weight less than MAXINT must be reach-
able, both in the graph-theoretic and blackmail senses
of the word.



Bipartite Matching and
Network Flow

Any edge-weighted graph can be thought of as a net-
work of pipes, where the weight of edge (7,7) measures
the capacity of the pipe. For a given weighted graph
(G and two vertices s and t, the network flow problem
asks for the maximum amount of flow which can be
sent from s to ¢t while respecting the maximum capac-
ities of each pipe.

While the network flow problem is of independent in-
terest, its primary importance is that of being able to
solve other important graph problems. A classic ex-
ample is bipartite matching. A matching in a graph
G = (V,FE) is a subset of edges E' C E such that no
two edges in E’ share a vertex. Thus a matching pairs
off certain vertices such that every vertex is in at most
one such pair.

Graph G is bipartite or two-colorable if the vertices can
be divided into two sets, say, L and R, such that all
edges in G have one vertex in L and one vertex in R.
Many naturally defined graphs are bipartite. For ex-
ample, suppose certain vertices represent jobs to be
done and the remaining vertices people who can po-
tentially do them. The existence of edge (7,p) means
that job 5 can potentially done by person p. Or let cer-
tain vertices represent boys and certain vertices girls,
with edges representing compatible pairs. Matchings
in these graphs have natural interpretations as job as-
signments or as marriages.

The largest possible bipartite matching can be found
using network flow. See the textbook for details.



Assigned Problems

111001 (Freckles) — Connect the dots using as little
ink as possible. What classical graph problem does
this correspond to?

111002 (The Necklace) — Does there exist a way to
lace up bicolored beads so that each pair of neighboring
bead-faces share a color? What classical graph problem
does this correspond to? What efficiently computed
classical graph problem does this also correspond to?

111006 (Tourist Guide) — What vertices in the graph
separate the graph into two pieces, i.e. all paths be-
tween a and b must go through them for any a and b7
How can we efficiently test whether v is such a vertex?

111007 (The Grand Dinner) — Match team members to
tables so that no two team members sit at the same ta-
ble. Can this be done using bipartite matching/network
flow?



