Course Goals

To provide a challenging, self-motivating course
for good students to learn what makes pro-
gramming/computer science fun and exciting.

To strengthen the algorithmic/procedural in-
tuition of students raised in a world of object-
oriented programming.

To provide an enthusiastic cadre of good stu-
dents for Stony Brook’'s ACM Programming
Team, and perhaps strength the SBCSS/UPE
societies/culture.

Should you be taking this course? It depends
upon your interests, background, skills, and
anticipated graduation date.



Administrivia

Make sure I get your name and email address
written clearly, as well as whether you intend
to take this course for credit.

Be sure to register on both the Program-
ming Challenges and Univ. de. Valladolid
robot judges. All programs must eventually
be submitted over http://www.programming-
challenges.com, but this way you can work
even if there is trouble with one judge.

Get the textbook as soon as possible, for we
will be following it very closely.



About the ACM Contest

Thelnternational Programming Contest stresses
teamwork (3 people with 1 or 2 computers per
team) as well as individual efforts, since small
programs are best written by one person, per-
haps after group discussions.

Many of the problems are well-known exer-
cises couched in different guises.

The judges provide very little feedback about
why your program is wrong. Often you must
debug it by reading the specifications again.

The team score is the number of problems
solved correctly over the course of the con-
test, typically 5 hours. Ties are broken by the
cumulative elapsed time taken to correct sub-
missions, with time penalties given for each
incorrect submission of an (ultimately) cor-
rectly solved problem.

Stony Brook did very well in the 2002 New
York Regional, finishing 2nd and 5th of 54
teams. Let’'s do even better next year!



Feedback from the Judge

Be aware that the judges are often very picky
as to what denotes a correct solution. It is
very important to interpret the problem spec-
ifications properly and not make assumptions.

The judge is likely to return one of the fol-
lowing verdicts:

e Accepted (AC) — Congratulations!

e Presentation Error (PE) — Check for
spaces, left/right justification, line feeds,
etc.

e Accepted (PE) — Your program has a
minor presentation error, but the judge is
letting you off with a warning. Stop here
and declare victory!



e Wrong Answer (WA) — Your program re-
turned an incorrect answer to one or more
secret test cases.

e Compile Error (CE) — The compiler could
not figure out how to compile your pro-
gram. The resulting compiler messages
will be returned to you. Warning mes-
sages are ignored by the judge.

e Runtime Error (RE) — Your program
failed during execution due to a segmen-
tation fault, floating point exception, or
similar problem. Its dying message will be
sent back to you. Check for invalid pointer
references or division by zero.

e Submission Error (SE) — You did not
correctly specify one or more of the infor-
mation fields, perhaps giving an incorrect
user ID or problem number.



Time Limit Exceeded (TL) — Your pro-
gram took too much time on at least one
of the test cases, so you likely have a prob-
lem with efficiency.

Memory Limit Exceeded (ML) — Your
program tried to use more memory than
the judge’s default settings.

Output Limit Exceeded (OL) — Your
program tried to print too much output,
perhaps trapped in a infinite loop.

Restricted Function (RF) — Your source
program tried to use an illegal system func-
tion such as fork() or fopen(). Behave
yourself.



Languages

Both robot judges accept programs in C, C++,
Pascal and Java. You may use whatever lan-

guage you wish.
C++ is currently the most popular language.

Be aware that many students have had diffi-
culty using Java on the judges, largely due to
version incompatibility.

Using standard IO in Java is somewhat diffi-
cult — a 35-line standard IO template can be

downloaded from the judge.

It is interesting to tabulate the judge’s ver-
dicts by programming language:

Lang Total AC PE WA CE RE TL

C 451447 31.9% 6.7% 35.4% 86% 9.1% 6.2% C(
C++ 639565 28.9% 6.3% 36.8% 9.6% 9.0% 7.1%
Java 16373 17.9% 3.6% 36.2% 29.8% 0.5% 8.5% 1
Pascal 149408 27.8% 55% 41.8% 10.1% 6.2% 7.2% (
All 1256793 29.7% 6.3% 36.9% 96% 8.6% 6.8% C(



Assigned Problems

110101 (The 3n+41 problem) — The Collatz or
Hailstone number sequences, a famous open
problem in number theory. Why doesn't it
ever cycle?

110102 (Minesweeper) — You are asked to
compute adjacencies from mine positions, which
IS in principle straightforward. But what about
computing mine locations from partial adja-
cency counts? It is NP-complete!

110103 (The Trip) — How do we minimize the
flow of money in balancing expenses after a
trip? Who gets the extra pennies if the total
does not divide evenly?

110106 (Interpreter) — Build an interpreter
program for a very simple computer architec-
ture. How do we extract digits from the inte-
gers to make parsing easier?



