
Lecture 5:
NP-Completeness and Reductions

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Contest Results

Winner: Balneario Camboriu (7 problems, 740 minutes, 53
attempts at problem G)

Give a big thanks to Tanzir for setting up the contests!

Final Contest Results

Winner: InChaVola (7 problems, 1019 minutes)

Topic: Introduction to NP-Completeness

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

Reporting to the Boss
Suppose you fail to find a fast algorithm. What can you tell
your boss?

• “I guess I’m too dumb. . . ” (dangerous confession)

• “There is no fast algorithm!” (lower bound proof)

• “I can’t solve it, but no one else in the world can,
either. . . ” (NP-completeness reduction)

The NP-Completeness Guarantee

The Theory of NP-Completeness

For many problems we can not find efficient algorithms, such
as the traveling salesman problem.
We also cannot prove exponential-time lower bounds for
these problems.
The theory of NP-completeness, developed by Stephen Cook
and Richard Karp, provides the tools to show that all of these
problems were really the same problem.

The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y .
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called a reduction.

What Does this Imply?

Now suppose my reduction translates G to Y in O(P (n)):

1. If my Bo-billy subroutine ran in O(P ′(n)) I can solve the
Bandersnatch problem in O(P (n) + P ′(n′))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, then Ω(P ′(n) − P (n′)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!

My Most Profound Tweet

An NP-completeness proof ensures that a dumb algorithm
that is slow isn’t a slow algorithm that is dumb.
But the ideas of NP-completeness and reductions are an
important part of how I think about and design algorithms.

Questions?

Topic: Reductions for Algorithms

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

Reductions

Reducing (tranforming) one algorithm problem A to another
problem B is an argument that if you can figure out how to
solve B then you can solve A.
Many algorithm problems are reducible to sorting (e.g.
element uniqueness, mode, etc.).

A Computer Scientist and an Engineer Wanted
Some Tea. . .

Make Graphs, Not Algorithms

Designing novel graph algorithms is very hard, so don’t do it.
Instead, try to design graphs that enable you to use classical
algorithms to model your problem.
This approach is consistent with the idea of a reduction
between two problems, which is important in the theory of
NP-completeness.

Shortest k-Link Path

Given a weighted graph G, find the shortest (lowest weight)
path using exactly k links from s to t.
Yes, there is a dynamic programming solution:

Cost[s, t, k] = min
j

w(s, j) + Cost[j, t, k − 1]

But is there another way?

Reduction to Shortest Path

Build a DAG with k copies of G, such that all edges go from
the ith to (i + 1) copy.

Dijkstra’s algorithm (or something simpler) can now find the
shortest weighted path from s1 to tk.

Convex Hull and Sorting

Many algorithmic problems are reduciable to sorting (e.g.
element uniqueness, mode, etc.)
A nice example of a reduction goes from sorting numbers to
the convex hull problem:

We must translate each number to a point. We can map x to
(x, x2).

Why the Parabola?

13115 17

Each integer is mapped to a point on the parabola y = x2.
Since this parabola is convex, every point is on the convex
hull. Further values, the convex hull returns the points sorted
by x-coordinate, ie. the original numbers.

Convex Hull to Sorting Reduction

Sort(S)
For each i ∈ S, create point (i, i2).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,

read off the points from left to right.

Recall the sorting lower bound of Ω(n lg n). If we could do
convex hull in better than n lg n, we could sort faster than
Ω(n lg n) – which violates our lower bound.
Thus convex hull must take Ω(n lg n) as well!!!
Observe that any O(n lg n) convex hull algorithm also gives
us a complicated but correct O(n lg n) sorting algorithm.

Shortest Common Superstring

Find the most compressed string T that contains each string
from a set of strings S as a substring of T ?

A B R A C A
R A C A D A
A C A D A B
C A D A B R
A D A B R A

A B R A C A D A B R A
A B R A C A
 R A C A D A

A C A D A B
C A D A B R

A D A B R A

How can you find a superstring?
How can you find a short superstring?
How can you find the shortest superstring?

Reduction to Traveling Salesman

Build a directed graph where w(i, j) is max string length -
longest suffix of Si—prefix of Sj overlap.
The minimum cost tour visiting all vertices (strings) defines
the shortest common superstring.

3SUM-Hardness

Consider the problem of testing whether a set of integers S
contain three elements a, b and c such that a + b + c = 0.
This can be solved in O(n2), and smart people think that there
is no significantly faster algorithm.
Many other problems have been reduced to 3SUM, including
testing whether three lines in the plane meet in a single point.
Thus a faster algorithm for 3SUM would mean a faster
algorithm for degeneracy testing.

Questions?

Topic: NP-Completeness and Graph
Algorithms

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y .
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called a reduction.

What Does this Imply?

Now suppose my reduction translates G to Y in O(P (n)):

1. If my Bo-billy subroutine ran in O(P ′(n)) I can solve the
Bandersnatch problem in O(P (n) + P ′(n′))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, then Ω(P ′(n) − P (n′)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!

Vertex Cover

Instance: A graph G = (V,E), and integer k ≤ V
Question: Is there a subset of at most k vertices such that
every e ∈ E has at least one vertex in the subset?

Starting from the Right Problem

While theoretically any NP -complete problem can be
reduced to any other one, choosing the correct one makes
finding a reduction much easier.

3− Sat ∝ V C

Maximum Independent Set

Instance: A graph G = (V,E) and integer j ≤ v.
Question: Does the graph contain an independent of j
vertices, ie. is there a subset of v of size j such that no pair
of vertices in the subset defines an edge of G?

Vertex Cover and Independent Set

When talking about graph problems, it is most natural to
reducefrom a graph problem.
If you take a graph and find its vertex cover, the remaining
vertices form an independent set, meaning there are no edges
between any two vertices in the independent set.
Why? If there were such an edge the rest of the vertices could
not have been a vertex cover.

Maximum Independent Set is NP-Complete

The smallest vertex cover gives the biggest independent set,
and so the problems are equivallent: delete the subset of
vertices in one from V to get the other!
Thus finding the maximum independent set is NP-complete!

Maximum Clique

Instance: A graph G = (V,E) and integer j ≤ v.
Question: Does the graph contain a clique of j vertices, ie. is
there a subset of v of size j such that every pair of vertices in
the subset defines an edge of G?

From Independent Set

In an independent set, there are no edges between two
vertices. In a clique, there are always between two vertices.
Thus if we complement a graph (have an edge iff there was no
edge in the original graph), a clique becomes an independent
set and an independent set becomes a clique!

Densest Subgraph

Show that the dense subgraph problem is NP-complete:
Input: A graph G, and integers k and y.
Question: Does G contain a subgraph with exactly k vertices
and at least y edges?

Questions?

Topic: Satisfiability and Other NP-Complete
Problems

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

Satisfiability

Instance: A set V of variables and a set of clauses C over V .
Question: Does C have a satisfying truth assignment?

or or

or or

oror

oror

(

(

(

)

)

)

)

(

or or

or or

oror

oror

(

(

(

)

)

)

)

(

Example 1: V = v1, v2 and C = {{v1, v2}, {v1, v2}}
A clause is satisfied when at least one literal in it is true. C is
satisfied when v1 = v2 =true.

Not Satisfiable

Example 2: V = v1, v2,

C = {{v1, v2}, {v1, v2}, {v1}}

Although you try, and you try, and you try and you try, you
can get no satisfaction.
There is no satisfying assigment since v1 must be false (third
clause), so v2 must be false (second clause), but then the first
clause is unsatisfiable!

Satisfiability is Hard

Satisfiability is known/assumed to be a hard problem.
Every top-notch algorithm expert in the world has tried and
failed to come up with a fast algorithm to test whether a given
set of clauses is satisfiable.
Further, many strange and impossible-to-believe things have
been shown to be true if someone in fact did find a fast
satisfiability algorithm.

Integer Partition (Subset Sum)

Instance: A set of integers S and a target integer t.
Problem: Is there a subset of S which adds up exactly to t?
Example: S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}
and T = 3754
Answer: 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = T
Observe that integer partition is a number problem, as
opposed to the graph and logic problems we have seen to date.

Integer Programming

Instance: A set v of integer variables, a set of inequalities
over these variables, a function f (v) to maximize, and integer
B.
Question: Does there exist an assignment of integers to v such
that all inequalities are true and f (v) ≥ B?
Example:

v1 ≥ 1, v2 ≥ 0

v1 + v2 ≤ 3

f (v) : 2v2, B = 3

A solution to this is v1 = 1, v2 = 2.

Maximum Cut

Vertex Coloring

Edge Coloring

Graph Isomorphism

A

BE G
F H

IJ

D C

1 2

108

3

4 5

7

9

6

1A

6H 9J

7D

4C

2B3G

8I

10F

5E

Not NP-complete, but Isomorphism-Hard

Steiner Tree

MST is hard in graphs if only a subset of nodes must be in the
tree.

Feedback Edge/Vertex Set

Set Cover

Set Packing

Bin Packing

A B

C

G

F
E

D

H

A

F

H
C

D
E

GB

Questions?

Topic: The Art of Proving Hardness

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you get the
hang of it, it is surprisingly straightforward and pleasurable
to do.
The dirty little secret of NP-completeness proofs is that they
are usually easier to recreate than explain, in the same way
that it is usually easier to rewrite old code than the try to
understand it.
I offer the following advice to those needing to prove the
hardness of a given problem. . .

Make your source problem as simple (i.e.
restricted) as possible
Never use TSP as a source problem (Bandersnatch):

• Better is TSP on instances restricted to the triangle
inequality.

• Even better, use Hamiltonian cycle, where all the weights
are 1 or∞.

• Even better, use Hamiltonian path instead of cycle.

• Even better, use Hamiltonian path on directed, planar
graphs where each vertex has total degree 3.

All are equally hard, so the more you can restrict Bander-
snatch, the less work your reduction has to do.

Make your target problem as hard as possible

Don’t be afraid to add extra constraints or weights or
freedoms to the Bo-billy problem in order to make your
problem more general (at least temporarily).

Select the right source problem for the right
reason

Selecting the right source problem makes a big difference is
how difficult it is to prove a problem hard. This is the first
and easiest place to go wrong.
I usually consider four and only four problems as candidates
for my hard source problem. Limiting them to four means
that I know a lot about these problems:

• 3-Sat – that old reliable. . . When none of the three
problems below seem appropriate, I go back to the source.

• Integer partition – the one and only choice for problems
whose hardness seems to require using large numbers.

• Vertex cover – for any graph problems whose hardness
depends upon selection. Chromatic number, clique, and
independent set all involve trying to select the correct
subset of vertices or edges.

• Hamiltonian path – for any graph problems whose
hardness depends upon ordering, like when you are trying
to route or schedule something.

Amplify the penalties for making the undesired
transition

You are trying to translate one problem into another, while
making them stay the same as much as possible.
Be bold with your penalties, to punish anyone trying to
deviate from your proposed solution.
“If you pick this, then you have to pick up this huge set which
dooms you to lose.”
The sharper the consequences for doing what is undesired,
the easier it is to prove if and only if.

Think strategically at a high level, then build
gadgets to enforce tactics.

You should be asking these kinds of questions:

• How can I force that either A or B but not both are chosen?

• How can I force that A is taken before B?

• How can I clean up the things I did not select?

Alternate between looking for an algorithm or
a reduction if you get stuck

Sometimes the reason you cannot prove hardness is that there
is an efficient algorithm to solve your problem!
When you can’t prove hardness, it likely pays to change your
thinking at least for a little while to keep you honest.

Now watch me try it!

To demonstrate how one goes about proving a problem hard,
I accept the challenge of showing how a proof can be built on
the fly.
I need a volunteer to pick a random problem from the 400+
hard problems in the back of Garey and Johnson.
https://www.cs.stonybrook.edu/˜skiena/
373/hard.txt

https://www.cs.stonybrook.edu/~skiena/373/hard.txt
https://www.cs.stonybrook.edu/~skiena/373/hard.txt

The Problem

The Solution

Questions?

Topic: P vs. NP

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

P versus NP

• A problem is in NP if a given answer can be checked in
polynomial time.

• A problem is in P if it can be solve in time polynomial in
the size of the input.

Satisfiability is in NP , since we can guess an assignment of
(true, false) to the literals and check it in polynomial time.
The precise distinction between P or NP is somewhat
technical, requiring formal language theory and Turing
machines to state correctly.
But the real issue is the difference between finding solutions
or verifying them.

Classifying Example Problems

• In P – Is there a path from s to t in G of length less than
k.

• In NP – Is there a TSP tour in G of length less than k.
Given the tour, it is easy to add up the costs and convince
me it is correct.

• Not in NP – How many TSP tours are there in G of length
less than k. Since there can be an exponential number of
them, we cannot count them all in polynomial time.

Don’t let this issue confuse you – the important idea here is
of reductions as a way of proving hardness.

Polynomial or Exponential?

Just changing a problem a little can make the difference
between it being in P or NP -complete:

P NP -complete
Shortest Path Longest Path
Eulerian Circuit Hamiltonian Circuit
Edge Cover Vertex Cover

The first thing you should do when you suspect a problem
might be NP-complete is look in Garey and Johnson,
Computers and Intractability.

Is P = NP?

This remains the greatest open problem in Computer Science.

Some will say it is true for N = 1 or P = 0. :-)

Questions?

Topic: Concluding Remarks

• Introduction to NP-Completeness

• Reductions for Algorithms

• NP-Completeness and Graph Algorithms

• Satisfiability and Other Problems

• The Art of Proving Hardness

• P vs. NP

• Concluding Remarks

This Was Fun

Thanks for your attention and enthusiasm.
I greatly enjoyed teaching and meeting you all.
Thanks also to the organizers: Rafael and Carlos, and all the
assistants.

How Should You Spend the Rest of Your Life?

You are all bright people and will achieve success however
you define it.
Industry needs smart people every bit as much as academia.
The best place to live depends upon many things: home,
family, economic prospects, lifestyle preferences, political
situations etc.

Should I Go To Grad School?

People with skills like should be able to get good jobs in
industry with your undergraduate degree.
But technical skills atrophy with time. With time you get
more expert on your companies projects and less so with what
is changing in the world.
More interesting jobs, at higher pay, are usually available to
those with gradate degrees.
When you are young is the right time to go to graduate school,
before you have important family obligations.

Should I Go to a Different Country?

The number and quality of graduate programs in Brazil and
other countries is increasing, but the strongest programs in
the world are abroad.
I always tell my Stony Brook undersgraduates that it is better
to shift to a different university for a PhD (and usually for an
MS) because you will learn from different people who taught
you undergrad.
For a PhD degree, I encourage students to find the best
university that they can get accepted to: it does make a
difference.

Should I Go to the US?

We used to get students from Brazil at Stony Brook, but less
so now.
Financially, any decent US university will give complete
financial support to all of our PhD students: free tuition plus
a $36,000/year stipend: enough to live securely.
Our PhD students often get summer jobs at Google,
Facebook, etc. while they are students, and permanent job
offers on graduation.
The PhD model in the US is somewhat different than Europe
and other places: a year or so longer, a little more course
work, and research funding from faculty advisors instead of
grants or teaching.

I personally think university research at top US schools offer
more exciting research prospects (e.g. AI and quantum) than
at other place, due to a mix of industrial activity/funding,
international faculty, and entrepeneurial university culture.

Should I go to Stony Brook?

This is 100% up to you.
But feel free to write me with any questions if you have them:
skiena@cs.stonybrook.edu
Be sure to say at the top that we met in Brazil at the IOI or
ICPC class I taught so I know who you are.
Good luck at the World Finals! I will be rooting for you!

Questions?

