
Lecture 1:
Dynamic Programming

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Topic: Course Organization

• Course Organization

• Edit Distance

• Advanced Edit Distance

• Exact Pattern Matching

• Suffix Trees and Arrays

Who Am I?

• Professor of Computer Science, Stony Brook University.

• Former coach of our ICPC team: reached World Finals
twice.

• Research interests in algorithms, data science, and NLP.

Who are You?

• From what countries?

• From what school years?

• World finalists?

• How many robot judge problems have you solved?

Teaching Philosophy

How do you teach students who know everything?

My Vision

You are all largely self-trained in algorithms to get to the
proficiency you have.
But there is a way to see the big picture of algorithm design
that I think is valuable.
My plan is to teach you how I think of algorithmic problem
solving in five distinct areas, and my hope is you will like it.

Lectures

• Dynamic programming and sequences

• Network flows and matchings

• Combinatorial objects and counting

• (Computational) Geometry

• Reductions and NP-completeness

Pair of Ears Needed

I do not speak Portuguese.
I need a volunteer who can relay questions from the room
loudly and clearly enough for me to hear.
Thanks for your patience.
I do encourage questions and discussion in class, so please
ask.

Contests

Set up by my loyal graduate student Tanzir Pial.
They are loosly coupled to the lecture topic of the day.
Do we want to discuss the previous contests at the beginning
or end of lecture?
Should you do the contest as teams or individuals?

Questions?

Topic: Edit Distance

• Course Organization

• Edit Distance

• Advanced Edit Distance

• Exact Pattern Matching

• Suffix Trees and Arrays

Edit Distance

misplaced

misprinted
? misspelled amispelt

m i s s p e l l ed

a m i s p e l t

P S T A R S T A R S T A R

T S C A B S C A B R S C A B

Substitution Insertion Deletion

Dynamic Programming

The entire state of the recursive call is governed by the index
positions into the strings. Thus there are only |S| × |T |
different calls.
By storing the answers in a table and looking them up instead
of recomputing, the algorithm takes quadratic time.
Dynamic programming is the algorithmic technique of
efficiently computing recurrence relations by storing partial
results.
It is very powerful on any ordered structures, like character
strings, permutations, and rooted trees.

Table Structure

The table data structure keeps track of the cost of reaching
this position plus the last move which took us to this cell.
typedef struct {

int cost; /* cost of reaching this cell */
int parent; /* parent cell */

} cell;

cell m[MAXLEN+1][MAXLEN+1]; /* dynamic programming table */

Edit Distance via Dynamic Programming

int string_compare(char *s, char *t, cell m[MAXLEN+1][MAXLEN+1]) {
int i, j, k; /* counters */
int opt[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {
row_init(i, m);
column_init(i, m);

}

for (i = 1; i < strlen(s); i++) {
for (j = 1; j < strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i], t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[MATCH];
m[i][j].parent = MATCH;
for (k = INSERT; k <= DELETE; k++) {

if (opt[k] < m[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

}
}

goal_cell(s, t, &i, &j);
return(m[i][j].cost);

}

To determine the value of cell (i, j), we need the the cells
(i− 1, j − 1), (i, j − 1), and (i− 1, j). Any evaluation order
with this property will do, including the row-major order we
used.

Standard String Edit Distance

The function string compare is very general, and must
be customized to a particular application.
It uses problem-specific subroutines match and indel to
return the costs of character pair transitions:
void row_init(int i, cell m[MAXLEN+1][MAXLEN+1]) {

m[0][i].cost = i;
if (i > 0) {

m[0][i].parent = INSERT;
} else {

m[0][i].parent = -1;
}

}

The functions row init and column init to initialize
the boundary conditions.

int match(char c, char d) {
if (c == d) {

return(0);
}
return(1);

}

The function goal cell returns the desired final cell of
interest in the matrix.
void goal_cell(char *s, char *t, int *i, int *j) {

*i = strlen(s) - 1;

*j = strlen(t) - 1;
}

Changing these functions lets us do substring matching,
longest common subsequence, and maximum monotone
subsequence as special cases.

String Matching Example: Cost Matrix

The cost matrix in converting thou shalt not to you should
not:

String Matching Example: Parent Matrix

T y o u - s h o u l d
P pos 0 1 2 3 4 5 6 7 8 9 10

0 -1 1 1 1 1 1 1 1 1 1 1
t: 1 2 0 0 0 0 0 0 0 0 0 0
h: 2 2 0 0 0 0 0 0 1 1 1 1
o: 3 2 0 0 0 0 0 0 0 1 1 1
u: 4 2 0 2 0 1 1 1 1 0 1 1
-: 5 2 0 2 2 0 1 1 1 1 0 0
s: 6 2 0 2 2 2 0 1 1 1 1 0
h: 7 2 0 2 2 2 2 0 1 1 1 1
a: 8 2 0 2 2 2 2 2 0 0 0 0
l: 9 2 0 2 2 2 2 2 0 0 0 1
t: 10 2 0 2 2 2 2 2 0 0 0 0

Reconstructing the Alignment

We must walk backwards to reconstruct the alignment either
using explicit back pointers, or we can recalculate how we
got to the critical cells starting from the back.
void reconstruct_path(char *s, char *t, int i, int j,

cell m[MAXLEN+1][MAXLEN+1]) {
if (m[i][j].parent == -1) {

return;
}

if (m[i][j].parent == MATCH) {
reconstruct_path(s, t, i-1, j-1, m);
match_out(s, t, i, j);
return;

}

if (m[i][j].parent == INSERT) {
reconstruct_path(s, t, i, j-1, m);
insert_out(t, j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s, t, i-1, j, m);
delete_out(s, i);
return;

}
}

The actions we take on traceback are governed by
match out, insert out, and delete out:
The edit sequence from “thou-shalt-not” to “you-should-
not” is DSMMMMMISMSMMMM – meaning delete the first ‘t’,
replace the ‘h’ with ‘y’, match the next five characters before
inserting an ‘o’, replace ‘a’ with ’u’, replace the ‘t’ with a ‘d’.

Questions?

Topic: Advanced Edit Distance

• Course Organization

• Edit Distance

• Advanced Edit Distance

• Exact Pattern Matching

• Suffix Trees and Arrays

Space Required for Edit Distance

How much space is required to compute the edit distance
between strings of length n and m, where n ≥ m?
Edit distance only looks at neighboring rows/columns to
make its decisions.
Computing the highest cell score in the matrix does not
require keeping more than then last column and the best value
to date, for a total of O(n) space, where n ≤ m.
But what if we want to find the optimal alignment, instead of
just its cost?

Space-Efficient Dynamic Programming

Quadratic space will kill you faster than quadratic time.
Reconstructing the optimal alignment seems to require
keeping the entire matrix.
But Hirshberg found a clever way to reconstruct the align-
ment in O(nm) time using only O(n) space, by recomputing
the appropriate portions of the matrix.

Hirchsberg’s Method

For each cell, we drag along the row number where the
optimal path to in crossed the middle (m/2nd) column.

Knowing the crossing point k of the (m/2)nd column implies
that the optimal alignment lies in submatrices A from (1,1) to
(m/2, k), and B from (m/2, k) to (m,n).

Timing Analysis

The number of cells in these submatrices A and B total only
half of the original mn cells.
Because dynamic programming algorithms are linear in the
number of cells they compute, we can recur on A and
B, where the the total amount of recomputation done is∑lgm
i=0 mn/2

i = 2mn so the total work remains O(mn).

Edit Distance between Similar Strings

When two strings are very similar, the optimal alignment
cannot get too far from the main diagonal.
If the edit distance is k, it can never get more than k units
from the main diagonal.

Banded Alignment

Edit distance can be done in O(kn) even without knowing k
in advance.

• Key idea 1: one sided binary search: try k = 1, 2, 4, 8,

• Key idea 2: convergence of geometric series:
x∑
i=0

2i < 2x+1

so it is order of the biggest term.

By repeatedly doubling the width of the band until we get a
cost less than the width, we do O(log k) iterations with total
cost O(kn).

Gap Penalties

In many applications (e.g. shortening a novel) the length of
the gap is relatively unimportant—“just deleting one chunk
of text”
Gaps can be modeled as repeated single-base deletions, where
the cost for a gap is linear in its length.
But a more general model charges a fixed penalty for the
existence of each gap, plus another penalty depending upon
the length of the gap.
Affine gap penalties are A + Bt for gaps of length t, while
logarithmic gap penalties of A +B lg t often useful.

Arbitrary Gap Weights

Suppose gap cost is a completely general function of length
where we cannot assume monotonicity or any other property.
Then we must explicitly try every possible length dele-
tion/insertion at every possible position, i.e. V (i, j) takes the
best of the following options:

G(i, j) = V (i− 1, j − 1) +match(i, j)

E(i, j) =
j−1
min
k=0

V (i, k) + indel(j − k)

F (i, j) =
i−1
min
k=0

V (k, j) + indel(i− k)

Analysis: Arbitrary Gap Penalties

Because we are doing a linear amount of work for each cell,
the time complexity goes to O(n2m + nm2) or O(n3) if n ≥
m.
This algorithm is often called Needleman-Wunsch.

Affine Gap Weights

By being clever we can avoid the extra linear cost of looking
for the start of the gap for affine gap penalties, i.e. penalties
of the form A +Bt for gaps of length t
We will use the insertion and deletion recurrences E and F
to encode the cost of being in gap mode, meaning we have
already paid the cost of initiating the gap.

V (i, j) = min(E(i, j), F (i, j), G(i, j))

G(i, j) = V (i− 1, j − 1) +match(i, j)

E(i, j) = min(E(i, j − 1), V (i, j − 1) +A) +B

F (i, j) = min(F (i− 1, j), V (i− 1, j) +A) +B

Analysis: Affine Gap Penalties

With constant amount of work per cell, this algorithm takes
O(mn) time, same as without gap costs.
The special case of convex penalty functions (including
logarithmic costs) can be solved inO(nm log(mn)) time with
a more complicated algorithm.

Multiple Sequence Alignment

A H A A I G D D E T N W O R T D T S

H G I T G D D E A N W T O S R D S G

G T A S H I D D E N W O R D T G A G

H I G S D D E G N W O R G A D S T A

H A I D A G D E N S W O R S A D T S

A H A A I G D D E T N W O R T D T S

H G I T G D D E A N W T O S R D S G

G T A S H I D D E N W O R D T G A G

H I G S D D E G N W O R G A D S T A

H A I D A G D E N S W O R S A D T S

The state here for k strings of length n is nk.
Order states Dx by dominance (lesser or equal on all
dimensions)
A dominance order is any topological sort of the dominance
DAG.
If Dx all match, then M [Dx] = 1 + max(M [D]forD < Dx)

Running Time for MSA

Muliple sequence alignment is exponential for large k,
because there are 2k predecessor states (δ = 0,−1 for all k
dimensions), so O(2knk) time.

Context Free Grammars
The complete set of syntactically correct programs in any
programming language is defined by a context-free grammar:

sentence ::= noun−phrase

 verb−phrase
noun−phrase ::= article noun

verb−phrase ::= verb noun−phrase

article ::= the, a

cat, milk

drankverb ::=

noun ::=

sentence

cat milkthe thedrank

article

article

noun

noun verb noun−phrase

verb−phrasenoun−phrase

Grammars are made up of rules built on collections of
terminal symbols (the, a, cat, milk, drank) and non-terminal
symbols or variable (sentence, noun-phrase, verb-phrase,
article, noun).

Parsing Context-Free Grammars

The act of recognizing a syntactically correct program is
called parsing.
Parsing builds a tree of rule applications (a parse tree) in the
course of recognition.
We assume the program is length n, but the grammar is a
fixed, constant size, so the complexity of parsing just depends
on n.

Manipulating Grammars

Every context-free grammar can be translated into Chomsky
Normal Form, where each rule is either (a) exactly two non-
terminals: X → Y Z or (b) exactly one terminal symbol:
X → α.
Certainly a longer rule can be made shorter by adding a non-
terminal symbol and associated rules: X → WY Z turned
into X1 = WY and X → X1Z
How can we parse strings using grammars in CNF?

Parsing using Dynamic Programming

Every node in a parse tree has a non-terminal label X , and
represents a continguous substring of the input string s.
Let M [i, j,X] = true iff there is a non-terminal X which has
a rule which recognizes the substring si . . . sj.
This means there is a rule X → Y Z such that there is a
i ≤ k < j such that Y recognizes si . . . sk and Z recognizes
sk+1 . . . sj

Recurrence Relation for Parsing

M [i, j,X] =
∨

(X→Y Z)∈G

j−1∨
k=i

M [i, k, Y] ∧M [k + 1, j, Z]

where ∨ denotes the logical or over all productions and split
positions, and ∧ denotes the logical and of two Boolean
values.
M [i, i,X] is true iff there exists a production X → α such
that Si = α.
Running time is O(n3) assuming the grammar is of constant
size.

Making Programs Syntactically Correct

Programs often contain trivial syntax errors that prevent them
from compiling.
The LLMs that generate programs, like ChatGPT/Copilot
may well produce syntactically incorrect code.
Problem: Given a context-free grammar G and input se-
quence S, find the smallest number of character substitutions
you must make to S so that the resulting sequence is accepted
by G.

Solution: Edit Distance with Parsing

Define M ′[i, j,X] to be an integer function that reports the
minimum number of changes to subsequence Si · · ·Sj so it
can be generated by nonterminal X .

M ′[i, j,X] = min
(X→Y Z)∈G

 j−1min
k=i

M ′[i, k, Y] +M ′[k + 1, j, Z]

This is still only O(n3) if you assume the grammar is
constant-sized.
Boundary conditions: If there exists a production X → α,
the cost of matching at position i depends on the contents of
Si. If Si = α, M ′[i, i,X] = 0.

Questions?

Topic: Exact String Matching

• Course Organization

• Edit Distance

• Advanced Edit Distance

• Exact Pattern Matching

• Suffix Trees and Arrays

Taxonomy of String Matching Problems

Different string matching problems arise, depending on
whether preprocessing techniques are appropriate:

• Variable texts, Variable patterns – Use an O(n + m)
algorithm like Knuth-Morris-Pratt or Boyer-Moore or
Rabin-Karp.

• Fixed texts, variable patterns – e.g. search the human
genome or the Bible. Suffix trees/arrays efficiently
support repeated queries on fixed strings.

• Variable texts, fixed patterns – e.g. search a news feed for
dirty words. Such applications justify preprocessing the
set of patterns so as to speed search.

Randomized String Matching

The Rabin-Karp algorithm computes an appropriate hash
function on all m-length strings of the text, and does a brute
force comparison only if the hash value is the same for the
text window and the pattern.
An appropriate hash function is

H(S) =
m−1∑
i=1

diSi mod q

which treats each string as an m-digit base-d number, mod q.

Incremental Computation

This hash function can be computed incrementally in constant
time as we slide the window from left to right since

H(Sj+1) = dH(Sj) + Sj+1 − dmSj−m

Further, if q is a random prime the expected number of
false positives is small enough to yield a randomized linear
algorithm.

Multiple Exact Patterns

Many applications require searching a text for occurrences of
any one of many patterns, e.g. searching text for dirty words
or searching a genome for any one of a set of known motifs.
Pattern matching with wild card characters (ACG?T) is an
important special case of multiple patterns.
Techniques from automata theory come into play, since any
finite set of patterns can be modeled by regular expressions,
and many interesting infinite sets (e.g. G(AT)∗C) as well.
The standard UNIX tool grep stands for “general regular
expression pattern matcher”.

The Aho-Corasick algorithm builds a DFA from the set of
patterns and then walks through the text in linear time, taking
action when reaching any accepting state.

Questions?

Topic: Suffix Trees and Arrays

• Course Organization

• Edit Distance

• Advanced Edit Distance

• Exact Pattern Matching

• Suffix Trees and Arrays

Tries and Trees

There are several interesting data structures for speeding up
exact pattern matches in strings.
A trie is a data structure which permits access to any string
s in an n word dictionary in O(|s|) time for constant-sized
alphabets.
This is optimal and independent of the dictionary size!
Note that binary search of an n word dictionary would take
O(log n|s|) time.

Tries

A trie has a node for each character position, with prefixes
shared:

n

w

a h

ese

h

i

r e

r

t

Searching in a trie is easy: just match the character and
traverse down the correct path.
Building the trie is also easy: insert a new string by matching
until you fail, then split the last node.

Suffix Trees

A special set of patterns are all suffixes of a string.

XYZXYZ$
YZXYZ$
ZXYZ$
XYZ$
YZ$
Z$
$

1 4 2 5 63

7

XYZ

XYZ$

$

YZ Z

XYZ$ XYZ$$ $ $

With such a tree, we can perform substring searches
efficiently, since every substring is the prefix of some suffix.
Further, the set of all instances of a given substring t are the
leaves of the subtree rooted at t, and can be found by DFS.

Linear-Size Suffix Trees

A suffix tree can be stored in linear space, by collapsing
degree-1 nodes into paths, and paths into references to the
original string.
The incremental insertion algorithm to build a suffix tree
might take O(n2) time to build the tree, because finding
the split-point for each insertion might require O(n) time in
matching.
However, there are more sophisticated algorithms (Weiner’s,
Ukkonen’s, McCreight’s) which can build the entire tree in
linear time.

Exploiting Suffix Trees: Longest Common
Substring

Given two strings s1 and s2, what is the longest contiguous
substrings they have in common.
Example: livestock and sealiver
The naive O(nm) algorithm fully tests each alignment of s1
against s2.
In 1970, Knuth conjectured that a linear-time algorithm was
impossible. Can you prove him wrong?

Longest Common Substring Algorithm

Build a suffix tree of the length n+m+1 concatenated string
s′ = s1#s2, where # does not occur in either string.
Label each leaf node of the suffix tree with the name of the
string it is contained in. Label each internal node with the
union of the labels of its descendents.
By doing a DFS on theO(n+m+1) node tree, we can find the
deepest node which has both an s1 and s2 descendant. This
defines the longest common substring!

Exploiting Suffix Trees: Palindromes

A palindrome reads the same forwards and backwards: A
man, a plan, a canal – Panama or Madam I’m Adam.
How can we find the longest palindrome within a string?

MAMAB MADAMIMADAMABA

Finding Palindromes

How can we find the longest palindrome within a string? Use
the longest common substring algorithm with s1 as the input
sequence and s2 as its reverse sequence!
This does not guarantee that the lcs of these strings starts/ends
in the same place, so does not necessarily find a palindrome.
However, after we augment the suffix tree so as to answer
lowest common ancestor queries in constant time. . .
. . . we can find the longest sub-palindrome in linear time by
asking the ‘length’ of the LCA of S[i] and S[i + n + 1] for
each 1 ≤ i ≤ n.

Exploiting Suffix Trees: Circular String
Linearization

To look a circular molecule up in a database, we must find a
canonical place to break it to leave a linear string.

ABAACA
AABAAC
CAABAA
ACAABA
AACAAB
BAACAA

The most obvious place to break it uniquely is so as to always
leave the lexicographically smallest string, i.e. the string
which appears first in sorted order.
Building and sorting all n such strings takes O(n2) time. Can
you do better?

Linear Time Linearization

Break the string arbitrarily to create a linear string L.
Now build the suffix tree for string S = LL#. This is linear
in the size of the input.
Example: L = gcttcaat so S = gcttcaatgcttcaat#.
Do a traversal down from the root, always picking the
lexicographically smallest character. Assume that # is at the
end of the alphabet.

Suffix Arrays

The suffix array is an amazing data structure for efficiently
searching whether S is a substring of string T .
For a given string T , we construct the lexicographically sorted
array of all its suffixes.
For T = mississippi, the suffix array is:
11 : i
8 : ippi
5 : issippi
2 : ississippi
1 : mississippi
10 : pi
9 : ppi
7 : sippi
4 : sissippi
6 : ssippi
3 : ssissippi

Searching in a Suffix Array

Since every substring is the prefix of some suffix, Substring
search now reduces to binary search in this array. Example:
is “sip” a substring of T ?
Binary search in a suffix array takesO(m lg n), where n is the
length of T and m the length of the matched substring.
With auxilliary data, this can be improved to O(lg n +m).
Note that we can just as easily find all the occurrences of a
given string S in T by binary searching just before/after S.

Building and Storing Suffix Arrays

Amazingly we need only store the original string and the
sorted start positions to do the search! The jth character of
the ith prefix is at T [start[i] + j − 1].
But how fast can be built the suffix array of an n character
string?
Radix sorting n strings of n characters can be done in O(n2),
linear in the size of the input.

Building Suffix Arrays Efficiently

But what is really amazing is that suffix arrays can be built in
both linear time and space!
First, build a suffix tree in O(n) time.
Performing a lexicographic depth first search of a suffix tree
yields a suffix array.
Suffix arrays use many times less space than suffix trees (say
3n vs. 17n bytes), which is often the dominating factor in
large text search problems.

Questions?

