Lecture 2: Asymptotic Notation

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/~skiena
Problem of the Day

The *knapsack problem* is as follows: given a set of integers $S = \{s_1, s_2, \ldots, s_n\}$, and a given target number T, find a subset of S which adds up exactly to T. For example, within $S = \{1, 2, 5, 9, 10\}$ there is a subset which adds up to $T = 22$ but not $T = 23$.

Find counterexamples to each of the following algorithms for the knapsack problem. That is, give an S and T such that the subset is selected using the algorithm does not leave the knapsack completely full, even though such a solution exists.
Solution

- Put the elements of S in the knapsack in left to right order if they fit, i.e. the first-fit algorithm?
- Put the elements of S in the knapsack from smallest to largest, i.e. the best-fit algorithm?
- Put the elements of S in the knapsack from largest to smallest?
The RAM Model of Computation

Algorithms are an important and durable part of computer science because they can be studied in a machine/language independent way. This is because we use the **RAM model of computation** for all our analysis.

- Each “simple” operation (+, -, =, if, call) takes 1 step.
- Loops and subroutine calls are *not* simple operations. They depend upon the size of the data and the contents of a subroutine. “Sort” is not a single step operation.
• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the number of steps.

This model is useful and accurate in the same sense as the flat-earth model (which is useful)!
Worst-Case Complexity

The *worst case complexity* of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
Best-Case and Average-Case Complexity

The *best case complexity* of an algorithm is the function defined by the *minimum* number of steps taken on any instance of size n.

The *average-case complexity* of the algorithm is the function defined by an *average* number of steps taken on any instance of size n.

Each of these complexities defines a numerical function: time vs. size!
Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the basis of best, worst, and average-case complexity? Generally speaking, we will use the worst-case complexity as our preferred measure of algorithm efficiency. Worst-case analysis is generally easy to do, and “usually” reflects the average case. Assume I am asking for worst-case analysis unless otherwise specified! Randomized algorithms are of growing importance, and require an average-case type analysis to show off their merits.
Exact Analysis is Hard!

Best, worst, and average case are difficult to deal with because the *precise* function details are very complicated:

It easier to talk about *upper and lower bounds* of the function. Asymptotic notation \((O, \Theta, \Omega)\) are as well as we can practically deal with complexity functions.
Names of Bounding Functions

- \(g(n) = O(f(n)) \) means \(C \times f(n) \) is an upper bound on \(g(n) \).
- \(g(n) = \Omega(f(n)) \) means \(C \times f(n) \) is a lower bound on \(g(n) \).
- \(g(n) = \Theta(f(n)) \) means \(C_1 \times f(n) \) is an upper bound on \(g(n) \) and \(C_2 \times f(n) \) is a lower bound on \(g(n) \).

\(C, C_1, \) and \(C_2 \) are all constants independent of \(n \).
\(\Theta \), \(\Omega \), and \(\Theta \)

The definitions imply a constant \(n_0 \) beyond which they are satisfied. We do not care about small values of \(n \).
Formal Definitions

• \(f(n) = O(g(n)) \) if there are positive constants \(n_0 \) and \(c \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies on or below \(c \cdot g(n) \).

• \(f(n) = \Omega(g(n)) \) if there are positive constants \(n_0 \) and \(c \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies on or above \(c \cdot g(n) \).

• \(f(n) = \Theta(g(n)) \) if there exist positive constants \(n_0, c_1, \) and \(c_2 \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies between \(c_1 \cdot g(n) \) and \(c_2 \cdot g(n) \) inclusive.
Big Oh Examples

\[3n^2 - 100n + 6 = O(n^2) \text{ because } 3n^2 > 3n^2 - 100n + 6 \]
\[3n^2 - 100n + 6 = O(n^3) \text{ because } .01n^3 > 3n^2 - 100n + 6 \]
\[3n^2 - 100n + 6 \neq O(n) \text{ because } c \cdot n < 3n^2 \text{ when } n > c \]

Think of the equality as meaning \textit{in the set of functions}.
Big Omega Examples

\[3n^2 - 100n + 6 = \Omega(n^2) \text{ because } 2.99n^2 < 3n^2 - 100n + 6\]

\[3n^2 - 100n + 6 \neq \Omega(n^3) \text{ because } 3n^2 - 100n + 6 < n^3\]

\[3n^2 - 100n + 6 = \Omega(n) \text{ because } 10^{10^{10}} n < 3n^2 - 100n + 6\]
Big Theta Examples

\[3n^2 - 100n + 6 = \Theta(n^2)\] because \(O\) and \(\Omega\)

\[3n^2 - 100n + 6 \neq \Theta(n^3)\] because \(O\) only

\[3n^2 - 100n + 6 \neq \Theta(n)\] because \(\Omega\) only
Suppose \(f(n) = O(n^2) \) and \(g(n) = O(n^2) \).

- What do we know about \(g'(n) = f(n) + g(n) \)? Adding the bounding constants shows \(g'(n) = O(n^2) \).

- What do we know about \(g''(n) = f(n) - |g(n)| \)? Since the bounding constants don’t necessary cancel, \(g''(n) = O(n^2) \)

We know nothing about the lower bounds on \(g' \) and \(g'' \) because we know nothing about lower bounds on \(f \) and \(g \).