
Lecture 3:
Program Analysis

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

For each of the following pairs of functions f (n) and
g(n), state whether f (n) = O(g(n)), f (n) = Ω(g(n)),
f (n) = Θ(g(n)), or none of the above.

1. f (n) = n2 + 3n + 4, g(n) = 6n + 7

2. f (n) = n
√
n, g(n) = n2 − n

3. f (n) = 2n − n2, g(n) = n4 + n2

Big Oh Multiplication by Constant

Multiplication by a constant does not change the asymptotics:

O(c · f (n))→ O(f (n))

Ω(c · f (n))→ Ω(f (n))

Θ(c · f (n))→ Θ(f (n))

The “old constant” C from the Big Oh becomes c · C.

Big Oh Multiplication by Function

But when both functions in a product are increasing, both are
important:

O(f (n)) ·O(g(n))→ O(f (n) · g(n))

Ω(f (n)) · Ω(g(n))→ Ω(f (n) · g(n))

Θ(f (n)) · Θ(g(n))→ Θ(f (n) · g(n))

This is why the running time of two nested loops is O(n2).

Reasoning About Efficiency

Grossly reasoning about the running time of an algorithm is
usually easy given a precise-enough written description of the
algorithm.
When you really understand an algorithm, this analysis can
be done in your head. However, recognize there is always
implicitly a written algorithm/program we are reasoning
about.

Selection Sort

selection sort(int s[], int n)
{

int i,j;
int min;

for (i=0; i<n; i++) {
min=i;
for (j=i+1; j<n; j++)

if (s[j] < s[min]) min=j;
swap(&s[i],&s[min]);

}
}

Worst Case Analysis

The outer loop goes around n times.
The inner loop goes around at most n times for each iteration
of the outer loop
Thus selection sort takes at most n × n → O(n2) time in the
worst case.
In fact, it is Θ(n2), because at least n/2 times it scans through
at least n/2 elements, for a total of at least n2/4 steps.

More Careful Analysis

An exact count of the number of times the if statement is
executed is given by:

S(n) =
n−1∑
i=0

n−1∑
j=i+1

1 =
n−1∑
i=0

(n− i + 1) =
n−1∑
i=0

i

S(n) = (n− 1) + (n− 2) + (n− 3) + . . .+ 2 + 1 = n(n+ 1)/2

Thus the worst case running time is Θ(n2).

Insertion Sort

insertion sort(item s[], int n)
{

int i,j; /* counters */

for (i=1; i < n; i++) {
j=i;
while ((j > 0) && (s[j] < s[j-1])) {

swap(&s[j],&s[j-1]);
j = j-1;

}
}

}

I

N

R

O N S O R T

N S O R TO

S

O

T

S O R T

O R T

R T

T

T

 S E R T I O N S O R T

E R T I O N S O R T

N

S

R T I O N S O R TE

T I O N S O R T

I O N S O R T

E

SE I I

SIIE

TRIE I

IIE

RIIE

N

N

N

N

N

R

O

N

N

N

R

O

O

O

R

O

T

S

S

R

S

S S

TTSSRROONNIIE

TSSRROONNIIE

I

T

T

T

S

N

SNI

I

SNIE

RNIE

TSRNI

This involves a while loop, instead of just for loops, so the
analysis is less mechanical.
But n calls to an inner loop which takes at most n steps on
each call is O(n2).

The reverse-sorted permutation proves that the worst-case
complexity for insertion sort is Θ(n2).

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

Solar Sails vs. Rockets

The bad-ass rocket hits a high speed before it runs out of fuel,
then coasts at constant speed vr.
The solar sail slowly accelerates from the force of radia-
tion/solar wind hitting it, but its speed of vs = at must
eventually exceed the bad-ass rocket.
This is asymptotic dominance in action.

Asymptotic Dominance in Action

n f(n) lg n n n lg n n2 2n n!

10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4× 1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days
100 0.007 µs 0.1 µs 0.644 µs 10 µs 4× 1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 31.7 years

Implications of Dominance

• Exponential algorithms get hopeless fast.

• Quadratic algorithms get hopeless at or before 1,000,000.

• O(n log n) is possible to about one billion.

• O(log n) never sweats.

Testing Dominance

f (n) dominates g(n) if limn→∞ g(n)/f (n) = 0, which is the
same as saying g(n) = o(f (n)).
Note the little-oh – it means “grows strictly slower than”.

Properties of Dominance

• na dominates nb if a > b since

lim
n→∞n

b/na = nb−a → 0

• na + o(na) doesn’t dominate na since

lim
n→∞n

a/(na + o(na))→ 1

Dominance Rankings

You must come to accept the dominance ranking of the basic
functions:

n!� 2n � n3 � n2 � n log n� n� log n� 1

Advanced Dominance Rankings

Additional functions arise in more sophisticated analysis than
we will do in this course:

n!� cn � n3 � n2 � n1+ε � n log n� n�
√
n�

log2 n� log n� log n/ log log n� log log n� α(n)� 1

Logarithms

It is important to understand deep in your bones what
logarithms are and where they come from.
A logarithm is simply an inverse exponential function.
Saying bx = y is equivalent to saying that x = logb y.
Logarithms reflect how many times we can double something
until we get to n, or halve something until we get to 1.

Binary Search

In binary search we throw away half the possible number of
keys after each comparison. Thus twenty comparisons suffice
to find any name in the million-name Manhattan phone book!
How many time can we halve n before getting to 1?
Answer: dlg ne.

Logarithms and Trees

How tall a binary tree do we need until we have n leaves?
The number of potential leaves doubles with each level.
How many times can we double 1 until we get to n?
Answer: dlg ne.

Logarithms and Bits

How many bits do you need to represent the numbers from 0
to 2i − 1?
Each bit you add doubles the possible number of bit patterns,
so the number of bits equals lg(2i) = i.

Logarithms and Multiplication

Recall that

loga(xy) = loga(x) + loga(y)

This is how people used to multiply before calculators, and
remains useful for analysis.
What if x = a?

The Base is not Asymptotically Important

Recall the definition, clogc x = x and that

logb a =
logc a

logc b

Thus log2 n = (1/ log100 2) × log100 n. Since 1/ log100 2 =
6.643 is just a constant, it does not matter in the Big Oh.

Federal Sentencing Guidelines
2F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than Counterfeit Bearer Obligations of the United States.
(a) Base offense Level: 6
(b) Specific offense Characteristics

(1) If the loss exceeded $2,000, increase the offense level as follows:

Loss(Apply the Greatest) Increase in Level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(Q) More than $80,000,000 add 18

Make the Crime Worth the Time

The increase in punishment level grows logarithmically in the
amount of money stolen.
Thus it pays to commit one big crime rather than many small
crimes totalling the same amount.

