
Lecture 17:
Edit Distance

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Suppose you are given three strings of characters: X , Y , and
Z, where |X| = n, |Y | = m, and |Z| = n + m. Z is said to
be a shuffle of X and Y iff Z can be formed by interleaving
the characters from X and Y in a way that maintains the left-
to-right ordering of the characters from each string.

1. Show that cchocohilaptes is a shuffle of chocolate and
chips, but chocochilatspe is not.

2. Give an efficient dynamic-programming algorithm that
determines whether Z is a shuffle of X and Y . Hint: The
values of the dynamic programming matrix you construct
should be Boolean, not numeric.

Three Steps to Dynamic Programming

1. Formulate the answer as a recurrence relation or recursive
algorithm.

2. Show that the number of different instances of your
recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence so you
always have what you need.

The Gas Station Problem

Suppose we are driving from NY to Florida, and we know the
positions of all gas stations g1 to gn we will pass on route.
What is the minimum number of gas stations we will have to
fill up at to make it down there?
The mi be the mile marker where station gi is located, and R
be the driving range of the car on a full tank in miles.

Recursive Idea

Let G[i] be the minimum number of fillups needed to get to
gas station gi.
If we know the best cost to get to all gas stations before i that
are in driving range, we can compute G[i]:

G[i] = min
j < i,where

((mj −mi) < R)

G[j] + 1

The boundary case is G[1] = 0.

Observations

• This gives an O(n2) algorithm to minimize the number of
stations.

• This problem could have been solved as BFS/shortest path
on an unweighted directed graph.

• Many dynamic programming algorithms are in fact
shortest path problems on the right DAG, in disguise.

• The dynamic programming formulation can be extended
(with additional state) to finding the cheapest trip if gas
stations charge different prices.

Minimum Average Station Price

Suppose we know the price of gas p(s) at every station s we
will pass.
What is the set of stations we should stop at to minimize
average price?
Here we are not worrying about how much gas we buy at each
stop, just the per-gallon price.

Recursive Idea

Let G[i, k] be the minimum total per gallon price needed to
get to gas station gi in exactly k stops.

G[i, k] = min
j < i,where

((mj −mi) < R)

G[j, k − 1] + p(j)

The boundary case is G[1, 0] = 0.
Ultimately we want the k that minimize G[n, k]/k.
This doesn’t quite capture the desire to put more gas in the
car at cheaper stations.

Cheapest Filling Schedule

Let’s say that we must buy gas in integer numbers of gallons
at a time.
What is the filling schedule which gets us to the destination
at lowest total cost?

Recursive Idea

Let G[i, k] be the minimum cost possible to get to gas station
gi arriving with k gallons of gas left in the tank.

G[i, k] = min
c

min
j < i

((mj −mi) < Rc)

G[j, c] + p(j) · (k − c′)

G[i, k] =
k−1
min
c=0

G[i, c] + p(i) · (k − c)

Here c′ is the amount of gas remaining after starting with c
gallons and driving from j to i.
The boundary case is G[1, 0] = 0.

Problem of the Day

A certain string processing language allows the programmer
to break a string into two pieces. Since this involves copying
the old string, it costs n units of time to break a string of n
characters into two pieces.
Suppose a programmer wants to break a string into many
pieces. The order in which the breaks are made can affect
the total amount of time used.
For example suppose we wish to break a 20 character string
after characters 3,8, and 10:

• If the breaks are made in left-right order, then the first
break costs 20 units of time, the second break costs 17
units of time and the third break costs 12 units of time, a

total of 49 steps.

• If the breaks are made in right-left order, the first break
costs 20 units of time, the second break costs 10 units of
time, and the third break costs 8 units of time, a total of
only 38 steps.

Give a dynamic programming algorithm that, given the list
of character positions after which to break, determines the
cheapest break cost in O(n3) time.

Edit Distance

Mispellings make approximate pattern matching an impor-
tant problem
If we are to deal with inexact string matching, we must first
define a cost function telling us how far apart two strings are,
i.e., a distance measure between pairs of strings.
A reasonable distance measure minimizes the cost of the
changes which have to be made to convert one string to
another.

String Edit Operations

There are three natural types of changes:

• Substitution – Change a single character from pattern s
to a different character in text t, such as changing “shot”
to “spot”.

• Insertion – Insert a single character into pattern s to help
it match text t, such as changing “ago” to “agog”.

• Deletion – Delete a single character from pattern s to
help it match text t, such as changing “hour” to “our”.

Recursive Algorithm

We can compute the edit distance with recursive algorithm
using the observation that the last character in the string must
either be matched, substituted, inserted, or deleted.
If we knew the cost of editing the three pairs of smaller
strings, we could decide which option leads to the best
solution and choose that option accordingly.
We can learn this cost, through the magic of recursion:

Recurrence Relation

Let D[i, j] be the minimum number of changes to convert the
first i characters of string S into the first j characters of string
T .
Then D[i, j] is the minimum of:

• D[i− 1, j − 1] if S[i] = T [j]

• D[i− 1, j − 1] + 1 if S[i] 6= T [j]

• D[i, j − 1] + 1 for an insertion into S

• D[i− 1, j] + 1 for a deletion from S

Recursive Edit Distance Code

#define MATCH 0 (* enumerated type symbol for match *)
#define INSERT 1 (* enumerated type symbol for insert *)
#define DELETE 2 (* enumerated type symbol for delete *)

int string compare(char *s, char *t, int i, int j)
{

int k; (* counter *)
int opt[3]; (* cost of the three options *)
int lowest cost; (* lowest cost *)

if (i == 0) return(j * indel(’ ’));
if (j == 0) return(i * indel(’ ’));

opt[MATCH] = string compare(s,t,i-1,j-1) + match(s[i],t[j]);
opt[INSERT] = string compare(s,t,i,j-1) + indel(t[j]);
opt[DELETE] = string compare(s,t,i-1,j) + indel(s[i]);

lowest cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)

if (opt[k] < lowest cost) lowest cost = opt[k];

return(lowest cost);
}

Speeding it Up

This program is absolutely correct but takes exponential time
because it recomputes values again and again and again!
But there can only be |s| · |t| possible unique recursive calls,
since there are only that many distinct (i, j) pairs to serve as
the parameters of recursive calls.
By storing the values for each of these (i, j) pairs in a table,
we can avoid recomputing them and just look them up as
needed.

The Dynamic Programming Table

The table is a two-dimensional matrix m where each of the
|s| · |t| cells contains the cost of the optimal solution of this
subproblem, as well as a parent pointer explaining how we
got to this location:
typedef struct {

int cost; (* cost of reaching this cell *)
int parent; (* parent cell *)

} cell;

cell m[MAXLEN+1][MAXLEN+1]; (* dynamic programming table *)

Differences with Dynamic Programming

The dynamic programming version has three differences
from the recursive version:

• First, it gets its intermediate values using table lookup
instead of recursive calls.

• Second, it updates the parent field of each cell, which
will enable us to reconstruct the edit-sequence later.

• Third, it is instrumented using a more general
goal cell() function instead of just returning
m[|s|][|t|].cost. This will enable us to apply this
routine to a wider class of problems.

We assume that each string has been padded with an initial
blank character, so the first real character of string s sits in
s[1].

Evaluation Order

To determine the value of cell (i, j) we need three values
sitting and waiting for us, namely, the cells (i − 1, j − 1),
(i, j − 1), and (i − 1, j). Any evaluation order with this
property will do, including the row-major order used in this
program.
Think of the cells as vertices, where there is an edge (i, j) if
cell i’s value is needed to compute cell j. Any topological
sort of this DAG provides a proper evaluation order.

Dynamic Programming Edit Distance

int string compare(char *s, char *t)
{

int i,j,k; (* counters *)
int opt[3]; (* cost of the three options *)

for (i=0; i<MAXLEN; i++) {
row init(i);
column init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[MATCH];
m[i][j].parent = MATCH;
for (k=INSERT; k<=DELETE; k++)

if (opt[k] < m[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

goal cell(s,t,&i,&j);
return(m[i][j].cost);

}

Example

Below is an example run, showing the cost and parent values
turning “thou shalt not” to “you should not” in five moves:

P y o u - s h o u l d - n o t
T pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t: 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 13
h: 2 2 2 2 3 4 5 5 6 7 8 9 10 11 12 13
o: 3 3 3 2 3 4 5 6 5 6 7 8 9 10 11 12
u: 4 4 4 3 2 3 4 5 6 5 6 7 8 9 10 11
-: 5 5 5 4 3 2 3 4 5 6 6 7 7 8 9 10
s: 6 6 6 5 4 3 2 3 4 5 6 7 8 8 9 10
h: 7 7 7 6 5 4 3 2 3 4 5 6 7 8 9 10
a: 8 8 8 7 6 5 4 3 3 4 5 6 7 8 9 10
l: 9 9 9 8 7 6 5 4 4 4 4 5 6 7 8 9
t: 10 10 10 9 8 7 6 5 5 5 5 5 6 7 8 8
-: 11 11 11 10 9 8 7 6 6 6 6 6 5 6 7 8
n: 12 12 12 11 10 9 8 7 7 7 7 7 6 5 6 7
o: 13 13 13 12 11 10 9 8 7 8 8 8 7 6 5 6
t: 14 14 14 13 12 11 10 9 8 8 9 9 8 7 6 5

The edit sequence from “thou-shalt-not” to “you-should-not”
is DSMMMMMISMSMMMM

Reconstructing the Path

Dynamic programming solutions are described by paths
through the dynamic programming matrix, starting from the
initial configuration (the empty strings (0, 0)) down to the
final goal state (the full strings (|s|, |t|)).
Reconstructing these decisions is done by walking backward
from the goal state, following the parent pointer to an
earlier cell. The parent field for m[i,j] tells us whether
the transform at (i, j) was MATCH, INSERT, or DELETE.
Walking backward reconstructs the solution in reverse order.
However, clever use of recursion can do the reversing for us:

Reconstruct Path Code

Walking backward reconstructs the solution in reverse order.
However, clever use of recursion can do the reversing for us:
reconstruct path(char *s, char *t, int i, int j)
{

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {
reconstruct path(s,t,i-1,j-1);
match out(s, t, i, j);
return;

}
if (m[i][j].parent == INSERT) {

reconstruct path(s,t,i,j-1);
insert out(t,j);
return;

}
if (m[i][j].parent == DELETE) {

reconstruct path(s,t,i-1,j);
delete out(s,i);
return;

}
}

Customizing Edit Distance

• Table Initialization – The functions row init() and
column init() initialize the zeroth row and column
of the dynamic programming table, respectively.

• Penalty Costs – The functions match(c,d) and
indel(c) present the costs for transforming character
c to d and inserting/deleting character c. For edit distance,
match costs nothing if the characters are identical, and 1
otherwise, while indel always returns 1.

• Goal Cell Identification – The function goal cell
returns the indices of the cell marking the endpoint of the
solution. For edit distance, this is defined by the length of
the two input strings.

• Traceback Actions – The functions match out,
insert out, and delete out perform the appropri-
ate actions for each edit-operation during traceback. For
edit distance, this might mean printing out the name of
the operation or character involved, as determined by the
needs of the application.

Substring Matching

Suppose that we want to find where a short pattern s best
occurs within a long text t, say, searching for “Skiena” in all
its misspellings (Skienna, Skena, Skina, . . .).
Plugging this search into our original edit distance function
will achieve little sensitivity, since the vast majority of any
edit cost will be that of deleting the body of the text.
We want an edit distance search where the cost of starting the
match is independent of the position in the text.
Likewise, the goal state is not necessarily at the end of both
strings, but the cheapest place to match the entire pattern
somewhere in the text.

Customizations

row init(int i)
{

m[0][i].cost = 0; (* note change *)
m[0][i].parent = -1; (* note change *)

}

goal cell(char *s, char *t, int *i, int *j)
{

int k; (* counter *)

*i = strlen(s) - 1;
*j = 0;
for (k=1; k<strlen(t); k++)

if (m[*i][k].cost < m[*i][*j].cost) *j = k;
}

Longest Common Subsequence
The longest common subsequence (not substring) between
“democrat” and “republican” is eca.
A common subsequence is defined by all the identical-
character matches in an edit trace. To maximize the number
of such traces, we must prevent substitution of non-identical
characters.

int match(char c, char d)
{

if (c == d) return(0);
else return(MAXLEN);

}

Maximum Monotone Subsequence

A numerical sequence is monotonically increasing if the ith
element is at least as big as the (i− 1)st element.
The maximum monotone subsequence problem seeks to
delete the fewest number of elements from an input string
S to leave a monotonically increasing subsequence.
Thus a longest increasing subsequence of “243517698” is
“23568.”

Reduction to LCS

In fact, this is just a longest common subsequence problem,
where the second string is the elements of S sorted in
increasing order.
Any common sequence of these two must (a) represent
characters in proper order in S, and (b) use only characters
with increasing position in the collating sequence, so the
longest one does the job.

Problem of the Day

Eggs break when dropped from great enough height. Specif-
ically, there must be a floor f in any sufficiently tall building
such that an egg dropped from the f th floor breaks, but one
dropped from the (f − 1)st floor will not. If the egg always
breaks, then f = 1. If the egg never breaks, then f = n + 1.
You seek to find the critical floor f using an n-story building.
The only operation you can perform is to drop an egg off
some floor and see what happens. You start out with k eggs,
and seek to drop eggs as few times as possible. Broken eggs
cannot be reused.

Let E(k, n) be the minimum number of egg droppings that
will always suffice.

1. Show that E(1, n) = n.

2. Show that E(k, n) = Θ(n
1
k).

3. Find a recurrence for E(k, n). What is the running time
of the dynamic program to find E(k, n)?

