
CSE 373 Analysis of Algorithms February 26, 2014

Solutions to HW 1

Steven Skiena

PROBLEM 1

[1–17] Base case: When we have n = 1 vertex, then we have 0 = n− 1 edges.

Inductive step: Assume for n = k, we have k− 1 edges. To show that for n = k + 1, we have
k edges. To prove this, note that no matter how Tk (k-vertex tree) looks like, two things must
hold in Tk+1, due to the property of trees:

(1) The k + 1th vertex has to be incident on any one of the vertices of Tk. If not, the tree will
be disconnected!
(2) The k + 1th vertex cannot be incident on more than one vertex of Tk. Suppose it is incident
on two vertices u, v ∈ Tk. What goes wrong? Remember that since Tk was a tree (and hence

connected), there was a path from u to v in Tk. Now our k + 1th vertex, call it x forms another
path (u, x, v) from u to v. Thus we get a cycle! This cannot happen if Tk+1 is a tree.

Thus, for n = k + 1, we have exactly k − 1 + 1 = k edges. �

[1–19] Assuming I have 30 books, each having around 600 pages, in total I have about 30×600 =
9000 pages, which is no where close to a million. Suppose the school library has 20 shelves, each
having 100 books, then the total pages assuming 600 pages per book is 20×100×600 = 1200000
pages.

PROBLEM 2

[1–20] We assume that there are about 40 lines per page and about 10 words per line. Multiply
by 500 pages and we get about 200, 000 words.

[1–22] The population of US is approximately 300 million and there are approximately 5, 0000
people per city or town. Therefore the answer is 300× 1065, 0000 = 6, 000.

PROBLEM 3

[2–7] (a) True – 2n+1 = 2.2n = O(2n)
(b) False – 22n = 4n

[2–8] (a) Θ
(b) Ω
(c) Ω
(d) Ω
(e) Ω
(f) Θ

1

(g) Ω
(h) O

Note that to show f(n) = Θ(g(n)), you need it show f(n) = O(g(n)) and f = Ω(g(n)).

PROBLEM 4

[2–19] The functions from lowest to highest order:

1
3

n
6 log log n log n, lnn (log n)2 n1/3 + log n

√
n

n
logn n n log n n2, n2 + log n n3 n− n3 + 7n5 3

2

n
2n, n!

Note: (1) 1
3

n
will always be less than 1.

(2) n! ≈ nn (See Stirling’s approximation).

PROBLEM 5

[2–21] (a) True.
(b) False.
(c) True.
(d) False.
(e) True.
(f) True.
(g) False.

[2–22] (a) Ω
(b) O
(c) Ω

[2–23] (a) Yes. O(n2) worst case means that on no input will it take more time than that, so
of course it can take O(n) on some inputs.
(b) Yes. O(n2) worst-case means that on no input will it take more time than that. It is
possible that all inputs can be done in O(n), which still follows this upper bound.
(c) Yes. Although the worst case is Θ(n2), this does not mean all cases are Θ(n2).
(d) No. Θ(n2) worst case means there exists some input which takes Ω(n2) time, and no input
takes more than O(n2) time.
(e) Yes. Since both the even and odd functions are Θ(n2).

[2–24] (a) No.
(b) Yes. Note that log 3n = n log 3 and log 2n = n log 2. log 2 and log 3 are constants.
(c) Yes.
(d) Yes.

PROBLEM 6
2

[3–2]

typedef struct list{

item_type item;

struct list *next;

}list;

void reverse_list(list **l){

list *p = NULL;

list *q = *l;

list *r;

while(q!=NULL){

r = q -> next;

q -> next = p;

p = q;

q = r;

}

*l = q;

}

PROBLEM 7

[3–4] Note that your query space is {1, . . . , n}. So you can just use a bit array where A[i] = 1
if i is in the array, otherwise A[i] = 0. To insert i you just need to make A[i] = 1 if it is not
already so. Similarly for deletion you make A[i] = 0. Search i is just i if A[i] = 1, else not
present. Hence they are all O(1).

PROBLEM 8

[3–10] Using any kind of balanced binary search tree to store the bins, because it supports
insertion, deletion and search in O(log n) time. The keys of the bins are their free spaces.

(a) We try to put the objects one by one. We search in the tree for the bins which has the
smallest amount of extra room and the extra room is sufficient to hold the object. If such bin
exists, we put objects in it and update our tree; if not, we use a new bin and insert it to the tree.

(b) We try to put the objects one by one. We search in the tree for the bins which has the
largest amount of extra room. If such bin exists and is sufficient to hold the object, we put
objects in it and update our tree; otherwise, we use a new bin and insert it to the tree.

Note: This is an NP-Complete problem. Neither best-fit nor worst-fit can always give you the
optimal solution.

PROBLEM 9

[3-11] (a) In this question we can take any amount of preprocessing time, can only use O(n2)
3

space, and answer the range minimum queries in O(1) time. Just use a n × n matrix where
position (i, j) stores the minimum of xi, . . . , xj .

(b) In this question we can take any amount of preprocessing time, but we can only use O(n)
space, and the range minimum queries should take O(log n) time.

Let min(i, j) = min(xi, . . . , xj).
Build a binary tree in the following manner: the root of the tree is min(1, n) the left child
of the root is min(1, bn/2c) and the right child of the root is min(bn/2c + 1, n). We do this
recursively, that is, if a node in the tree denotes min(i, j) then its left child is min(i, bi + j/2c)
and the right child is min(bi + j/2c+ 1, j). The leaves of the tree are x1, . . . , xn.
See figure below.

Figure 1. Segment tree

Now that we have stored our values, we answer the queries in the following way.

// qs --> query start index, qe --> query end index

int RMQ(node, qs, qe)

{

if range of node is within qs and qe

return value in node

else if range of node is completely outside qs and qe

return error

else

return min(RMQ(node’s left child, qs, qe), RMQ(node’s right child, qs, qe))

}
4

Convince yourself that the above tree uses O(n) space. Hint: It is a full binary tree, so its
height is O(log n).

The query time is O(log n). Do you see why? Hint: We need to check atmost two nodes at
every level of the tree, and there are only O(log n) levels.

Note: The range minimum query problem has many interesting solutions with different prepro-
cessing/space and time trade-offs. Look them up if interested!

5

