
CSE 373 Analysis of Algorithms March 10, 2015

Solutions to HW 2

PROBLEM 1

[4–1] Sort the n players by their values, which takes O(n log n). Then simply let the first n
players to be Team A, the rest to be Team B.

[4–2]

(a) Simply find the maximum element a and the minimum element b in O(n) time, and the
answer is |a− b|.

(b) The answer is |An−1 −A0|.
(c) First sort the array. Then do a linear scan, and return the minimum difference of every two

adjacent element.
(d) Do the same as above (except the sorting).

PROBLEM 2

[4–5] Two ways to do this:

(1) Sort and scan, O(n log n): Sort the array and scan through it, keeping track of the
longest run of duplicate elements seen.

(2) Hashing or using a counter array: Scan the whole array. For each element, store it in a
hash table along with its counter. At the end, scan through hash table and return the
element whose counter is the largest. This is O(n) expected running time.

[4–6] Sort both the arrays in O(n log n) time. You may delete the elements which are greater
than x. Now for each element k in S1, do binary search to find x − k in S2. If it is present
then you have the desired pair. The running time for binary search is O(log n) and we do it for
every element of S1, which is O(n log n) in total. Hence overall running time is O(n log n).

PROBLEM 3

[4–12] Build a min-heap in O(n). Then do extract-min for k times to get the k smallest elements.
Thus, total running time is O(n + k log n).

[4–13]

(a) Both max-heap and sorted array support finding maximum in O(1) time.
(b) Deletion takes O(log n) in max-heap, and O(n) in sorted array. Thus max-heap is better.
(c) It takes O(n) to build a max-heap, and O(n log n) to build a sorted array. Thus max-heap

is better.
1



(d) It takes O(n) to find the minimum element in a max-heap, because in the worst case you
need to check every leaf node. For a sorted array, it takes only O(1), thus sorted array is
better.

[4–14] The basic idea is: we keep an array of k pointers, each pointing to the start of the
corresponding sorted list initially. Then for each step, we pick the smallest element among the
k current elements , and move forward the corresponding pointer. It takes O(k) time to pick
the smallest element, and we have n elements in total, thus now we have an O(nk) algorithm.
Then, we speed up this algorithm by maintaining a min-heap of those k elements: for each step,
we simply pick the minimum element in the heap and move forward the corresponding pointer.
It takes O(log k) time to pick and delete the smallest element and insert the next element, and
we have n elements in total. This gives us an O(n log k) algorithm.

[4–15]

(a) Build a tree bottom up as follows: The elements are the leaves. Compare adjacent pair
of elements and move the maximum to the next level. Keep doing this till you get to one
element (the maximum of all) as the root – this process is like a tournament. The height of
this tree is O(log n). To find the second largest element, note that for the root to become
the maximum, it must have been compared against the second largest at some point. So
now we can just go down the tree following the trail of 1’s and keep track of the maximum
of the numbers it was compared to at each step. This is our second largest element. See
the picture below to understand this algorithm better: (Note that this figure is for finding
the minimum, but the algorithm is the same)

The count of comparisons is n/2 + n/4 + · · ·+ 1 = n for building the tree, and log n for
finding the second-largest. Thus, we only need n + log n comparisons in total.

(b) For third-largest or in fact the kth largest element, we build the same tree as above. Follow
the same logic – the second largest element or largest element must have been compared
against the third largest at some point and so on. otherwise, the third largest element
should “win” all the tournaments because it’s larger than all the other elements, and this
leads to contraction. Thus, we can check in the tree which elements have been compared
with the largest or the second largest elemnt, and pick the largest among these elements.
Thus, finding the kth largest elements takes O(n + k log n) time. And in the process, we
must determine which key is largest and second-largest.

2



For more detailed notes and code for the above, you can see https://blogs.oracle.com/

malkit/entry/finding_kth_minimum_partial_ordering.

PROBLEM 4

[4–16] To find the median of an array using quicksort, we only have to do the recursion on one
side as follows:

Median (A, start, end)

(1) Partition the array A around randomly selected pivot. This takes O(n) for n elements.
(2) If (pivot− start + 1 == n/2) then return A[pivot].
(3) Else if (pivot− start > n/2) then the median is in the left side of the array. Simply call

Median(A, start, pivot).
(4) Else call Median(A, pivot, end).

With a good pivot, for each step we roughly reduce the number of elements by half. Thus, the
total time for finding the median is n + n/2 + n/4 + · · ·+ 1 = 2n = O(n).

[4–20] Keep two counters: x, the index after the last negative key found so far and y, the first
index of the positive keys found so far. The invariant is that A[1 . . . x − 1] are negative and
A[y . . . n] are positive. Initially x = 1 and y = n + 1. We scan the array from left to right
and at each step examine A[x]. If it is negative then just increase x by 1 and continue, if it is
positive then decrease y by 1 and then swap A[x] with A[y]. At each step we either increase x
or decrease y, hence our algorithm is in-place and runs in O(n) time.

PROBLEM 5

[4–22] We can do quicksort by partitioning the array around k/2 (since the elements are in the
range [1, k], this is the median), and recursively sort each halves similarly. Thus in log k steps,
we have our sorted array, and each step takes no more than O(n). Thus, the overall running
time is O(n log k).

[4–24] Two steps:

[1] Sort the last
√
n element using any sorting algorithm. Let’s say we are using bubble sort,

and this step takes O(n).

[2] Merge the first n−
√
n elements with the last

√
n elements using the same method as merge

sort. This step also takes O(n). In total the time complexity is O(n) = o(nlogn).

3

https://blogs.oracle.com/malkit/entry/finding_kth_minimum_partial_ordering
https://blogs.oracle.com/malkit/entry/finding_kth_minimum_partial_ordering

